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Abstract The (r, d)-relaxed edge-coloring game is a two-player game using r colors played
on the edge set of a graph G. We consider this game on forests and more generally, on
k-degenerate graphs. If F is a forest with �(F) = �, then the first player, Alice, has a
winning strategy for this game with r = �−j and d ≥ 2j +2 for 0 ≤ j ≤ �−1. This both
improves and generalizes the result for trees in Dunn, C. (Discret. Math. 307, 1767–1775,
2007). More broadly, we generalize the main result in Dunn, C. (Discret. Math. 307, 1767–
1775, 2007) by showing that if G is k-degenerate with �(G) = � and j ∈ [� + k − 1],
then there exists a function h(k, j) such that Alice has a winning strategy for this game with
r = � + k − j and d ≥ h(k, j).

Keywords Competitive coloring · k-degenerate graph · Edge coloring

1 Introduction

The map-coloring game was first conceived by Steven Brams and published by Martin
Gardner in his column in Scientific American [17]. In this game two players alternate color-
ing the countries on a map such that no two countries with a non-trivial border receive the
same color. It was not until 1991 that Bodlaender [2] reinvented it by framing the game in
terms of coloring vertices of a graph.
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In the original version of the game two players, Alice and Bob, alternate coloring the
vertices of a finite graph G using colors from a set X of r colors. Alice goes first. On each
turn, the players must choose an uncolored vertex to color such that at the end of the player’s
turn, no adjacent vertices have the same color. Alice wins this game if all of the vertices are
eventually colored. Bob wins if there comes a time when there is an uncolored vertex for
which no allowable color exists. The least r such that Alice has a winning strategy for this
game is called the game chromatic number of G, denoted χg(G). This parameter has been
investigated extensively in a number of papers [8, 16, 18, 20, 21, 25, 26].

Observe that in the above game, at every step every color class induces an independent
set in G, and that while playing the game, the players are in the process of creating a proper
coloring of the graph. We first consider a variation of this game in which the players are
creating a relaxed coloring, also called defect coloring, of the the graph G. This variation
was introduced by Chou et al. [4] and builds on the known work [5–7, 14, 24] concerning
defect colorings of graphs. The only difference between this game and the original version
is which colors the players are allowed to use. In this version of the game, a color α ∈ X

is legal for an uncolored vertex u if after u is colored α each color class H ⊆ G satisfies
�(H) ≤ d, where �(H) is the maximum degree in H , and d is a fixed nonnegative integer
set at the beginning of the game. We call d the defect. As in the original game, Alice wins
if every vertex is eventually colored. Bob wins if there comes a time in the game when
there is an uncolored vertex for which no legal color exists. We call this game the (r,d)-
relaxed coloring game. For a fixed d, the least r for which Alice has a winning strategy is
called the d-relaxed game chromatic number of G, denoted dχg(G). If d = 0, we drop the
initial superscript and write simply χg(G). For a fixed r , the r-game defect of G, denoted
defg(G, r), is the least d such that Alice has a winning strategy. These parameters have been
further examined in a number of papers, including [9, 11–13, 19].

It should be noted that the game chromatic number has some interesting non-monotone
properties. It is well known that χg(Kn,n) = 3 for n ≥ 2, but if M is any perfect matching
in Kn,n, then χg(Kn,n − M) = n. This gives an example of a graph G with subgraph
H such that χg(H) > χg(G). Extending this idea to the (r, d)-relaxed coloring game,
it is well known that 1χg(Kn,n) = n. This provides an example of a graph G such that
χg(G) < 1χg(G). In fact, it was shown in [9] that for every m ∈ N, there exists a graph
G such that m ≤ χg(G) < 1χg(G). It remains open whether for all nonnegative integers d

there exists a graph G such that dχg(G) < d+1χg(G).
The focus of our work in this paper is a further variation of this game. Rather than colo-

ring vertices, the players color edges. Of course, for a given graph G, this could be viewed
as playing the (r, d)-relaxed coloring game game on the line graph of G. For the pur-
poses of this paper, however, we will consider this game in terms of edge coloring. We
call this variation the (r,d)-relaxed edge-coloring game and formalize it in the following
way.

Let G be a finite graph and let r be a positive integer and d be a nonnegative integer. As
above, d is the defect and X is a set of r colors. The players alternate coloring, with Alice
coloring an edge first. We say that a color α ∈ X is legal for an uncolored edge e if the
following conditions are satisfied:

(1) The edge e is incident with no more than d edges already colored α.

(2) If e′ is an edge incident to e and e′ has already been colored α, then e′ is adjacent to
no more than d − 1 edges colored α.
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Note that if e is colored α, then at this point in the game every edge has at most d

neighbors colored α. Alice wins if every edge is eventually legally colored. Bob wins if
there comes a time in the game when there is an uncolored edge for which no legal color
exists. For a fixed defect d, the least r such that Alice has a winning strategy for this game
is called the d-relaxed game chromatic index of G, denoted dχ ′

g(G). Similarly, for a fixed
r , the r-edge-game defect of G, denoted def′g(G, r), is the least d such that Alice has a
winning strategy. This game was first introduced in [10].

