
Order (2016) 33:195–212
DOI 10.1007/s11083-015-9359-7

Posets with Cover Graph of Pathwidth
two have Bounded Dimension
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Abstract Joret, Micek, Milans, Trotter, Walczak, and Wang recently asked if there exists
a constant d such that if P is a poset with cover graph of P of pathwidth at most 2, then
dim(P ) ≤ d. We answer this question in the affirmative by showing that d = 17 is suffi-
cient. We also show that if P is a poset containing the standard example S5 as a subposet,
then the cover graph of P has treewidth at least 3.
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1 Introduction

Although the dimension of a poset and the treewidth of a graph have been prominent
subjects of mathematical study for many years, it is only recently that the impact of the
treewidth of graphs on poset dimension has received any real attention. This new interest in
connections between these topics has led to recasting an old result in terms of treewidth. It
is natural to phrase the following result from 1977 in terms of treewidth, which had been
defined (using a different name) by Halin in [5] a year earlier. However, the importance
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of treewidth (and the use of that name) only became widely known through the work of
Robertson and Seymour [10] nearly a decade later.

Theorem 1.1 (Trotter and Moore [16]) If P is a poset such that the cover graph of P is
a tree, then dim(P ) ≤ 3. Equivalently, if P is a poset such that the cover graph of P is
connected and has treewidth at most 1, then dim(P ) ≤ 3.

Recently there have been a number of papers on the dimension of planar posets
[3, 4, 13]. This work naturally led to the question of bounding a poset’s dimension in terms
of the treewidth of its cover graph. Over 30 years ago, Kelly showed in [8] that there are
planar posets having arbitrarily large dimension by constructing a planar poset containing
Sd , the standard example of dimension d, as a subposet. These examples use large height to
stretch out Sd to allow a planar embedding. Joret et al. [6] point out that the pathwidth of
Kelly’s examples is 3 for d ≥ 5. Thus, any bound on dimension solely in terms of pathwidth
or treewidth is impossible. However, they were able to show that it suffices to add a bound
on the height in order to bound the dimension. In particular, they proved the following:

Theorem 1.2 (Joret et al. [6]) For every pair of positive integers (t, h), there exists a least
positive integer d = d(t, h) so that if P is a poset of height at most h and the treewidth of
the cover graph of P is at most t , then dim(P ) ≤ d.

Motivated by the observation about the pathwidth of Kelly’s examples, Joret et al. con-
cluded their paper by asking if there is a constant d such that if P is a poset whose cover
graph has pathwidth at most 2, then dim(P ) ≤ d. They also asked this question with
treewidth replacing pathwidth. (An affirmative answer to the latter question would imply an
affirmative answer to the former.) In this paper, we show that the answer for pathwidth 2 is
in fact “yes” with the following result:

Theorem 1.3 Let P be a poset. If the cover graph of P has pathwidth at most 2, then
dim(P ) ≤ 17.

In fact, the precise version of this result (Theorem 4.6) is intermediate between answering
the pathwidth question and answering the treewidth question, as we only need to exclude six
of the 110 forbidden minors that characterize the graphs of pathwidth at most 2. (Treewidth
at most 2 is characterized simply by forbidding K4 as a minor.)

We show in Theorem 5.2 that any poset containing the standard example S5 has treewidth
at least 3. This provides a small piece of evidence in favor of the idea that if the treewidth
of a poset is at most 2, then the poset’s dimension is bounded.

Before proceeding to our proofs, we provide some definitions for completeness. We then
establish some essential properties of the 2-connected blocks of a graph of pathwidth at
most 2. We then prove the more general version of Theorem 1.3 and conclude with the
rather technical proof that posets containing S5 have cover graphs of treewidth at least 3.

2 Definitions and Pathwidth 2 Obstructions

Let P be a poset. If x < y in P and there is no z ∈ P such that x < z < y in P , we say
that x is covered by y (or y covers x) and write x <: y. For x ∈ P , the closed down set
of x is D[x] = {y ∈ P : y ≤ x} and the closed up set of x is U [x] = {y ∈ P : y ≥ x}.
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The cover graph of P is the graph G with the elements of P as its vertices in which x

is adjacent to y in G if and only if x <: y or y <: x. (If we view the order diagram of
P as a graph, that graph is P ’s cover graph.) The dimension of P is the least t such that
there exist t linear extensions—collectively known as a realizer—L1, . . . , Lt of P with
the property that x <P y if and only if x <Li

y for i = 1, . . . , t . An incomparable pair
(x, y) of P is said to be reversed by a linear extension L if y <L x. To show that a set R
of linear extensions of a poset P is a realizer, it suffices to show that each incomparable
pair is reversed by some linear extension in R. By the standard example Sn, we mean the
subposet of the lattice of subsets of {1, 2, . . . , n} induced by the singletons and the (n − 1)
sets. For further background on the combinatorics of partially ordered sets, refer to Trotter’s
monograph [14].

Let G = (V ,E) be a graph. A pair (T ,V), where T is a tree and V = (Vt )t∈T with
Vt ⊆ V for all t ∈ T , is a tree-decomposition of G if

(1) V (G) is the union of all the Vt ;
(2) for every e ∈ E, there exists a vertex t of T such that e ⊆ Vt ; and
(3) if t1, t2, t3 are vertices of T and t2 lies on the unique path from t1 to t3 in T , then

Vt1 ∩ Vt3 ⊆ Vt2 .

The sets Vt are often referred to as the bags of the tree-decomposition. The width
of (T ,V) is maxt |Vt | − 1. The treewidth of G, which we denote by tw(G), is the
minimum width of a tree-decomposition of G. A path-decomposition of a graph is a tree-
decomposition in which the tree T is a path. The pathwidth of G, denoted by pw(G), is the
minimum width of a path-decomposition of G.

Following Diestel [2], we make the following definition of a special type of path to
improve the readability of parts of our argument. If G is a graph and H is a subgraph of
G, we say that a path P is an H -path if P is nontrivial and intersects H precisely at its
two end vertices. The length of a path is the number of edges it contains. We will also
freely use terminology regarding the block structure of graphs. Readers unfamiliar with this
terminology should consult Diestel’s text [2], in particular Chapter 3.

