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Abstract A directed graph G ∈ D is said to be embeddable into G′ ∈ D if there exists
an injective graph homomorphism ϕ : G → G′. We consider the embeddability ordering
(D,≤) of finite directed graphs, and prove that for every G ∈ D the set {G,GT } is defin-
able by first-order formulas in the partially ordered set (D,≤), where GT denotes the
transpose of G. We also prove that the automorphism group of (D,≤) is isomorphic to Z2.
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1 Introduction

In 2009–2010 J. Ježek and R. McKenzie published a series of papers [1–4] in which they
have examined (among other things) the first-order definability in the substructure orderings
of finite mathematical structures with a given type and determined the automorphism group
of these orderings. They considered finite semilattices [1], ordered sets [2], distributive
lattices [3] and lattices [4].

In this paper we consider (the isomorphism types of) finite directed graphs. Let us con-
sider a nonempty set V and a binary relation E ⊆ V 2. We call the pair G = (V,E) a
directed graph or just digraph. The elements of V (= V (G)) and E(= E(G)) are called
the vertices and edges of G, respectively. The directed graph GT := (V,E−1) is called the
transpose of G, where E−1 denotes the inverse relation of E. A directed graph is finite if the
number of its vertices is finite. In the papers [1–4] the authors have investigated substruc-
ture orderings, meaning that H ≤ H ′ if and only if H is isomorphic to a substructure of
H ′. Differently, we investigate the embeddability ordering, namely we say that the directed
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graph G is embeddable into G′ if there exists an injective map ϕ : V (G) → V (G′) such
that (v1, v2) ∈ E(G) implies (ϕ(v1), ϕ(v2)) ∈ E(G′). It is obvious that isomorphic digraphs
are indistinguishable in terms of embeddability. So from now on by a given digraph G we
always mean its isomorphism type, for we intend to work with embeddability. Let D denote
the set of isomorphism types of finite digraphs. For G,G′ ∈ D , by G ≤ G′ we mean that
G is embeddable into G′. It is easy to verify that (D,≤) is a partially ordered set. It is also
easy to see that the map G �→ GT (G ∈ D) is a non-trivial automorphism of the poset
(D,≤). We will prove that there is no other non-trivial automorphism of (D,≤).

Let (A ,≤) be an arbitrary poset. An n-ary relation R is said to be definable in (A ,≤) if
there exists a first-order formula �(x1, x2, . . . , xn) with free variables x1, x2, . . . , xn in the
language of partially ordered sets such that for any a1, a2, . . . , an ∈ A , �(a1, a2, . . . , an)

holds in (A ,≤) if and only if (a1, a2, . . . , an) ∈ R. A subset of A is definable if it is
definable as a unary relation. An element a ∈ A is said to be definable if the set {a} is
definable.

In the poset (D,≤) let G ≺ G′ denote that G′ covers G. Obviously ≺ is a definable
relation in (D,≤). It is easy to see that if there exists an automorphism of an arbitrary poset
(A ,≤) that maps the element a ∈ A to b ∈ A then a and b are indistinguishable in
(A ,≤) with first-order formulas. This tells us, considering the fact that G → GT is a non-
trivial automorphism of (D,≤), that the “best” we can prove is that the set G̃ := {G,GT }
is definable for every G ∈ D . We prove this in the next section.

2 The Definability of the Sets {G,GT }

Definition 2.1 Let us introduce the following digraphs:
E1 : V (E1) = {v1}, E(E1) = ∅,
L1 : V (L1) = {v1}, E(L1) = {(v1, v1)},
E2 : V (E2) = {v1, v2}, E(E2) = ∅, and
I2 : V (I2) = {v1, v2}, E(I2) = {(v1, v2)}.

Lemma 2.2 The digraphs E1, L1, E2, I2 are definable.