To provide the appropriate context for the work in this paper, we note that for the class
of forests, much is already known about the (r, d)-relaxed (vertex) coloring game. We have
the following sequence of results:

Theorem 1 (Faigle et al. [16]) If F is a forest, then χg(F ) ≤ 4. Moreover, there exists a
forest F0 such that χg(F0) = 4.

Theorem 2 (Chou et al. [4]) If F is a forest, then 1χg(F ) ≤ 3. Moreover, there exists a
forest F1 such that 1χg(F1) = 3.

Theorem 3 (He et al. [19]) If F is a forest, then 2χg(F ) ≤ 2. Moreover, there exists a forest
F2 such that 2χg(F2) = 2.

From a certain perspective, this fully describes the (r, d)-relaxed coloring game on
forests, as a class. The goal of this paper is to similarly describe the (r, d)-relaxed edge-
coloring game on both forests and k-degenerate graphs. We begin by considering the
following results:

Theorem 4 (Cai and Zhu [3], Lam et al. [23]) Let T be a tree with �(T ) = �. Then
χ ′

g(T ) ≤ � + 2.

Theorem 5 (Dunn [10]) Let T be a tree with �(T ) = �. Then def′g(T , � + 1) ≤ 1.

Moreover, if d ≥ 1, then dχ ′
g(T ) ≤ � + 1.

Theorem 6 (Dunn [10]) Let T be a tree with �(T ) = �. Then def′g(T ,�) ≤ 3. Moreover,

if d ≥ 3, then dχ ′
g(T ) ≤ �.

We note that Theorems 4, 5 and 6 can easily be extended to forests. Therefore, thinking
in terms of Theorems 1–3, Theorems 4–6 lead to the following question:

Question 1 For any forest F with�(F) = � and j ∈ [�−1] is there a function h : N → N

such that whenever d ≥ h(j) we have that dχ ′
g(F ) ≤ � − j?

In Section 2 of this paper we will answer Question 1 in the affirmative with h(j) =
2j + 2. It should be noted that Theorem 4 was improved in [15]. It was shown that if � = 3
or � ≥ 6, then any tree T with �(T ) = � satisfies χ ′

g(T ) ≤ � + 1. In [1], this result was
extended to trees (and forests) with � = 5. The case for � = 4 remains open, indicating
the difficulty of determining these parameters, even in the non-relaxed environment.

For the more general class of k-degenerate graphs, which will be defined in detail in
Section 3, we note the following result of Cai and Zhu:
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Theorem 7 (Cai and Zhu [3]) Let G be a k-degenerate graph with �(G) = �. Then
χ ′

g(G) ≤ � + 3k − 1.

As a consequence, in terms of the (r, d)-relaxed edge-coloring game, we have that
dχ ′

g(G) ≤ �+3k−1 for all k-degenerate graphs G when d = 0. Also, in [10], the following
result was proven:

Theorem 8 (Dunn [10]) LetG be k-degenerate with�(G) = �. Then def′g(G,�+k−1) ≤
2k2 + 4k. Moreover, if d ≥ 2k2 + 4k, then dχ ′

g(G) ≤ � + k − 1.

Theorems 7 and 8 together lead to the following question:

Question 2 For any k-degenerate graph G with �(G) = � and j ∈ [� + k − 1] is there a
function h : N×N → N such that whenever d ≥ h(k, j) we have that dχ ′

g(G) ≤ �+k−j?

In Section 3 we answer Question 2 in the affirmative. In particular, we will show that the
following h(k, j) suffices:

h(k, j) =
{

2k2 + 4k, if j = 1;
2k2 + 4k + 2j − 4, if j ≥ 2.

We also derive corollaries for outerplanar graphs and planar graphs.

2 The Relaxed Edge-Coloring Game on Forests

Let F = (V ,E) be a forest with �(F) = � for some positive integer �. Let T1, T2, . . . , Tn

be all components of F containing at least one edge. For her strategy, for each i ∈ [n] Alice
chooses an arbitrary leaf ri ∈ V (Ti) at which she roots Ti . She then regards all edges in Ti

as oriented toward ri . Let E0 be the set of n edges in F that are incident to a root. For each
vertex v ∈ V \{r1, r2, . . . , rn}, define p(v) to be the unique outneighbor of v. Then for each
edge e ∈ E, there is a unique vertex x ∈ V such that e = xp(x). We now introduce some
terminology, as illustrated in Fig. 1.