By a subdivision of a graphGwemean a graphG′ in which some edges ofG are replaced
by paths that are internally disjoint from each other and the vertices of G. The original
vertices of G are called the branch vertices of G′. If a graph H contains a subdivision of G

as a subgraph, then we say that G is a topological minor of H . An inflation of a graph G is
a graph G′ formed by replacing the vertices x of G by disjoint connected graphs Gx and the
edges xy of G by nonempty sets of edges from Gx to Gy . The vertex sets V (Gx) are called
the branch sets of G′. If a graph H contains an inflation of G as a subgraph, we say that G is
a minor of H . Equivalently, G is a minor of H if G can be obtained from H by a sequence
of vertex deletions, edge deletions, and edge contractions. Note that if the maximum degree
of G is at most 3, the notions of minor and topological minor are equivalent. For further
information on minors and topological minors, see Diestel’s text [2].

The set of graphs of pathwidth at most k is a minor closed family. Therefore, by the
Graph Minor Theorem [11], this set of graphs can be characterized by forbidding a finite
set of graphs as minors. For k = 2, Kinnersley and Langston found the entire set of 110
obstructions in [9]. The proof of this paper’s main result relies on only six graphs from
their list, but having the whole list at hand was critical to the development of our proof.
Besides the obvious obstruction K4, the other five we must exclude are depicted in Fig. 1.
It is elementary to verify that these graphs have pathwidth 3. We will refer to these graphs
in the proof by the names shown and use F to denote {K4, T1, . . . , T5}. If a graph G does
not contain an element of F as a minor, we will say that G is F -minor free.
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Fig. 1 Five key obstructions for pathwidth 2

3 Properties of the 2-Connected Blocks

We begin without restricting our attention to only cover graphs. In this section, we consider
a graph G such that pw(G) ≤ 2 and prove strong properties of the block structure. This
structure is essential in the proof of our main theorem. To establish this structural result, we
first make the following definition.

Definition 3.1 A parallel nearly outerplanar graph is a graph that consists of a longest
cycle C with vertices labelled (in order) as x1, x2, . . . , xk, yl, yl−1, . . . , y1 along with
some chords and chords subdivided exactly once. The chords and subdivided chords have
attachment points xi1 , yj1 , . . . , xim, yjm such that i1 ≤ · · · ≤ im and j1 ≤ · · · ≤ jm.

An example of a parallel nearly outerplanar graph is shown in Fig. 2. We think of the
vertices along the bottom of the cycle as being the xi and those along the top as being the
yj . Vertices to the left of the leftmost chord and to the right of the rightmost chord could be
either xi’s or yj ’s.

Lemma 3.2 A graph G is a parallel nearly outerplanar graph if and only if G is
2-connected and pw(G) ≤ 2.

Fig. 2 A parallel nearly
outerplanar graph
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Proof It is easy to see that every parallel nearly outerplanar graph is 2-connected and has
pathwidth at most 2. A path-decomposition of width 2 can be obtained by starting with the
bag containing x1 and y1 and proceeding through the xi and yj by increasing subscript.
After all edges incident with xi have had their other attachment point included in a bag with
xi , the bag {xi, xi+1, yj }, where yj is the “current” vertex from the other side of the cycle,
covers the edge xixi+1. We can then remove xi from the bag and continue. A symmetric
process is used to move from yj to yj+1 after covering all edges incident with yj . The
internal vertex of a subdivided chord appears in a bag with precisely its two attachment
points.

For the converse, let C be a longest cycle in G. A C-path will be called an ear. We first
note that C cannot have crossing ears. More precisely, if P and Q are ears, V (C)∩V (P ) =
{p1, p2}, and V (C) ∩ V (Q) = {q1, q2}, then the order of these intersection vertices on C

must be pi, p3−i , qj , q3−j for some i, j ∈ {1, 2}. If this were not the case, then G would
have a K4-minor, forcing pw(G) ≥ 3.

Next we show that no ear may have more than one internal vertex. Indeed, if P is an ear
with at least two internal vertices and V (C)∩P = {v1, v2}, then both paths between v1 and
v2 on C must contain at least two internal vertices, for otherwise C is not the longest cycle.
If this occurs, then G has a T2-minor.

We now show that the internal vertex, if one exists, of any ear is of degree 2. Let v

be the internal vertex of the ear xvy, and suppose that the degree of v is at least 3. Let
H be the subgraph induced by the vertices of C and the vertex v. If v has degree at
least 3 in H , then H contains a K4-minor. Otherwise, there is a v′ ∈ V (G) such that
v′v ∈ E(G), but v′ �∈ V (H). Let H ′ be the subgraph of G formed from H by adding
the vertex v′ and edge vv′. Since G is 2-connected and H ′ is not, there is an H ′-path
P (possibly just a single edge) with one endpoint being v′. The other endpoint may only
be x or y, since otherwise we have a K4-minor. Without loss of generality, the other
endpoint is x, which implies that xPv′vy is an ear with at least two internal vertices, a
contradiction.

We have now shown that G contains a (longest) cycle and some non-crossing ears with
at most one inner vertex which must have degree two. The only thing that remains to be
shown is that the vertices of the cycle may be labeled as in the definition, effectively placing
an ordered structure on the ears. If this were not true, there would be three ears with attach-
ment points a1, b1, a2, b2, and a3, b3 that appear around the longest cycle of G ordered as
a1, b1, a2, b2, a3, b3 around C, with the possibility that bi = ai+1 for any i (cyclically). In
this case, G contains the forbidden minor T1, which gives our final contradiction.

We observe that our proof of the “if” direction of Lemma 3.2 only requires that G is 2-
connected and not contain K4, T1, or T2 as a minor. Furthermore, the cycle bounding the
infinite face may be chosen to be any longest cycle of the graph, a fact which we will use in
the proof of Lemma 3.3.

We note that after proving Lemma 3.2, we discovered that Barát et al. [1] had
previously proved this fact while working to simplify the characterization of graphs
of pathwidth 2. They used the name track for what we call a parallel nearly outer-
planar graph. We use the latter name because it is more evocative of the aspects of
the structure that are important in our proof and include the proof of Lemma 3.2 for
completeness.