Proof E1 is the unique digraph X ∈ D for which X ≤ G holds for every G ∈ D . There
are two elements covering E1, namely L1

(= LT
1

)
and E2

(= ET
2

)
, hence the set {L1, E2}

is definable. In this set only L1 has a unique cover so L1 and E2 are distinguishable, which
implies that L̃1 = {L1} is definable and so is Ẽ2 = {E2}. I2 is the unique element among
the covers of E2 which has 4 covers and does not cover L1 (see Fig. 1).

Definition 2.3 For a positive integer n, we say that G ∈ D is on level n if |V (G)| +
|E(G)| = n. Let Sn denote the set of all digraphs on level n.

It is an easy observation that if G ≺ G′ then G′ is exactly one level above G, so our
definition corresponds to the levels of the Hasse diagram of (D,≤) (see Fig. 1).

Lemma 2.4 The set Sn is definable for every positive integer n.

Proof S1 was already defined in Lemma 2.2. Sn+1 can be defined recursively: Sn+1 is
the set of digraphs X ∈ D for which Z ≺ X holds for some Z ∈ Sn.
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Fig. 1 The “bottom” part of the Hasse diagram of (D,≤)

Definition 2.5 We say that the digraph X is n level under Z if there exist Z1, . . . , Zn ∈ D
such that Z 
 Z1 
 · · · 
 Zn = X. Similarly, we say that the digraph X is n level above Y
if there exist Y1, . . . , Yn ∈ D such that Y ≺ Y1 ≺ · · · ≺ Yn = X.

Definition 2.6 Let En (n = 1, 2, . . . ) be the “empty” digraph with n vertices: V (En) =
{v1, v2, . . . , vn}, E(En) = ∅. Let Fn (n = 1, 2, . . . ) be the “full” digraph with n vertices:
V (Fn) = {v1, v2, . . . , vn}, E(Fn) = V (Fn)

2. Let Tn = {G ∈ D : |V (G)| = n} be the set
of all digraphs having n vertices.

Lemma 2.7 The digraphs En, Fn and the set Tn are definable for every positive integer n.

Proof The set I = {En : n ∈ {1, 2, . . . }} is definable, because its elements are those
digraphs X ∈ D for which L1 � X and I2 � X. In I we have E1 ≺ E2 ≺ E3 ≺ . . . ,
therefore it is easy to see that En(= ET

n ) is definable for every n. Tn contains exactly those
digraphs X ∈ D for which En ≤ X and En+1 � X, so it is definable. Fn is the digraph
X ∈ D which has n vertices and X ≺ Z implies that Z has n+ 1 vertices.

Definition 2.8 Let us set notations for the following digraphs (see Fig. 2):

O2 : V (O2) = {v1, v2}, E(O2) = {(v1, v2), (v2, v1)},
A : V (A) = {v1, v2, v3}, E(A) = {(v1, v3), (v2, v3)},
I3 : V (I3) = {v1, v2, v3}, E(I3) = {(v1, v2), (v2, v3)},
L2 : V (L2) = {v1, v2}, E(L2) = {(v1, v1), (v2, v2)}, and
L2+ : V (L2+) = {v1, v2}, E(L2+) = {(v1, v1), (v2, v2), (v1, v2)}.
Lemma 2.9 The digraphs O2, I3, L2, L2+ and the set Ã are definable.

Proof O2(= OT
2 ) is the maximal digraph X that has 2 vertices and L1 � X.

Let G ∈ D be the following digraph: V (G) = {v1, v2, v3}, E(G) = {(v1, v2)}. Then
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O2 A I3 L2+L2

Fig. 2 The digraphs O2, A, I3, L2, L2+

G(= GT ) is definable since it is the only element covering both I2 and E3.
Now the set Ã ∪ Ĩ3 turns out to be definable, for it contains exactly those digraphs X ∈ D
for which G ≺ X, O2 � X, E4 � X and L1 � X hold. Now Ĩ3 = {I3} is the unique
digraph X ∈ Ã ∪ Ĩ3 for which there exists X ≺ Z such that W ≺ Z implies X = W (with
the notation to be introduced in Definition 2.10, Z = O3), meaning Z covers only X. From
this we also get that Ã is definable because Ã = (Ã ∪ Ĩ3) \ Ĩ3.
The digraph L2 is the maximal X ∈ D that has 2 vertices and for which I2 � X. Finally, the
digraph L2+ is the only X ∈ D having 2 vertices, being on level 5 for which L2 ≤ X.