For every edge e = xp(x) with p(x) �= ri for some i ∈ [n], define the parent of
e, denoted p(e), to be the edge p(x)p2(x), where p2(x) = p(p(x)). We say that e is a
child of p(e). Note that, because p(x) is well defined, p(e) is also well defined. Whenever
pi(e) is defined and pi(e) is not incident with the root, define pi+1(e) = p(pi(e)). Define
the descendants of e to be

G(e) = {e′ ∈ E | e = pk(e′) for some positive integer k}.
For each edge e = xp(x), define the siblings of e to be

B(e) = {yp(y) ∈ E | p(y) = p(x) and y �= x}
and B[e] = B(e) ∪ {e}. Define the children of e to be

S(e) = {yp(y) ∈ E | x = p(y)}.
We call the set of all edges incident to an edge e the neighborhood of e, denoted N(e).

Fix j ∈ [�−3] and let X be a set of �− j colors. Note that |X| ≥ 3. At any point in the
game, let C and U be the set of colored and uncolored edges, respectively. For each α ∈ X,
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S(e)
p(e)

p(p(x)) p(x)

e

B(e)

x

Fig. 1 For an edge e = xp(x), the vertex p(p(x)) = p2(x), the edge p(e), and the sets B(e) and S(e)

we call the set of all edges colored α the color class of α, denoted Cα . For a colored edge e,
denote the color of e by c(e).

For each colored edge e, define the defect of e to be the number of neighbors of e colored
with c(e). If e is uncolored, we set the defect of e to be zero. We denote the defect of e by
def(e). Thus

def(e) =
{ ∣∣N(e) ∩ Cc(e)

∣∣ , if e ∈ C;
0, otherwise.

We say that color α ∈ X is eligible for edge e if p(e) /∈ Cα . We denote the set of eligible
colors for e by X(e). When coloring an edge e, Alice always chooses an eligible color. Note
that since |X| ≥ 3, this is always possible.

For any edge e, we say that B[e] is secure if there exist edges e1, e2, . . . , ej+1 ∈ B(e)

and a color α such that c(ei) = α for i ∈ [j + 1]. In other words, B[e] is secure if e has
j + 1 siblings colored with the same color. Note that if B[e] is secure, then the number of
distinctly colored siblings of e is at most

∣∣B(e) \ {e1, e2, . . . , ej }
∣∣ ≤ � − j − 2.

As |X(e)| ≥ � − j − 1, there is always a legal eligible color for an uncolored edge e when
B[e] is secure.

We will now define the strategy that Alice will use for this game with trees. This strat-
egy is a modification of the activation strategy developed in [10]. In response to Bob’s
moves, Alice designates certain edges active; precisely how she chooses these edges will
be explained below. When an edge e becomes active, we say that e has been activated. In
addition, all colored edges are active. We denote the set of active edges by A, and remark
that C ⊆ A. This set has the property that once an edge e is in A, e will remain active for
the remainder of the game.



352 Order (2015) 32:347–361

2.1 Modified Forest Strategy

Alice begins the game by coloring the unique edge in E0 that is incident with r1 with
any color. Suppose now that Bob has just colored edge b = xp(x) in Ti for some
x ∈ V \ {r1, r2, . . . , rn} and some i ∈ [n]. Alice’s response has two stages: a Search Stage
and a Coloring Stage. In the Search Stage, Alice finds an edge e to color. In the Coloring
Stage, Alice chooses a color for e.

Search Stage

• If b ∈ E0, then set e to be any uncolored edge in E0, if such an edge exists, or any
uncolored edge whose parent is colored.

• If p(b) ∈ U , then activate each edge along the (x, ri)-path until reaching either an edge
g with g ∈ E0 ∩ U or p(g) ∈ A. [Note that this includes Alice activating the edge b.]
If g ∈ E0 ∩ U or p(g) ∈ C, set e := g. Otherwise, set e := p(g).

• If p(b) ∈ C with c(p(b)) = c(b) and p2(b) ∈ U , then set e := p2(b).
• If p(b) ∈ C with c(p(b)) = c(b), p2(b) ∈ C, and B(p(b)) ∩ U �= ∅, then set e to be

any uncolored sibling of p(b).
• Otherwise, set e to be any uncolored edge in E0, if such an edge exists, or any uncolored

edge whose parent is colored.

Coloring Stage

• If B[e] is secure, then color e with an eligible color for e that does not appear among
the siblings of e.

• Otherwise, B[e] is not secure. Let f be the last edge to be colored with a color eligible
for e such that c(f ) = c(p(f )) and p(f ) ∈ B(e). If such an edge exists, then color
e with c(f ). If no such edge exists, then color e with any eligible color for e that
minimizes def(e).

We are now ready to state and prove our result for (r, d)-relaxed edge-coloring game on
forests.

Theorem 9 Let F = (V ,E) be a forest and �(F) = � for some positive integer �. Let j
be an integer with 0 ≤ j ≤ �− 1, and define h(j) = 2j + 2. Then def′g(F,�− j) ≤ h(j).