By Lemma 3.2, each 2-connected block of a graph of pathwidth two is a parallel nearly
outerplanar graph. Our next lemma establishes that the vertices where these blocks join
together lie on the parallel nearly outerplanar graphs’ longest cycles.
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Lemma 3.3 Let G be a connected graph that does not contain an element of F as a minor.
Let B be a 2-connected block of G. There exists a longest cycle C of B such that if there is
a vertex v of B adjacent to a vertex v′ not in B, then v ∈ V (C).

Proof Let C be a longest cycle of B that minimizes the number of internal vertices of ears
adjacent to vertices outside B. Let v be an internal vertex of an ear xvy, i.e., v �∈ V (C),
and suppose v is adjacent a vertex v′ not in B. Deletion of x and y from the cycle C

leaves two paths, which we will call C1 and C2. If both C1 and C2 contain at least two
vertices, then G has a T3-minor, since we have assumed that v has a neighbor v′ not in
B. Thus, suppose C1 contains a single vertex u. If the degree of u in G is two, then the
cycle formed from C by replacing u by v is also a longest cycle of B, and has fewer inter-
nal vertices of ears adjacent to vertices outside B. If the degree of u in B were 3, then
there would be an ear uzx or uzy. In either case, C would not be a longest cycle, as the
edge ux (or uy) could be replaced by the path uzx (or uzy). Therefore, we may assume
that u is adjacent to a vertex u′ not in B. Furthermore, u′ �= v′, and there is no path
from u′ to v′ in G that does not go through B, as otherwise G would contain a K4-minor.
If C2 contains at least two vertices, then G contains a T4-minor. If C2 is a single vertex
w, then it must have degree 2 in G to avoid having T5 as a minor. But then {x, v, y, u}
is a longest cycle of B with fewer internal vertices of ears adjacent to vertices outside
B than C.

In light of Lemma 3.3, we see that every F -minor free graph G has a planar embed-
ding in which each 2-connected block B is embedded such that the vertices of B lying on
the unbounded face form a longest cycle of B. We call such an embedding a canonical
embedding of G.

4 Posets with Cover Graphs of Pathwidth 2

Definition 4.1 Let P be a poset. A subdivision of the cover relation x <: y in P is the
addition of new points z1, z2, . . . , zl such that x < z1 < · · · < zl < y and the new points zi

are incomparable with all points of P that are not greater than y or less than x. We say that
Q is a subdivision of P if Q can be constructed from P by subdividing some of its cover
relations.

In light of what we know from the previous section about the structure of graphs of path-
width at most 2, it is tempting to consider the effect of subdivision on dimension. Since
such an approach would allow us to deal with some of the subdivided chords preventing the
cover graph from being outerplanar, we might be inclined to hope that if Q is a subdivision
of P , then dim(Q) ≤ c dim(P ) for some absolute constant c. (Perhaps even c = 2.) How-
ever, this is not the case. In fact, Spinrad showed in [12] that this construction can increase
dimension by an arbitrarily large factor. Fortunately, as we show in Lemma 4.2, there is a
subdivision-like operation on the graphs of relevance to our result that has a small effect on
the poset’s dimension.

Our proof requires that we first introduce some additional terminology. Let G be a par-
allel nearly outerplanar graph that is the cover graph of a poset P , and let C be a longest
cycle provided by Lemma 3.3. An ear with no inner vertex is simply called a chord. We call
an ear xzy unidirected if x < z < y or y < z < x in P . Otherwise we call the ear a beak.
An upbeak is an ear with x < z > y in P , and a downbeak is an ear with x > z < y in P .
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(In either case, x ‖ y.) We call the internal point of a beak a beak peak. Our first step will
be to address unidirected ears. We will then turn our attention to the issue of beaks.

Lemma 4.2 Let P be a poset with cover graph G. Suppose that G is F -minor free and
fix a canonical embedding of G in the plane. If Z is the collection of points that are not
on the unbounded face of G and are neither minimal nor maximal in P , then dim(P ) ≤
2 dim(P − Z) + 1.

Proof First notice that in a canonical embedding of G, our definition of Z means that every
element of Z is the internal vertex of a unidirected ear � < z < u in P . If the relation � < u

in P − Z is a cover, then z is a subdividing point of the cover relation � <: u in P . Note,
however, that P is not necessarily a subdivision of P − Z, as some of the unidirected ears
may not correspond to cover relations in P − Z. Nevertheless, we will refer to Z as the set
of subdividing points of P and an element of Z will be called a subdividing point of P even
if the comparability involved is not a cover of P . When �zu is a unidirected ear of P with
� < z < u in P , we will refer to � as the lower element of z. Similarly, u will be called the
upper element of z.

Let {L1, . . . , Ld} be a realizer of P − Z with d = dim(P − Z). For each Li , we
will construct two linear extensions L′

i and L′′
i of P by inserting the subdividing elements

appropriately, and we will show that most incomparable pairs will be reversed in one of
these linear extensions. We will create one extra linear extension to reverse the rest of the
incomparable pairs.

To construct L′
i , we place each subdividing point of P immediately above its lower ele-

ment in Li . We form L′′
i by placing each subdividing point immediately below its upper

element in Li . There may be some ambiguity in this definition if subdividing points share
upper or lower elements. To deal with such situations, let z1, . . . , zk be subdividing points
of P that share the lower element �. For j = 1, . . . , k, let the upper element of zj

be uj . We may assume that these upper elements are distinct, since the removal of one
point of a pair of points with duplicated holdings does not impact dimension (other than
in the irrelevant case of a two-element antichain). Let σ be a permutation of {1, . . . , k}
such that uσ(1) < · · · < uσ(k) in Li . In L′

i we insert the subdividing points so that
� < zσ(k) < · · · < zσ(1). For L′′

i , our concern is with subdividing points z1, . . . , zk shar-
ing the upper element u. Let �j be the lower element of zj , and let σ be a permutation
of {1, . . . , k} such that �σ(1) < · · · < �σ(k) in Li . To form L′′

i , we insert the subdividing
elements so that zσ(k) < · · · < zσ(1) < u in L′′

i .
Consider an incomparable pair (a, b). If a, b ∈ P − Z, then obviously there is a linear

extension L′
i (and an L′′

i ) with a > b. Suppose a ∈ P − Z and b ∈ Z and let � be the lower
element of b. Then a �< � in P − Z implies that there in an Li in which a > �, and hence
a > b in L′

i . Similarly, if a ∈ Z and b ∈ P − Z, there exists an L′′
i with a > b.