Definition 2.10 Let In, On, Ln (n = 2, 3, . . . ) denote the following digraphs (see Fig. 3):

V (In) = V (On) = V (Ln) = {v1, v2, . . . , vn},

E(In) = {(v1, v2), (v2, v3), . . . , (vn−1, vn)},

E(On) = E(In) ∪ {(vn, v1)} = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}, and

E(Ln) = {(v1, v1), (v2, v2), . . . , (vn, vn)}.

Lemma 2.11 The digraphs Ln, On, In (n = 2, 3, . . . ) are definable.

Proof Ln

(= LT
n

)
is the unique digraph X on level 2n that has n vertices and for which

I2 � X.

I5 O6 L6

Fig. 3 The digraphs I5, O6 and I6
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We define the digraphs On

(= OT
n

)
and In

(= ITn
)

together, recursively. O2 and I2 were
already defined in Lemma 2.9 and Lemma 2.2, respectively. Suppose that O2, I2, . . . , On,
In have already been defined. Then On+1 is the unique digraph X that:

– has n+ 1 vertices,
– In ≤ X, L1 � X, O2 � X, On � X,
– is on level 2n+ 2, and
– there exists no Z ∈ Ã for which Z ≤ X.

Finally, the digraph In+1 is the only element X for which X ≺ On+1.

Definition 2.12 Let G be an arbitrary finite directed graph with no loops. Let L(G) denote
the digraph that we get from G by adding loops to every vertex. For a set G ⊆ D of finite
digraphs with no loops let L (G ) := {L(G) : G ∈ G }.

Definition 2.13 For an arbitrary G ∈ D let M(G) denote the digraph we get by leaving all
the loops out from G. For a set G ⊆ D of finite digraphs put M (G ) := {M(G) : G ∈ G }.

Lemma 2.14 Let G ⊆ D be a definable set of finite digraphs with no loops. Then the set
L (G ) is definable.

Proof We define the binary relation

α = {(G,M(G)) : G ∈ D}
as the set of pairs (X, Y ) ∈ D2 for which Y is the maximal digraph with Y ≤ X and
L1 � Y . Now L (G ) is the set of those digraphs X for which there exists Y ∈ G such that
X is the maximal digraph with (X, Y ) ∈ α.

Lemma 2.15 Let G ⊆ D be a definable set of finite digraphs. Then the set M (G ) is
definable.

Proof The set M (G ) is definable as the set of those digraphs X for which there exists
Y ∈ G such that X is the maximal digraph with X ≤ Y and L1 � X.

Definition 2.16 Let On,L be the following digraph (see Fig. 4): V (On,L) =
{v1, v2, . . . , vn}, E(On,L) = E(On) ∪ {(v1, v1)}, which means that

E(On,L) = {(v1, v1), (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.
Lemma 2.17 The digraphs On,L (n = 2, 3, . . . ) are definable.

Proof On,L

(
= OT

n,L

)
is the unique digraph X on level 2n + 1 for which On ≤ X and

L1 ≤ X.

Definition 2.18 For arbitrary finite directed graphs G1, G2, . . . , Gn let us denote their
disjoint uniun by G1 ∪̇ G2 ∪̇ . . . ∪̇ Gn = ⋃̇n

i=1Gi , as usual.

Definition 2.19 Let n1, n2, . . . , nk be pairwise distinct integers greater than 1. Let (Fig. 5)

O(n1, n2, . . . , nk) =
⋃̇k

i=1
Oni ; OL(n1, n2, . . . , nk) =

⋃̇k

i=1
Oni,L.
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Fig. 4 The digraph O3,L

Lemma 2.20 The digraphs O(n1, n2, . . . , nk) and OL(n1, n2, . . . , nk) are definable.