Moreover, if d ≥ h(j) then dχ ′
g(F ) ≤ � − j .

Proof Suppose that Alice and Bob are playing the (� − j, d)-relaxed edge-coloring game
on F for some d ≥ h(j). Note that when either j = � − 1 or j = � − 2, the result is
immediate. Hence, it will suffice to consider the game with color set X with |X| ≥ 3. We
will assume that Alice uses the Modified Forest Strategy.

Claim 1 If e ∈ U , then e has at most two active children. Furthermore, when e has two
active children, Alice colors e.

Proof Let f be the first active child of e. When Alice activates f , she also activates e.
Note that while e is uncolored, Alice never colors an edge in G(e) \ G(f ) before Bob. If
Bob colors an edge b ∈ G(e) \ G(f ), Alice activates p(b), p2(b), . . ., and so on, until she
reaches e. Since e is active, Alice colors e.
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Claim 2 Suppose that Alice has chosen to color edge e with α ∈ X. Then at the end of
Alice’s turn, def(e) ≤ j + 2.

Proof Since α ∈ X(e), then p(e) does not contribute to the defect of e. By Claim 1, e has
at most two active children; hence, e has at most two children colored α. If B[e] is secure,
then Alice would have chosen a color that does not appear among the siblings of e. In this
case, def(e) ≤ 2. Otherwise, when B[e] is not secure, there are at most j siblings of e

colored α. Thus, def(e) ≤ j + 2.

Claim 3 Suppose that e is about to be colored α and p(e) ∈ U . Then e has at most one
child colored α. Furthermore, if e has a child colored α, then Bob colors e and Alice colors
p(e).

Proof If some sibling f ∈ B(e) is the first active child of p(e), then Alice colors p(e)

when the first edge in G(p(e)) \ G(f ) is activated. Since p(e) is uncolored and e is to be
colored, we conclude that e has no active children and hence no children colored. So assume
that e is the first active child of p(e). Note that p(e) ∈ A. If an edge in G(p(e)) \ G(e) is
then activated, Alice colors p(e). Otherwise, we may assume that e has no colored siblings
at the time when e is colored. Before e is colored, it is incident with at most two colored
edges, which are children of e. Since |X| ≥ 3, there is a color that does not appear on any
child of e. Then, because Alice will choose a color to minimize def(e), Alice never chooses
to color e with α if a child of e has already been colored α. So, if e has two active children
before e is colored, then Alice colors e with α only when neither child is colored α. Thus,
if e has a child colored α, then Bob must be coloring e with α, and since p(e) ∈ A, Alice
responds by coloring p(e).

Suppose f ∈ S(e) ∩ Cα . By Claim 3, if f has a child colored α before f is colored,
then Bob must have colored f and Alice responds by coloring e. Thus def(f ) = 2 once
e is colored. Otherwise, f has no children colored α before f is colored. Since e has at
most two active children before e is colored, f has at most one sibling colored α before e is
colored. Then def(f ) ≤ 2 once e is colored.

Now consider the siblings of e. If B[e] is secure, since Alice is choosing to color e with
α, then α does not appear among the siblings of e. Hence, coloring e with α does not affect
the defect of any edge in B(e).

Finally, we consider the case that B[e] is not secure.

Claim 4 Suppose Alice has chosen to color edge e with α ∈ X and B[e] is not secure. If
there exists an edge f ∈ B(e) ∩ Cα , then def(f ) ≤ 2j + 2 once e is colored.

Proof Let E′ = B(e) ∩ Cα . Since B[e] is not secure, we have that
∣∣E′∣∣ ≤ j . Let f ∈ E′

such that |S(f ) ∩ Cα| is maximal, and let

S(f ) ∩ Cα = {s1, s2, . . . , sm},
where i < j implies that si is colored before sj . We show that m ≤ ∣∣E′∣∣ + 2. By
Claim 1, f has at most two active children before it is colored. Hence, f has a
most two children colored α before f is colored. So only the following cases need be
considered:
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Case 1 The edge f is colored before s1.
Since p(si) = f for each i ∈ [n] and c(f ) = α, Alice does not color any si . For each

si that Bob colors, Alice then colors p(e) if p(e) ∈ U , an edge in E′ \ {f } if p(e) ∈ C, or
e if E′ ∩ U = ∅. Then at most

∣∣E′∣∣ + 1 children of f are colored α before Alice colors e.
Hence, m ≤ ∣∣E′∣∣ + 1.

Case 2 The edge f is colored after s1 and before s2.
Alice does not color si for any i ≥ 2. As in the previous case, when Bob colors si with

i ≥ 2, Alice then colors p(e), an edge in E′ \ {f }, or e. Thus, once f ∈ C, at most
∣∣E′∣∣ + 1

children of f are colored α. Including s1, we have that m ≤ ∣∣E′∣∣ + 2.