If a, b ∈ Z have the same lower element, then their order in L′
i will be opposite to their

order in L′′
i . Hence, one of L′

i and L′′
i has a > b. A similar argument works when a and b

have the same upper element.
Next we assume that a, b ∈ Z have distinct upper and lower elements. Specifically, let

�a and ua be the lower and upper elments of a and let �b and ub be the lower and upper
elements of b. If �a �< �b, then �a > �b in some Li , and hence a > b in L′

i . Similarly, if
ua �< ub, then a > b in some L′′

i .
At this stage, we have shown that the incomparable pair (a, b) will be reversed, unless

all of the following conditions are satisfied:

(1) a, b ∈ Z;
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(2) a and b have distinct lower elements �a and �b, respectively, and distinct upper
elements ua and ub, respectively; and

(3) �a < �b and ua < ub.

We say such a pair (a, b) is in a bad diamond. We will prove that there exists a single linear
extension that reverses all such pairs.

We do this by viewing the poset P as an acyclic directed graph D, with directed edges
corresponding to covers and pointing from smaller elements to larger elements. For each
incomparable pair (a, b) in a bad diamond, we introduce a new directed edge ba. We call
these new edges, and the directed graph formed from D by adding these new edges is
denoted by D′. Note that a and b must lie in the same 2-connected block, so the new edge
ba will be added to within that block.

The goal of the rest of the argument is to prove thatD′ contains no oriented cycles. Recall
that we have fixed a canonical embedding of D in the plane, which defines (up to duality) a
natural linear order on the subdividing points. We fix one of these orders and use the terms
“left” and “right” to refer to directions in this linear order. For upper and lower elements of
the subdivided chords there is also a natural notion of two sides of the outer cycle defined
by the embedding, depending on whether they are xi’s or yj ’s. (This notion is well-defined,
since we are concerned only with attachment points of subdivided chords.)

Claim 1 Let ba be a new edge. Then there is a directed path P� from �a to �b, and a directed
path Pu from ua to ub in D, and for any such directed paths we have P� ∩ Pu = ∅, and in
particular, ua, ub �∈ P� and �a, �b �∈ Pu.

Proof The existence of the paths follows from condition (3) of the definition of bad dia-
monds. If there exists x ∈ P� ∩ Pu, then we have that a < ua ≤ x ≤ �b < b, a
contradiction.

Claim 2 Let ba be a new edge. Then �a and �b are on the same side of the outer cycle,
and ua and ub are also on the same side. Furthermore, P� and Pu are on the outer
cycle.

Proof This is direct consequence of Claim 1. If any part of the statement is not true, then
P� topologically separates ua from ub or Pu topologically separates �a from �b.

Claim 3 Let cb and ba be two new edges. Then they both go left, or both go right.

Proof Without loss of generality assume for a contradiction that ba goes left, and cb goes
right. By Claim 2, all of �a , �b, �c are on the same side, and ua , ub, uc are on the same
side. Furthermore, every directed path Pab from �a to �b goes on the outer cycle; a similar
statement holds for paths Pbc from �b to �c. However, one of these is a subpath of the other,
and they are directed contradictorily.

Now we are ready to show that D′ does not contain a directed cycle. Suppose for a
contradiction that it does, and let C be a directed cycle in D′ that contains as few new edges
as possible. Notice that C must contain at least one new edge and at least one old edge by
Claim 3. Let P1 be a maximal path in C that consists entirely of new edges. Suppose that
P1’s initial point is b and its terminal point is a. Notice that C must lie entirely within a 2-
connected block of D, and this block is parallel nearly outerplanar. Also notice that C must
include the edges aua and �bb, and a directed path P2 from ua to �b that is disjoint from
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P1. For any x, y ∈ P2 denote by xP2y the subpath of P2 starting with x and terminating
with y. If �a ∈ P2, then the directed cycle �aa(uaP2�a) contains fewer new edges than C;
if ub ∈ P2, then �bb(ubP2�b) is such a cycle.

Therefore P2 connects the unidirected ears �aaua and �bbub. Hence P2 must cross from
the side of ua to the side of �b. This must occur via a chord or a unidirected ear. Let u0 be
the attachment point for the chord or unidirected ear on the same side as ua and let �0 be
the attachment point on the same side as �a . As all the new edges which form P1 are all
consistently oriented, this crossing occurs between some a′ and b′ which are consecutive
vertices on P1. Since b′a′ is a new edge, we have that (a′, b′) is in a bad diamond and
in particular, a′ is incomparable to b′. However, by Claim 2 and the definition of a bad
diamond, we have that a′ < ua′ ≤ u0 < �0 ≤ �b′ < b′, a contradiction.

Since D′ is acyclic, there is a total order L0 on its vertices that respects the orien-
tation of its edges. By construction, L0 is then a linear extension of P that reverses
all incomparable pairs that are in bad diamonds. Therefore, we can conclude that{
L0, L

′
1, . . . , L

′
d , L′′

1, . . . , L
′′
d

}
is a realizer of P and dim(P ) ≤ 2 dim(P − Z) + 1.

To address the case of beaks in the cover graph, we will form two extensions of the
poset and show that their intersection is P − Z. (Recall that Z is the set of vertices that, in
a canonical embedding of G, are not on the unbounded face and are not beak peaks.) We
will then apply Lemma 4.2 to P and use what we know about the extensions of P − Z to
bound its dimension. Note that in the remainder of this section, we often view the poset as
a directed graph and refer to a chain of covers as a directed path.

Lemma 4.3 Let P be a poset with cover graph G. If G is F -minor free, then P has exten-
sions ϒ and � with cover graphs Gϒ and G� that are outerplanar except for some chords
replaced by directed paths of length 2.