Proof O(n1, n2, . . . , nk)(= (O(n1, n2, . . . , nk))
T ) is the unique digraph X having n1 +

n2 + · · · + nk vertices, being on level 2(n1 + n2 + · · · + nk) for which Oni ≤ X

(i = 1, 2, . . . , k) and there exists no Z ∈ Ã such that Z ≤ X.
OL(n1, n2, . . . , nk)(= (OL(n1, n2, . . . , nk))

T ) is the unique digraph X being on level
2(n1 + n2 + · · · + nk) + k for which O(n1, n2, . . . , nk) ≤ X, Lk ≤ X and Oni,L ≤ X

(i = 1, 2, . . . , k).

Definition 2.21 Let i and j be different positive integers both bigger than 2. Let us define
the digraph Oi,j,L1 (see Fig. 6) the following way. Let V (Oi) = {v1, . . . , vi} and V (Oj) =
{v′1, . . . , v′j }. Now let V (Oi,j,L1) = V (Oi ∪̇ Oj),

E(Oi,j,L1) = E(Oi ∪̇ Oj) ∪ {(v1, v1), (v
′
1, v

′
1), (v1, v

′
1)}.

Let Oi,j,L2: V (Oi,j,L2) = V (Oi,j,L1), E(Oi,j,L2) = E(Oi,j,L1) ∪ {(v′1, v1)} and finally let
Oi,j,1 = M(Oi,j,L1), Oi,j,2 = M(Oi,j,L2).

In words, Oi,j,L1 consists of two circles which are connected by an L2+ (see Fig. 6).

Lemma 2.22 Let i and j be different positive integers both bigger than 2. Then the sets
Õi,j,L1, Õi,j,L2, Õi,j,1 and Õi,j,2 are definable.

Proof Õi,j,L1 is the set of those digraphs X that:

– have i + j vertices,
– are on level 2(i + j)+ 3, and
– OL(i, j) ≤ X, L2+ ≤ X, L3 � X.

Fig. 5 The digraph OL(3, 4, 5)
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O3,4,L1 O3,4,L2

Fig. 6 O3,4,L1, O3,4,L2

Õi,j,L2 consists of those digraphs X that:

– are on level 2(i + j)+ 4,
– F2 ≤ X, and
– there exists Z ∈ Õi,j,L1 such that Z ≤ X.

Finally, the definability of the digraphs Õi,j,1, Õi,j,2 follows from Lemma 2.15.

Definition 2.23 Let O+
i,j,1 denote the set of those digraphs covering Z in D which are

obtained by adding an edge to Z that is not a loop, where Z ∈ Õi,j,1. Similarly, let O+
i,j,2

denote the set of those digraphs covering Z in D which are obtained by adding an edge to
Z that is not a loop, where Z ∈ Õi,j,2. (see Fig. 7).

Lemma 2.24 The sets O+
i,j,1, O+

i,j,2 are definable for every distinct positive integers i, j

both bigger than two.

Proof O+
i,j,1 consists of those digraphs X for which Z ≺ X for some Z ∈ Õi,j,1, L1 � X

and Ei+j+1 � X. Similarly, O+
i,j,2 is the set of those digraphs X for which Z ≺ X for some

Z ∈ Õi,j,2, L1 � X and Ei+j+1 � X.

Definition 2.25 For a finite directed graph G ∈ D , let A (G) be the set of those digraphs
that can be obtained from G by reversing some edges.

Definition 2.26 Let u, v, w be 3 distinct vertices of a directed graph G ∈ D . Let G|{u,v,w}
denote the digraph induced by the vertices u, v, w. Let [u, v,w]G denote the digraph for
which V ([u, v,w]G) := V (G|{u,v,w}) and

E([u, v,w]G) := E(G|{u,v,w}) ∩ {(u, v), (v, u), (v,w), (w, v)}.