Case 3 The edge f is colored after s2.
If p(e) ∈ U , then Claim 3 implies that f has at most one child colored α before f

is colored. Since f has two children colored α before f is colored, p(e) must be colored
before f . Furthermore, Alice colors f immediately after s2 is colored, as s1 and s2 must be
the first two active children of f . Once f is colored, each time Bob colors a child of f with
α, Alice colors an edge in E′ \ {f }. Therefore, once f is colored, Bob can color at most∣∣E′∣∣ children of f with α before e is colored. So m ≤ ∣∣E′∣∣ + 2.

Thus we have that

m = |S(f ) ∩ Cα| ≤ ∣∣E′∣∣ + 2 ≤ j + 2

once e is colored. Since f was chosen to maximize |S(f ) ∩ Cα| and each f ′ ∈ E′ has at
most j siblings colored α before e is colored, we have that

def(f ′) ≤ |S(f ) ∩ Cα| + j ≤ 2j + 2

for all f ′ ∈ E′.

Note now that if Alice is coloring edge e with α, according to the Modified Forest
Strategy, Claim 2 guarantees that def(e) ≤ h(j). We have also shown that for any edge
f ∈ N(e) ∩ Cα , immediately after e is colored, def(f ) ≤ h(j). As Bob may adopt Alice’s
strategy at any point in the game, every edge is eventually colored, and Alice wins the game.
Thus

def′g(F,� − j) ≤ 2j + 2 = h(j).

Moreover, if the game is being playing with some defect d > 2j + 2, and an edge e even-
tually has defect at least d, then it must be through the actions of Bob that this occurs. At
the time that e is uncolored, the above arguments show that it is possible to color e with
an eligible color α such that coloring e does not increase the defect of any edge e′ with
def(e′) > 2j + 2. Thus, for any d ≥ h(j), we have that

dχ ′
g(F ) ≤ � − j,

as desired.

We note that the above theorem generalizes the bound in Theorem 6 (Theorem 3 in [10]).
Moreover, for j = 0, Theorem 9 provides that for a forest F with �(F) = �, we have that
def′g(F,�) ≤ 2. This is an improvement by 1 of Theorem 6.
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3 The Relaxed Edge-Coloring Game on k-Degenerate Graphs

As discussed in Section 1, we now consider the (r, d)-relaxed edge-coloring game on the
class of k-degenerate graphs. Recall that a graph G = (V ,E) is k-degenerate if there exists
a linear ordering L = v1, v2, . . . , vn of V such that for every i ∈ [n], we have that

∣∣{ j | vi ↔ vj andj < i }∣∣ ≤ k.

For example, trees and forests are 1-degenerate, outerplanar graphs are 2-degenerate, planar
graphs are 5-degenerate, and partial k-trees are k-degenerate.

We now develop some necessary notation and terminology for our strategy with k-
degenerate graphs. Let G = (V ,E) be a finite graph and let L be a linear ordering of V .
Once L is established, when we write xy ∈ E we assume that x < y in L. We will also
assume that the edge xy is oriented y → x. Let e = xy be an edge in G. As in [10], we now
define sets of edges relative to e using L and this orientation of E(G).

P(e) = { wx ∈ E | w ∈ N+(x) } P [e] = P(e) ∪ {e}
B(e) = { xv ∈ E | v ∈ N−(x)} B[e] = B(e) ∪ {e}
H(e) = { uy ∈ E | u ∈ N+(y) } H [e] = H(e) ∪ {e}
S(e) = { yz ∈ E | z ∈ N−(y) } S[e] = S(e) ∪ {e}
R(e) = P(e) ∪ H(e)

We call the edges in P(e) the parents of e and the edges in S(e) the children of e. We
note that N(e) = R(e) ∪ S(e) ∪ B(e). See Fig. 2.

S(e)P(e)
x y

B(e)

e

H(e)

Fig. 2 For an edge e and linear ordering L, sets P(e),H(e), B(e), and S(e), relative to e and L
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Consider the linear ordering L of E induced lexicographically from L. So xy < wz in L

if and only if either x < w in L or both x = w and y < z in L. Although L is used in the
strategy below, since L is determined by L, it is L that determines the strategy.

As with the game on trees, at any time in the game we define U to be the set of uncolored
edges and C to be the set of colored edges. For e ∈ C, let the color assigned to e be c(e).
Define the defect set of e by D(e) = { e′ ∈ N(e) | c(e′) = c(e) }. If e ∈ U , then D(e) = ∅.
In either case, the defect of e is defined by def(e) = |D(e)|.

Let F ⊆ E. We define

X(F) =
⋃
e′∈F

{c(e′)},

where {c(e′)} = ∅ if e′ ∈ U . For an edge e, we then let X(e) = X − X(R(e)). In other
words, X(e) is the set of colors not used on any edge in R(e). As before, we call X(e) the
set of eligible colors for e.