Proof Fix a canonical embedding ofG. To constructϒ and�, we consider the 2-connected
blocks of the cover graph of P one at a time. In each block, we consider the beaks xzy and
introduce a comparability between x and y. It is clear that if we are able to do this, beaks in
G will become edges in Gϒ and G� and a pendant vertex (corresponding to the beak peak)
will be added to one of the beak attachment points. Thus, the only obstruction to Gϒ and
G� being outerplanar will come from unidirected ears, corresponding to replacing chords
of an outerplanar graph by directed paths of length 2.

We introduce comparabilities between beak attachment points for all beaks in such a
way that we maintain consistency of these new comparabilities. Since two blocks inter-
sect in at most one point on their longest cycles, introducing a new comparability within
one block cannot force two incomparable beak attachment points in another block to
become comparable by transitivity. Therefore, we may define the extensions on the blocks
independently.

Consider a 2-connected block B. Since B is parallel nearly outerplanar, a fixed plane
embedding provides (up to duality) a natural left-to-right ordering on its beaks as suggested
in Fig. 2. Fix one of these orders and number the k beaks of B accordingly from 1 to k.
Denote the attachment points for beak i by xi and yi , with the xi all lying on the same side
of the outer cycle of B and the yi lying on the other.

We now show that there exists an extension of the subposet induced by the vertices of B

in which xi < yi for all i = 1, . . . , k. Let D be the digraph defined by the subposet induced
by the vertices of B. More specifically, V (D) = V (B) and there is a directed edge uv in D

if and only if (u, v) is a cover in P . To prove that such an extension exists, it suffices to show
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that if we construct D′ by adding the directed edges xiyi to D, then D′ contains no directed
cycle. By a slight abuse of terminology, we will call the added directed edge xiyi a beak.

Suppose for a contradiction thatD′ contains a directed cycleC′. Notice thatC′ must con-
tain at least one beak, because D is an acyclic graph. In fact, C′ has to contain at least two
beaks, for if the only beak it contains were xiyi , then yi < xi in P , which would contradict
the fact that xiyi is a beak. Therefore, C′ contains the beaks xiyi and xjyj . As a conse-
quence, C′ must contain a directed path between yi and xj . This path forces xi and yj to
belong to different (topological) regions, contradicting the existence ofC′ as a directed cycle.

By a symmetric argument, there exists an extension of the subposet induced by the
vertices of B in which yi < xi for all i = 1, . . . , k.

Now we can define the extensions ϒ and � of P . In a given embedding with left-right
orientations of the 2-connected blocks, construct ϒ by adding, for each block, the relations
xi < yi for all i. Similarly, construct � by adding the relations yi < xi for all i in each block.

The final major step in our argument is to prove that P = ϒ ∩ �, as then we may use
realizers of ϒ and � to construct a realizer of P , thereby bounding the dimension.

Lemma 4.4 Let P be a poset with F -minor-free cover graph. If ϒ and � are extensions of
P as defined in the proof of Lemma 4.3, then P = ϒ ∩ �.

Proof It is sufficient to show that if w �< w′ in P , then one of the extensions preserves
this (non)relation. We begin by considering the situation where w and w′ are in the same
2-connected block of the cover graph. We first address the case where w and w′ are both on
the outer cycle of a 2-connected block and then reduce the remaining cases to this one. We
conclude by addressing what happens when w and w′ are in different blocks.

Case I Suppose w and w′ are both on the outer cycle C of a 2-connected block B and
that w < w′ in both ϒ and �. There are directed paths (chains) from w to w′ in both
ϒ and �. We consider the shortest of these paths in the sense of containing the fewest
beaks. Let xiyi be the last beak on the path in ϒ , and yjxj be the last beak on the path in
�. If yi = yj , then since yi < w′ in P , there is a shorter path in � that skips yjxj . Thus
yi �= yj . For a similar reason, xi �= xj .

Without loss of generality, assume that i < j . Suppose w′ is right of yjxj (allowing
w′ = xj ) and consider a path in P from yi to w′. By minimality, this path cannot pass
through yj , because then yjxj could be skipped. Hence, the path separates xi from yj .
Notice that w is not on the path from yi to w′, as this would imply w < w′ in P .
Therefore, w would have to be in both (topological) regions, which is a contradiction. A
similar contradiction can be derived if w′ is left of xiyi or w′ = yi . In that case the path
from xj to w′ in P would separate xi from yj .
This leaves only the possibility that w′ is between the two beaks. If w′ is on the xixj

arc of the outer cycle, then the path from yi to w′ separates xi from yj , and if w′ is on
the path from yi to yj , then the xjw

′ path performs the separation. Therefore, we may
conclude that w �< w′ in ϒ or �.

Case II Still assuming w and w′ are in the same 2-connected block, we now suppose
that exactly one of them is on the outer cycle C. Specifically, we will consider the case
when w is on C and w′ is not, and the ear conatining w′ is right of w. This is just for
convenience of discussion; the other three possibilities have identical proofs.
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Suppose there is a directed path from w to w′ in both ϒ and �; consider one of these
that goes through the minimum number of (newly-directed) beaks. First note that w′
cannot be a peak of a downbeak, since that would make w′ minimal in P and thus in ϒ

and �. If w′ is a subdividing point of a unidirected ear, then let u < w′ be its attachment
point. We have w �< u in P , so by Case I, we maintain this in one of ϒ or �. That
extension preserves w �< w′.
The remaining possibility in this case is that w′ is the peak of an upbeak. By the

minimality of the path from w to w′, the path uses no beaks right of the beak containing
w′. For the purpose of the argument, we may ignore all ears, chords, and points of C

strictly right from the beak of w′. By so doing, w′ becomes a point on the outer cycle,
and by Case I, one of ϒ or � will preserve w �< w′.

Case III To conclude the scenario where both w and w′ are in the same 2-connected
block, it remains only to address the case when neither of them is on C. Without loss of
generality assume that w is left of w′. Considering a path from w to w′ in ϒ or � through
the fewest number of beaks, we may assume that this path does not touch any part of the
block left of w and right of w′. (If either w or w′ is part of a unidirected ear, using these
portions would imply the existence of a directed cycle, and for beak peaks the path can
be shortened by going via the other attachment point.) By ignoring the parts of the block
left of w and right of w′, we place w and w′ on an outer cycle, and thus Case I guarantees
one of ϒ and � preserves w �< w′.