X W

Fig. 7 A digraph X ∈ O+
4,5,1 and a digraph W ∈ O+

4,5,2
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Lemma 2.27 Let G ∈ D be a weakly connected digraph with vertices v1, . . . , vn for which
O2 � G. Then

{G,GT } = {X ∈ A (G) : ([vi , vj , vk]X = I3) ⇔ ([vi , vj , vk]G = I3),

([vi , vj , vk]X ∈ Ã) ⇔ ([vi , vj , vk]G ∈ Ã)}. (1)

Proof We can suppose that G has an edge because otherwise G must have a single vertex
which is a trivial case. We can also suppose that (v1, v2) ∈ E(G), for it is only a matter of
notation. Let H denote the right-hand side of Eq. 1. It is clear that for any X ∈ H , there
is exactly one edge between the vertices v1 and v2 since H ⊆ A (G) and O2 � G. Let
us suppose first that for an X ∈ H , similarly to G, (v1, v2) ∈ E(X) holds. We claim that
X = G. Let us consider an arbitrary pair of vertices v′, v′′ ∈ V (X) that are connected by an
edge in X. Since G is weakly connected there exists a series

v1 = w1, v2 = w2, w3, . . . , wk−2, v′ = wk−1, v′′ = wk

of pairwise distinct vertices such that for all j ∈ {1, 2, . . . , k − 1} there is exactly one
edge between the edges wj , wj+1. Let us consider the neighbouring vertices in this series.
We know that (w1,w2) ∈ E(G),E(X). Observe that the direction of the edge between the
vertices w2, w3 in X is determined by the conditions

([w1,w2,w3]X = I2) ⇔ ([w1,w2,w3]G = I2),

([w1,w2,w3]X ∈ Ã) ⇔ ([w1,w2,w3]G ∈ Ã),

moreover it has the same direction in X as in G and so on, the direction of the edge between
the vertices wj , wj+1 is determined by the conditions

([wj−1,wj ,wj+1]X = I2) ⇔ ([wj−1,wj ,wj+1]G = I2),

([wj−1,wj ,wj+1]X ∈ Ã) ⇔ ([wj−1,wj ,wj+1]G ∈ Ã)

and it has the same direction in X and G. We proved that the direction of the edge connecting
vertices v′, v′′ is the same in X as in G, therefore we proved X = G. If we suppose the
converse: (v2, v1) ∈ E(X) then XT = G by the previous case.

Definition 2.28 For pairwise distinct positive integers i, j , k greater than 2 we define the
digraph Oi→j→k (see Fig. 8) the following way. Let V (Oi) = {v1, v2, . . . , vi}, V (Oj) =
{v′1, v′2, . . . , v′j } and V (Ok) = {v′′1, v′′2, . . . , v′′k }. Now let V (Oi→j→k) = V (Oi ∪̇ Oj ∪̇ Ok)

and

E(Oi→j→k) = E(Oi ∪̇ Oj ∪̇ Ok) ∪ {(v1, v1), (v
′
1, v′1), (v

′′
1, v′′1), (v1, v′1), (v

′
1, v′′1)}.

Oi→j←k is defined similarly, by modifying the definition of Oi→j→k naturally by replacing
(v′1, v′′1) with (v′′1, v′1).

In words, Oi→j→k and Oi→j←k consist of three disjoint circles Oi , Oj , Ok with one
loop on each that are connected in the way i → j → k and i → j ← k according to the
sizes of the circles they are on (see Fig. 8).
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Fig. 8 The digraphs O3→4→5 and O3→4←5

Lemma 2.29 Let i, j , k be pairwise distinct positive integers bigger than 2. Then the sets
Õi→j→k and Õi→j←k are definable.