Let e ∈ E. We define M(e) = U ∩ P [e]. If M(e) �= ∅, we define the mother of e by
m(e) = minL M(e). So the mother of e, if it exists, is either the L-least uncolored parent of
e, or e itself. Note that if e ∈ U then m(e) must be defined since e is a candidate. For any
colored edge e we define D∗(e) ⊆ D(e) by

D∗(e) = { e′ ∈ D(e) | m(e′) exists }.
Using this definition, for a colored edge e, let F(e) = P(e) ∩ (U ∪ D∗(e)). If F(e) �= ∅,
define the father of e by f (e) = minL F(e). So the father of e, if it exists, is either the
L-least uncolored parent of e, or the L-least parent of e colored c(e) whose mother exists.

We now assume that G is k-degenerate and that L is a linear ordering witnessing this.
Let �(G) = �. Alice and Bob will be playing the (r, d)-relaxed edge-coloring game with
� + k − j colors, for some j ∈ [� + k − 1]. Extending the idea with forests above, we
define B[e] to be secure if there exist edges e1, e2, . . . , ej+k−1 ∈ B(e) and a color α such
that c(ei) = α for i ∈ [j + k − 1]. Finally, we define l(e) = minL B(e)∩U , if such an edge
exists.

We are now ready to define the strategy that Alice will employ in the (r, d)-relaxed edge-
coloring game on k-degenerate graphs. This is a modification and extension of the strategy
developed in [10].

3.1 Modified K Strategy

Let G = (V ,E) be a k-degenerate graph with a linear ordering L of V witnessing this. Let
X be a set of colors. Alice will again maintain an edge set A of active edges. Similar to the
case with forests, we note that all colored edges are active. Alice starts by activating and
coloring the least edge in L. Suppose that Bob has just colored edge b. First Alice activates
b. Then, as in the Modified Forest Strategy, Alice’s response has two stages: a Search Stage
and a Coloring Stage. In the Search Stage, Alice finds an edge e to color. The Search Stage
includes an Initial Step and a Recursive Step. In the Coloring Stage, Alice chooses a color
for e.

Search Stage
Initial Step

• If f (b) exists and f (b) ∈ U , then set g := f (b) and move to the Recursive Step.
• If f (b) exists and f (b) ∈ C, then set g := m(f (b)) and move to the Recursive Step.
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• If f (b) does not exists and l(b) exists, then set e := l(b) and move to the Coloring
Stage.

• Otherwise, set e := minL U . If e is inactive, activate it. Move to the Coloring Stage.

Recursive Step

• If g /∈ A, then activate g, set g := m(g), and repeat the Recursive Step.
• Otherwise, set e := g and move to the Coloring Stage.

Coloring Stage

• If B[e] is secure, then color e with an eligible color for e that does not appear in B(e).
• Otherwise, B[e] is not secure. Let f be the last edge to be colored with a color eligible

for e such that c(f ) = c(f ′) for some f ′ ∈ B(e) ∩ P(f ). If such an edge exists, then
color e with c(f ). If no such edge exists, then color e with any eligible color for e that
minimizes def(e).

Note that three of the options for response in the Initial Step are to move from b to
f (b), m(f (b)), and l(b). We will refer to these actions as jumping, skipping, and sliding,
respectively. When Alice either activates or colors an edge e, we say that she is taking action
at e. Note that Alice can take action at a edge at most twice. As before, this will play an
important role in the proof of our main result, which we are now ready to state and prove.

Theorem 10 Let G be k-degenerate with �(G) = �. Let j ∈ [� + k − 1]. Let

h(k, j) =
{

2k2 + 4k, if j = 1;
2k2 + 4k + 2j − 4, if j ≥ 2.

Then def′g(G,� + k − j) ≤ h(k, j). Moreover, if d ≥ h(k, j) then dχ ′
g(G) ≤ � + k − j .

Proof We begin by noting that if �−k ≤ j ≤ �+k−1 and G has at least two edges, then

h(k, j) = 2k2 + 4k + 2j − 2

≥ 2k2 + 4k + (2� − 2k) − 2

= 2� − 2 + 2k2 + 2k

> 2� − 2.

However, an edge e in G is incident with at most 2� − 2 other edges. Since our allowable
defect is greater than this, Alice can always win. Also, if G has only one edge, the result is
trivial. So for the remainder of our argument, we will assume that j ∈ [� − k − 1]. Let X

be a set of colors with |X| = � + k − j . We will assume that Alice uses the Modified K

Strategy. We first show throughout the game, if e ∈ U , then e has at least one legal eligible
color. Note that |P(e)| ≤ k and |H(e)| ≤ k − 1. First suppose that B[e] is not secure. Thus,
the only colors that Alice must avoid are those used on edges in R(e). So we have that

|X(e)| = ∣∣X − X(R(e))
∣∣

≥ � + k − j − |R(e)|
= � + k − j − |P(e) ∪ H(e)|
≥ � + k − j − (2k − 1)

= � − k − j + 1

≥ 1.