Case IV It remains only to consider the case where no 2-connected block contains
both w and w′. If w and w′ lie in different components of the cover graph, both ϒ

and � preserve w �< w′. Hence, we may assume there exists a path in the cover
graph from w to w′. (Since w �< w′ in P , this path is not a directed path.) Let
the 2-connected blocks containing an edge of the path be called B1, B2, . . . , Bl . Note
that we allow l = 0 if the path does not pass through any 2-connected blocks, in
which case ϒ and � do not introduce comparabilities that could make w and w′
comparable. Let ai and bi be the (uniquely-determined) entry and exit vertices of the
path into and out of Bi ; if w ∈ B1, then let a1 = w, and if w′ ∈ Bl , then let
bl = w′.

If ai ≤ bi in P for all i = 1, 2, . . . , l, then since the path from w to w′ in the cover
graph of P is not directed, w �< w′ must be forced by consecutive edges of the path that
are oppositely-oriented and do not both lie in the same 2-connected block. Therefore, ϒ
and � preserve w �< w′. On the other hand, if there exists an i0 such that ai0 �< bi0 , then
this (non)relation is preserved in one of ϒ or �. That extension preserves w �< w′, since
any directed path from w to w′ would have to pass through the points ai and bi , but there
is no directed path between them in that extension. Therefore, we have shown w �< w′ in
at least of ϒ and �.

As we combine the three preceding lemmas to prove our main theorem, we will reduce
to a poset with an outerplanar cover graph. The following result guarantees that such posets
have small dimension.

Theorem 4.5 (Felsner, Trotter, and Wiechert [4]) If a poset P has an outerplanar cover
graph, then dim(P ) ≤ 4.

We are finally ready to state the full version of our main theorem.
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Theorem 4.6 Let P be a poset with cover graph G. If G is F -minor free, then dim(P ) ≤
17.

Proof Begin by fixing a canonical embedding of G in the plane and, as in Lemma 4.2, let Z
be the collection of points that are not on the unbounded face of G and are neither minimal
nor maximal in P . By Lemma 4.2, we know that dim(P ) ≤ 2 dim(P − Z) + 1. We now
claim that dim(P − Z) ≤ 8, which will prove the theorem.

Applying Lemmas 4.3 and 4.4 to P − Z, we find that P − Z has two extensions ϒ

and � for which P − Z = ϒ ∩ �. Furthermore, since P − Z does not contain any uni-
directed ears, the process of constructing ϒ and � cannot introduce unidirected ears, and
the comparabilities added to form ϒ and � turn beak peaks into vertices of degree 1 in the
cover graphs, we have that ϒ and � have outerplanar cover graphs. Therefore, by Theorem
4.5, there are realizers Rϒ and R� of ϒ and �, respectively, with |Rϒ |, |R�| ≤ 4. Since
P −Z = ϒ ∩�, we know thatRϒ ∪R� is a realizer of P −Z. Therefore, dim(P −Z) ≤ 8
and dim(P ) ≤ 17.

To obtain Theorem 1.3, we now note that if P is a poset with cover graph G of pathwidth
at most 2, then G is F -minor free, so Theorem 4.6 implies dim(P ) ≤ 17. It is natural to
wonder whether the bound of Theorem 4.6 is best possible. We have no reason to believe the
result is optimal and suspect it may be possible to reduce the bound to 4 with more work.
That would be best possible, as Felsner, Trotter, and Wiechert give a 4-dimensional poset
having cover graph with pathwidth 2 in [4].

We also note that Trotter [15] has subsequently made an observation regarding the rela-
tionship between dimension and the block structure of the cover graph, making it possible
to drop T3, T4, and T5 from the list of forbidden minors. However, that approach leads to a
weaker bound on the dimension than the one we offer here.

5 Standard Examples and Treewidth

A second question posed in [6] remains open.

Question 5.1 Is there a constant d such that if P is a poset with cover graphG and tw(G) ≤
2, then dim(P ) ≤ d?

The following theorem provides some weak evidence for an affirmative answer to
this question, since the theorem implies that if the answer to Question 5.1 is “no”, a
counterexample cannot be constructed using large standard examples.

Theorem 5.2 If P is a poset that contains the standard example S5 as a subposet, then the
cover graph of P has treewidth at least 3.

Proof Since tw(K4) = 3, it will suffice to show that the cover graph of P has a K4-
minor. (In fact, more is true, in that K4 is the only forbidden minor required to characterize
graphs of treewidth 2.) Since the notions of containing a K4-minor and containing K4 as a
topological minor are equivalent, we use an approach that blends both techinques by seeking
branch sets of a K4 minor and joining them by internally disjoint paths. To aid in exposition,
we will not fully specify the branch sets. Instead, we will refer to vertices or sets of vertices
as being corners of theK4 minor if they lie in distinct branch sets. We denote a path between
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any two comparable elements x and y such that the path represents a maximal chain between
x and y in P by P(x, y).

Let {a1, . . . , a5} and {b1, . . . , b5} be elements of the subposet of P isomorphic to S5
with the standard ordering, that is, ai < bj if and only if i �= j . We first restrict
our attention to the copy of S3 determined by {a1, a2, a3, b1, b2, b3}. In this context,
fix ci as one of the maximal elements in U [ai] ∩ D[bi+1] ∩ D[bi+2] where the sub-
scripts are interpreted cyclically among {1, 2, 3}. Notice that {c1, c2, c3} is an antichain
in P since ai is incomparable to bi for all i. In a similar manner, fix di as a minimal
element in U [ci+1] ∩ U [ci+2] ∩ D[bi]. Thus the poset P contains four (not necessarily dis-
joint) antichains {a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}, and {d1, d2, d3} together with paths
P(ai, ci) and P(di, bi) for i ∈ {1, 2, 3} and paths P(ci, dj ) for i, j ∈ {1, 2, 3} with i �= j .
See Fig. 3. It is a straightforward, but tedious argument, to verify that these paths are all
internally disjoint. We call the subposet on these elements S.