Proof Õi→j→k is the set of those digraphs X that:

– have i + j + k vertices,
– OL(i, j, k) ≤ X,
– are on level 2(i + j + k)+ 5,
– there exist Z ∈ Õi,j,L1 and W ∈ Õj,k,L1 such that Z,W ≤ X, and
– L(I3) ≤ X.

We can define Õi→j←k almost the same way as Õi→j→k, the difference is that we replace
the condition L(I3) ≤ X by: there exists Z ∈ L (Ã) for which Z ≤ X.

Definition 2.30 Let G be a finite directed graph with n vertices and no loops and let v =
(v1, v2, . . . , vn) be a vector containing all the vertices of G in some fixed order. Let us define
the digraph K(G, v) the following way. Let us consider the circles On+1, On+2, . . . ,O2n
with V (On+i) = {vi,j : 1 ≤ j ≤ n+ i}. Now let

V (K(G, v)) = V

⎛

⎝
⋃̇

1≤i≤n
On+i

⎞

⎠ ,

E(K(G, v)) = E

⎛

⎝
⋃̇

1≤i≤n
On+i

⎞

⎠ ∪ {(vi,1, vj,1) : (vi , vj ) ∈ E(G)}

∪ {(vi,1, vi,1) : 1 ≤ i ≤ n}.
In words we get K(G, v) from G by adding loops and big, differently sized circles to all

the vertices of G (see Fig. 9).

Example 1 Figure 9 shows K(I3, v) as an example (with v = (v1, v2, v3)).

This type of graph will be useful because in this graph—thanks to the big circles—we can
distinguish between the vertices of G which will allow us to define which pairs of vertices
are connected with how many edges, so we will be able to define the set A (G).

Lemma 2.31 For an arbitrary weakly connected finite digraph G ∈ D with no loops the
set G̃ = {G,GT } is definable.
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I3 K(I3 ,v)

v1 v2 v3

Fig. 9 I3 and a corresponding K(I3, v)

Proof First we consider all the pairs of vertices that have edges in both directions between
them and we clear one of the two edges for each such pair. We may get different digraphs
clearing different edges but as for the proof it does not matter which one we take so let us
fix one such digraph G′ with O2 � G′ for the rest of the proof.
Let v = (v1, v2, . . . , vn) be a fixed vector of the vertices of G. We first define the set

H1 := {K(G′, v),K((G′)T , v)}.
This set contains exactly those digraphs X that:

(1) have (n+ 1)+ (n+ 2)+ · · · + (n+ n)
(
= n(3n+1)

2

)
vertices,

(2) OL(n+ 1, n+ 2, . . . , n+ n) ≤ X,
(3) Ln+1 � X,
(4) if there is no edge between the vertices vi , vj in G′, then for all Z ∈ Õn+i,n+j,1,

Z � X holds,
(5) if there is an edge between the vertices vi , vj in G′ then there is an Z ∈ Õn+i,n+j,L1

for which Z ≤ X but for all W ∈ O+
n+i,n+j,1, W � X holds,

(6) if [vi , vj , vk]G′ = I3, there exists a Z ∈ Õ(n+i)→(n+j)→(n+k) for which Z ≤ X, and
(7) if [vi , vj , vk]G′ ∈ Ã there exists a Z ∈ Õ(n+i)→(n+j)←(n+k) for which Z ≤ X.

The conditions (1–3) ensure the structure of “big” circles, determine the number of loops.
The conditions (4–5) tell how many and what kind of edges are to be drawn between the
“big circles”. The conditions (1–5) define the set

{K(Z, v) : Z ∈ A (G′)}
while the conditions (6–7), by Lemma 2.27, choose the set H1 from it.
It is easy to see that the conditions (1–5) can similarly define the set

H2 := {K(Z, v) : Z ∈ A (G)}
with the following condition added (and writing G instead of G′ in every other condition,
naturally):

(8) if there are edges between the vertices vi , vj in both directions then there exists a
digraph Z ∈ Õn+i,n+j,L2 for which Z ≤ X but for any W ∈ O+

n+i,n+j,2, W � X

holds.