358 Order (2015) 32:347–361

If B[e] is secure, then we must show that the number of distinctly colored edges in
R(e)∪B(e) is less than �+k−j . Let m be this number. First note that since B[e] is secure,
then within B(e), at least k + j − 1 edges are colored the same. So

m ≤ |R(e) ∪ B(e)| − (k + j − 2)

= |P(e) ∪ B(e)| + |H(e)| − (k + j − 2)

≤ � − 1 + (k − 1) − (k + j − 2)

= � − j

< � + k − j.

Thus, every uncolored edge has a legal eligible color. Suppose Alice is about to color
edge e with α ∈ X. We consider the defect of both e and any α-colored neighbors of e. We
will show that immediately after Alice colors e, none of these edges has defect greater than
h(k, j).

Claim 1 If e ∈ U , then e has at most 2k children colored α.

Proof Let e′ ∈ S(e) ∩ Cα . Note that α ∈ X(e) implies that α is not used on any edge in
H(e). When e′ is activated or colored, Alice does not skip, as this would require that both e′
and f (e′) ∈ H [e] are colored α. Also, Alice does not slide, since e is a candidate for f (e).
Thus, Alice takes action in H [e]. So we have that

|S(e) ∩ Cα| ≤ 2 |H [e]| ≤ 2k.

Claim 2 If e ∈ U , then e is incident with at most 3k + j − 2 edges colored α.

Proof Since α ∈ X(e), then |R(e) ∩ Cα| = 0. So it will suffice to show

|S(e) ∩ Cα| + |B(e) ∩ Cα| ≤ 3k + j − 2.

By Claim 1, we have that

|S(e) ∩ Cα| ≤ 2k.

Now, if B[e] is secure, then |B(e) ∩ Cα| = 0. Otherwise, there are at most j + k − 2
edges in B(e) colored α. Thus, in either case,

|B(e) ∩ Cα| ≤ j + k − 2.

Hence,

|S(e) ∩ Cα| + |B(e) ∩ Cα| ≤ 3k + j − 2,

as desired.

By Claim 2, immediately after Alice colors e with α, we have that def(e) ≤ 3k+j −2 <

h(k, j). We will now consider the defect of a child of e already colored α.

Claim 3 If g ∈ S(e) ∩ Cα , then before e is colored def(g) ≤ 2k2 + 4k − 1.

Proof Observe that since B(g) ⊂ S(e) and g /∈ D(g), Claim 1 implies that
|D(g) ∩ B(g)| ≤ 2k − 1. We also have that P(g) = H [e], implying that P(g) ∩ D(g) = ∅.
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Let |D(g) ∩ H(g)| = a, noting that 0 ≤ a ≤ k − 1, by our choice of L. Thus we have that

|D(g)| = |D(g) ∩ P(g)| + |D(g) ∩ B(g)| + |D(g) ∩ H(g)| + |D(g) ∩ S(g)|
≤ 2k − 1 + a + |D(g) ∩ S(g)| .

Thus, it will suffice to show that |D(g) ∩ S(g)| ≤ 2k2 + 2k − a.
Let S = D(g) ∩ S(g). We partition S into {S1, S2}. We define S1 to be the set of edges

e′ where Alice responds to the activation of e′ by jumping and, therefore, taking action at
an edge in H [g]. Similarly, S2 is the set of edges e′ where Alice responds to the activation
of e′ by skipping. Note that Alice will not respond by sliding since e is uncolored. At first,
we have that |S1| ≤ 2k. However, this would imply that Alice both activates and colors the
edges in H [g]. But she can color at most one edge in H [g] with α. Since

|Cα ∩ H(g)| = |D(g) ∩ H(g)| = a,

we have that |S1| ≤ 2k − a.
Now let e′ ∈ S2. Let Q = ⋃

h∈H [g] P(h). Since Alice will skip once e′ is activated, she
next will take action at an edge in Q. Therefore, as Alice can take action at most twice at
any given edge, we have that |S2| ≤ 2 |Q| ≤ 2k2. Hence, we have

|S| = |S1| + |S2| ≤ 2k2 + 2k − a,

as desired.

So by Claim 3 once e is colored, def(g) ≤ 2k2 + 4k for any child of e already colored α.
If j = 1, then def(g) ≤ h(k, j), since h(k, 1) = 2k2 +4k. Otherwise, if j ≥ 2, we note that

h(k, j) = 2k2 + 4k + 2j − 4 ≥ 2k2 + 4k.

Thus, in either case, def(g) ≤ h(k, j).
Finally, we consider the effect of coloring e with α on any sibling of e already colored α.

Claim 4 If g ∈ B(e) ∩ Cα , then before e is colored def(g) ≤ 2k2 + 4k + 2j − 5.