After noting that P(ci, dj ) is internally disjoint from P(ci′ , dj ′) when (i, j) �= (i′, j ′),
it is easy to see that

P(c1, d2), P (d2, c3), P (c3, d1), P (d1, c2), P (c2, d3), P (d3, c1)

is a cycle in the cover graph of P . We denote this cycle by C. Thus, if any element x of the
poset is connected to this cycle by three paths intersecting only at x, then the cover graph
contains a K4-minor, as desired. Noting that a4 < b1, b2, b3 we now consider the relation-
ship between a4 and S. Suppose first that a4 is not less than any element of {c1, c2, c3}.
By our definitions, every element of C − {c1, c2, c3} is less than precisely one element of
{b1, b2, b3}. Hence, there exist three paths P1, P2, P3 in the cover graph from a4 to C. (Note
that these paths may use the paths P(bi, di) if a4 is not less than some of the di .) Each Pi

enters C at a distinct point, creating a K4-minor.
Therefore, we may assume that a4 is less than one element of {c1, c2, c3}, say c1. By

a similar argument, we may assume b4 is greater than an element of {d1, d2, d3}. Further-
more, since b4 is incomparable to a4 while d2 and d3 are comparable to c1, our assumption
that a4 < c1 forces d1 to be the element of {d1, d2, d3} that is less than b4. Note that the
incomparability between a4 and b4 implies that a4 is incomparable to c2 and c3 and b4 is
incomparable to d2 and d3. Additionally, there is a vertex β4 on P(d1, b1) such that β4 < b4
and a vertex α′

4 on P(a1, c1) such that a4 < α′
4. Since a4 < b1 and a4 is incomparable to

b4, there is some element α4 on P(d1, b1) with α4 > β4 and a4 < α4. Similarly, there is
an element β ′

4 on P(a1, c1) with β ′
4 < α′

4 and β ′
4 < b4. See Fig. 4 for an illustration of

the relationship between these points. In a similar manner, we can find a j ∈ {1, 2, 3} and

Fig. 3 The subposet S with
vertices internal to chains/paths
not shown
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Fig. 4 Expanding S by adding
a4, b4, α4, β4, α

′
4, β

′
4

elements β5 on P(dj , bj ) and β ′
5 on P(aj , cj ) such that β5, β

′
5 < b5. There are also ele-

ments α5, α
′
5 > a5 such that α5 > β5 on P(dj , bj ) and α′

5 > β ′
5 on P(aj , cj ). If there are

multiple choices for βi , β ′
i , αi , and α′

i that satisfy all these requirements, we choose βi and
β ′

i to be maximal and αi and α′
i to be minimal among the possible choices. By our defini-

tions of the ci and dj , it is straightforward, but tedious, to verify that P(a4, α4), P (a4, α
′
4),

and P(β4, b4) are internally disjoint from S. Further, P(β ′
4, b4) is internally disjoint from S

except for possibly P(c2, d3) and P(c3, d2).
Suppose then that P(β ′

4, b4) intersects both P(c2, d3) and P(c3, d2). Let K4 − e denote
the graph that results from deleting any edge from K4. It is easy to see that there is a
(K4 − e)-minor with corners c1, d1, and the two intersection points of the path P(β ′

4, b4)

with P(c2, d3) and P(c3, d2). (Note that this minor can be formed using only C and the part
of P(β ′

4, b4) between P(c2, d3) and P(c3, d2).) The missing connection to complete theK4-
minor is the edge between c1 and d1. However, as P(d1, α4)P (α4, a4)P (a4, α

′
4)P (α′

4, c1) is
disjoint from the cycle C and P(β ′

4, b4), this completes the K4-minor. Thus we may assume
that P(β ′

4, b4) intersects only one of P(c2, d3) and P(c3, d2). Without loss of generality,
suppose the intersected path is P(c2, d3) and let z be the maximal point of intersection. We
note now that there is a cycle formed by

P(z, b4)P (b4, β4)P (β4, α4)P (α4, a4)P (a4, α
′
4)P (α′

4, c1)P (c1, d3)P (d3, z).

Furthermore, the point d1 has three distinct paths to this cycle, forming a K4 minor. Thus
the paths P(a4, α4), P(a4, α

′
4), P(b4, β4), and P(b4, β

′
4) are all internally disjoint from S

as shown in Fig. 4.
We consider the cases where j �= 1 and j = 1 separately. (Recall that j is the index

such that β5 ∈ P(dj , bj ).) For the former, suppose without loss of generality that j = 3, as
depicted in Fig. 5. In this case, if the following six paths are internally disjoint, they form a
K4-minor with corners c1, d1, c3, and d3:

• P(d1, c2)P (c2, d3),
• P(d3, α5)P (α5, a5)P (a5, α

′
5)P (α′

5, c3),• P(c3, d2)P (d2, c1),
• P(c1, α

′
4)P (α′

4, a4)P (a4, α4)P (α4, d1),
• P(d1, c3), and
• P(d3, c1).
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Fig. 5 The case where a5 and b5
attach to different paths than a4
and b4

The internal disjointness of each pair of the paths above is clear with the possible exception
of the second path and the fourth path. However, if these paths fail to be disjoint, their
intersection point has 3 paths to distinct vertices of C, creating a K4-minor.

The most delicate part of our argument remains in the case where j = 1. We con-
sider now the paths that enter P(d1, b1). Specifically, we examine the relationships between
P(a4, α4), P (a5, α5), P (b4, β4), and P(b5, β5). The paths entering P(a1, c1) featuring the
α′

i and β ′
i will interact identically by duality. It is clear that P(a4, α4) and P(b4, β4) do not

intersect, as otherwise a4 < b4. (A similar argument applies to P(a5, α5) and P(b5, β5).)
Suppose then that P(a4, α4) and P(b5, β5) intersect at some point x, while P(a5, α5) and
P(b4, β4) do not intersect. Furthermore, if the paths P(a4, α4) and P(b5, β5) intersect
more than once, we will assume that x is the minimal such intersection (in terms of the
poset).