Now the set
H3 := {K(G, v),K((G)T , v)}

can be defined the following way. It consists of those digraphs X that:

(9) X ∈ H2, and
(10) there exists a digraph Z ∈ H1 for which Z ≤ X.
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Finally the set H4 = {L(G),L(GT )} consists of those X that:

(11) have n vertices,
(12) Ln ≤ X,
(13) X ≤ Z for some Z ∈ H3, and
(14) X is maximal with the previous properties.

Finally we can prove the definability of G̃ using Lemma 2.15, for M (H4) = {G,GT }.

Let G1, G2, . . . , Gn be the weakly connected components of an arbitrary G ∈ D . Let
v1 ∈ G1, v2 ∈ G2, . . . , vn ∈ Gn be arbitrary but fixed vertices. Let N = |V (G)|. Let us
build the digraph H the following way. We add the vertices v′1, v′2, . . . , v′N to the digraph G

so that they constitute an ON circle. We make this digraph, having n+ 1 weakly connected
components, weakly connected by adding the edges (v′1, v1), (v′2, v2), . . . , (v′n, vn). It is clear
that this contruction depends only on the choice of the vi’s.

Definition 2.32 Let us denote by O(G) the set of all digraphs H that can be created this
way.

Example 2 In Fig. 10 we can see a digraph G having 2 weakly connected components and
an H ∈ O(G).

Lemma 2.33 For every finite directed graph G ∈ D with no loops the set {G,GT } is
definable.

Proof We only need to deal with those G ∈ D that have more than one weakly independent
components, for we have dealt with the other case before. Let us consider a digraph H ∈
O(G). Since H is weakly connected and does not have loops, we know that H̃ is definable
by Lemma 2.31. Let H ′ be the digraph that we get from H by adding loops to all the vertices
corresponding to G (that do not belong to the “big circle”).
Let |V (G)| = N . H̃ ′ is the set of those digraphs X ∈ D such that

– there exists Z ∈ H̃ such that Z is N level under X, and
– LN ≤ X, ON,L � X.

In H ′ there are loops exactly on those vertices that correspond to G which allows us to
define L (G̃): it is the set of those digraphs X such that:

– X ≤ Z for some Z ∈ H̃ ′,
– X has N vertices and LN ≤ X, and

G H (G)

Fig. 10 A digraph G and a corresponding H ∈ O(G)
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– X is maximal with the previous properties.

We are done since G̃ = M (L (G̃)) is definable by Lemma 2.15.

Definition 2.34 Let ♂n denote the following digraph (see Fig. 11). Let V (On) =
{v1, . . . , vn} and let us define ♂n with V (♂n) = V (On) ∪ {v} and E(♂n) = E(On) ∪
{(v1, v)}. Let ♂L

n denote the digraph that is obtained from ♂n by adding a loop the following
way:

E
(♂L

n

)
= E(♂n) ∪ {(v, v)}.

Since ♂n is weakly connected and has no loops, ♂̃n is definable by Lemma 2.31.

Lemma 2.35 The digraphs ♂̃L

n (n = 2, 3, . . . ) are definable.

Proof ♂̃L

n is the set of those digraphs X such that:

– Z ≺ X for some Z ∈ ♂̃n, and
– L1 ≤ X and On,L � X.

Lemma 2.36 For an arbitrary weakly connected finite directed graph G ∈ D the set
{G,GT } is definable.

Proof Let v1, v2, . . . , vn be the vertices of G. Let us consider the circles {On+i}ni=1 so that
V (On+i ) = {vn+i,j : 1 ≤ j ≤ n+ i}. We define the digraph G♂ with

V (G♂) = V

(
G ∪̇

(⋃̇n

i=1
On+i

))
, and

E(G♂) = E

(
G ∪̇

(⋃̇n

i=1
On+i

))
∪ {(vn+i,1, vi ) : 1 ≤ i ≤ n}.