Proof Note that if B[e] is secure, then B(e) ∩ Cα = ∅, as Alice will not choose to color
e with any color already used in B(e). Thus, we may assume that B[e] is not secure. As in
Claim 3, it will suffice to consider

def(g) = |D(g)|
= |D(g) ∩ P(g)| + |D(g) ∩ B(g)| + |D(g) ∩ H(g)| + |D(g) ∩ S(g)| .

Since P(g) = P(e), we have that |D(g) ∩ P(g)| = 0. Let |D(g) ∩ H(g)| = a, noting that
0 ≤ a ≤ k − 1, by our choice of L. Also, since B[e] is not secure, then |D(g) ∩ B(g)| ≤
j + k − 3. It then suffices to show that

|D(g) ∩ S(g)| ≤ 2k2 + 3k + j − 2 − a.

Let S = D(g)∩S(g), and partition S into {S1, S2, S3}. As in Claim 3, we define S1 to be
the set of edges e′ which Alice responds to the activation of e′ by jumping and, therefore,
taking action at an edge in H [g]. Similarly, S2 is the set of edges e′ which Alice responds
to the activation of e′ by skipping. Finally, S3 is the set of edges e′ which Alice responds to
the activation of e′ by sliding. As in our argument in Claim 3, |S1| ≤ 2k −a and |S2| ≤ 2k2.

Let e′ ∈ S3. Since Alice responds by sliding, she colors an edge in B(g) with α. Including
the possible move on which she colors e, we have that |S3| ≤ k + j − 2. Hence

|S| ≤ 2k − a + 2k2 + k + j − 2 = 2k2 + 3k + j − 2 − a,
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as desired.

Thus, by Claim 4, once e is colored α, we have that

def(g) ≤ 2k2 + 4k + 2j − 4

for any sibling of e already colored α. Note that if j = 1, then h(k, j) = 2k2 + 4k, and
def(g) ≤ h(k, j). Otherwise, if j ≥ 2, we have h(k, j) = 2k2 + 4k + 2j − 4, and again we
have that def(g) ≤ h(k, j).

We make two final observations. First, Bob can always borrow this strategy to find a legal
move. Second, if d > h(k, j) and an edge e eventually has defect at least d then it must
be through the actions of Bob that this has occurred. At the time an edge e is uncolored,
the above arguments show that it is possible to color e with an eligible color α such that
coloring e did not increase the defect of any edge e′ where def(e′) > h(k, j). Thus, every
edge will eventually be colored, and Alice will win the game. �

We note that Theorem 10 generalizes Theorem 8 (Theorem 5 in [10]). Additionally, while
Theorem 10 includes forests when k = 1, Theorem 9 provides a better bound. Hence, we
suspect strongly that there may be room for improvement in the bound given by h(k, j) in
Theorem 10.

Using the fact that outerplanar graphs are 2-degenerate and planar graphs are 5-
degenerate, we have the following corollaries to Theorem 10:

Corollary 11 Let G be an outerplanar graph with �(G) = � and let j ∈ [� + 1]. Let

h(j) =
{

16, if j = 1;
2j + 12, if j ≥ 2.

Then def′g(G,� + 2 − j) ≤ h(j). Moreover, if d ≥ h(j) then dχ ′
g(G) ≤ � + 2 − j .

Corollary 12 Let G be a planar graph with �(G) = � and let j ∈ [� + 4]. Let

h(j) =
{

70, if j = 1;
2j + 66, if j ≥ 2.

Then def′g(G,� + 5 − j) ≤ h(j). Moreover, if d ≥ h(j) then dχ ′
g(G) ≤ � + 5 − j .

Observe that taken together, Corollaries 11 and 12 generalize, and in fact include as a
corollary, Corollary 1 in [10].

4 Future Work

Thinking in terms of Theorem 4 and the work in [15], it is evident that even the game chro-
matic index is difficult to determine for trees and forests. Thus, determining the tightness of
the bounds in Theorems 5, 6, and 9 for the defect remains open. Additionally, the fact that
the bound for the defect in Theorem 10 is not as good for trees and forests as in Theorem
9 seems to imply that the results in Theorem 10 have room for improvement. Our goal in
this paper was first to show that such a bound exists. Future work will ideally lead to tighter
bounds.
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Finally, there are many properties of χ ′
g(G) and dχ ′

g(G) that remain to be studied. As

discussed in the Introduction, both χg(G) and dχg(G) have somewhat unexpected non-
monotone properties, both in terms of subgraphs and increasing the defect. It remains open
to determine whether this is also the case with edge coloring. We suspect the answer is
yes, but have yet to determine appropriate examples. Related to this question, it would be
interesting to determine whether the difference between χ ′

g(G) and dχ ′
g(G) can be bounded

by a function of d, or if dχ ′
g(G) can be bounded by other graph parameters. While some of

these questions have been explored for χg(G), very little, if any, has been studied for the
relaxed version of the games, either with vertex coloring or edge coloring.
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