Now consider rerouting the path P(d1, b1) through x. The new path will be the concate-
nation of P(d1, β5), P(β5, x), P(x, α4), and P(α4, b1). We then choose the new vertices α̂4,
α̂5, β̂4, β̂5 appropriately, recalling that they are chosen to be maximal or minimal amongst
possible options. The new paths P(a4, α̂4) and P(b5, β̂5) are internally disjoint by con-
struction. Suppose now that α5 is a element of the path P(β5, α4) and consider the cycle

Fig. 6 Rerouting P(d1, b1) via x
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formed by P(β5, x), P(x, α4), and P(α5, β5). (See Fig. 6.) Observe that there are three dis-
joint paths—namely, P(x, a4), P (β5, d1), and P(α5, a5)—emanating from the cycle. Since
a4, a5, and d1 all connect to the path P(a1, c1), these three vertices are all in the same
connected component after deleting the cycle. Therefore, we have found a K4-minor. In a
similar manner, we may assume that β4 is not on the path P(β5, α4). Thus we have that
α̂5 = α5 and β̂4 = β4, and furthermore by our assumptions, the paths P(a5, α̂5) and
P(β̂4, b4) do not intersect.

Now consider the case where, in addition, P(a5, α5) and P(b4, β4) intersect at some
point y, again choosing y as the minimal intersection point. Since β5 < x < α4, β4 < y <

α5, β4 < α4, and β5 < α5, we have that {β4, β5} < {α4, α5}. Since ai is incomparable to
bi in the poset, we must have that x and y are incomparable as well. This implies that any
intersection between P(x, β5) and P(y, β4) occurs at a point less than both x and y on these
paths. Similarly, any intersection between P(x, α4) and P(y, α5) must be greater than both
x and y. It is then easy to see that there is a (K4 − e)-minor with corners x, y, {β4, β5},
and {α4, α5}, possibly adding intersection points between P(x, β5) and P(y, β4) to {β4, β5}
and intersection points between P(x, α4) and P(y, α5) to {α4, α5}. The missing connection
to complete a K4-minor is between x and y. However, notice that x and y are con-
nected by a path through a4, a5, and P(a1, c1), giving the needed path to complete the
minor.

We are now able to make a fairly strong assumption about the pairwise intersections of
P(a4, α4), P (a5, α5), P (b4, β4), and P(b5, β5). Of the six possible crossings, the only two
that can occur are P(a4, α4) with P(a5, α5) and P(b4, β4) with P(b5, β5). Furthermore,
these intersections imply that α4 = α5 or β4 = β5, respectively, by the maximality of the βi

and minimality of the αj .
Having established these intersection limitations (and the corresponding ones for the

α′
i and β ′

i), we consider the graph formed by contracting each of P(ai, αi), P(ai, α
′
i ),

P(bi, βi), and P(bi, β
′
i ) for i = 4, 5 to a single edge. In fact, we go further and contract

(arbitrarily) all the edges we can while ensuring that the αi , βi , α′
i , β ′

i , ai , and bi are not
identified for i = 4, 5. Since it is possible for some of these vertices to have been equal at
the outset, we are then left with a graph with at most 12 vertices. (We refer to the vertices
as having labels to allow that, for example, α4 and α5 may refer to the same vertex.) The
resulting graph is built up from a path in which the vertices with labels V = {α4, α5, β4, β5}
appear consecutively, as do the vertices with labels V ′ = {α′

4, α
′
5, β

′
4, β

′
5}. In addition to

Fig. 7 Relation of V , M , V ′, and
M ′ in the graph after contractions
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Fig. 8 There must also be a path
from b5 to a4

this primary path, the graph resulting from the contraction contains a collection of 4 paths
of length 2 (via the ai and bi) connecting vertices in V and V ′.

We now show that in all but one case (to be described later), this graph has a K4-minor.
Let M ′ be the labels of the maximum vertices (with respect to the poset) of those with
labels in V ′ and similarly define M as the labels of the minimal vertices of those with labels
in V . Since M and M ′ each correspond to a single vertex, they cannot contain two labels
with the same subscript and must respect the ordering on elements with the same subscript.
Thus, M ∈ {{β4}, {β5}, {β4, β5}} and M ′ ∈ {{

α′
4

}
,
{
α′
5

}
,
{
α′
4, α

′
5

}}
. We now construct the

K4-minor using M , V −M , M ′, and V ′ −M ′ as the corners. Figure 7 makes clear that (with
appropriate contractions), V − M, M,M ′, V ′ − M ′ is a path oflength 3.

To construct the K4-minor, it suffices to show that there are connections between (1) M

and V ′ −M ′, (2) M ′ and V −M , and (3) V −M and V ′ −M ′. Since αi and α′
i are connected

via ai for i = 4, 5, and βi and β ′
i are connected via bi for i = 4, 5, the first two cases are

immediately resolved because of the possible contents of M and M ′. Furthermore, for the
third pair, the only situation where we do not immediately see a connection between V −M

and V ′ − M ′ is when M = {β4, β5} and M ′ = {α′
4, α

′
5}.

In this case, the poset must contain the paths depicted in Fig. 8. However, in this case
there is a path between a4 and b5 since a4 < b5 in the poset. This path is not depicted
in Fig. 8. If this path is disjoint from C it is straightforward to verify that there is a K4-
minor with corners a4, b5, α′

4, and β5. Otherwise, as ai is incomparable to bi for i = 4, 5,
the path from a4 to b5 can only intersect C in the paths P(c2, d3) or P(c3, d2). Without
loss of generality, suppose the path from a4 to b5 intersects C at P(c2, d3). Then there is a
K4-minor with corners a4, b5, β5, and P(c2, d3).

Fig. 9 A poset containing S5 − x (left) with cover graph G (right) redrawn to help show G does not contain
a K4-minor, and therefore tw(G) = 2
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We conclude this section by observing that for any x ∈ S5, there is a poset contain-
ing S5 − x and having a cover graph of treewidth 2. We show an example in Fig. 9,
with the poset on the left and a redrawing of the cover graph on the right. Notice that
S5 − x is the subposet formed by the elements other than u and v. (Since the graph is
clearly K4-minor-free, it has treewidth at most 2.) This implies that Theorem 5.2 is best
possible.

6 Update on Question 5.1

While this paper was under review, Joret, Micek, Trotter, Wang, and Wiechert announced
that they have resolved Question 5.1 in the affirmative [7] with a bound on the dimension
of 1276.
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