In words, we add big circles to G and connect them to the vertices of G with edges pointing
in G’s direction. (G♂ depends on the order of v1, v2, . . . , vn. We do not emphasize this in
the notation because we need this structure only once and here it is enough to think of any
fixed order of the vertices.) An example of the construction is shown in Fig. 12.

Since M(G♂) is weakly connected and has no loops, the set M (G̃♂) is definable by
Lemma 2.31. We can suppose that G has at least one loop because we dealt with the other

Fig. 11 ♂6 and ♂L
6

6 L
6
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G

G

v1 v2 v3

Fig. 12 G♂ for a given G with a given order of vertices

case in Lemma 2.31. Let vi1 , vi2 , . . . , vik be the list of vertices of G with loops. G̃♂ is now
the set of those digraphs X such that:

– X is k level above some Z ∈ M (G̃♂), and

– for every 1 ≤ l ≤ k there exists Z ∈ ♂̃L

n+il
for which Z ≤ X.

Let G′♂ = G ∪̇
(⋃̇n

i=1On+i

)
. Then G̃′♂ is the set of those X that:

– are n level under Z for some Z ∈ G̃♂,

– Z ∈ ♂̃n+i implies Z � X for every 1 ≤ i ≤ n, and
– On+i ≤ X for every 1 ≤ i ≤ n.

Finally, G̃ consists of those X that:

– X ≤ Z for some Z ∈ G̃′♂,
– have n vertices and Lk ≤ X, and
– Z ≤ X for some Z ∈ M (G̃).

Lemma 2.37 For a digraph G ∈ D that has at least one loop in every weakly connected
component, the set {G,GT } is definable.

Proof We can still suppose that G has more than one weakly independent components, for
we have dealt with the other case previously. Let us consider a digraph H ∈ O(G). Since
H is weakly connected, the set H̃ is definable by Lemma 2.36. Let n(> 1) be the number
of weakly connected components of G and m be the number of its vertices. Let H ′ be the
digraph that we get from H by leaving the edges out that connect the “big circle” to the
components of G, meaning we leave n edges out and get H ′ = G ∪̇ Om. H̃ ′ contains
exactly those digraphs X such that

– X is n level under Z for some Z ∈ H̃ ,
– there is no Z ∈ ♂̃m for which Z ≤ X, and
– Om ≤ X.

H ′ consists of n + 1 weakly connected components from which exactly n have loops in
them, exactly the components corresponding to G. Finally G̃ is the set of those digraphs X
such that:

– X ≤ Z for some Z ∈ H̃ ′,
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– X has m vertices and is on the same level as G,
– X has the same number of loops as G has, and
– Z ≤ X for some Z ∈ M (G̃) (M (G̃) is definable by Lemma 2.33).

Theorem 2.38 For all G ∈ D , the set {G,GT } is definable.

Proof We can still suppose G has more than one weakly independent components for the
same reason as above. Let us consider a digraph H ∈ O(G) again. By Lemma 2.36 the set
H̃ is definable. We can define H̃ ′ just as in the proof of Lemma 3.37. Let GL denote the
digraph that consists of those weakly connected components of G that contain a loop. By
Lemma 2.37 the set G̃L is definable. G̃ is the set of those digraphs X such that:

– X has the same number of vertices and is on the same level as G,
– X ≤ Z for some Z ∈ H̃ ′,
– Z ≤ X for some Z ∈ M (G̃), and
– Z ≤ X for some Z ∈ G̃L.

3 The Automorphism Group of (D,≤)

So far we know two automorphisms of (D,≤), namely the trivial one and G �→ GT . In this
section we prove that there is no other, meaning that the automorphism group of (D,≤) is
isomorphic to Z2.

Lemma 3.1 GT ≤ G ∪̇ On implies G = GT for every finite digraph G and integer 2 ≤ n.

Proof Our first easy observation is that X ≤ On implies X = XT . Let us denote the weakly
connected components of G by {Ga}a∈A. Let A = B ∪̇ C such that b ∈ B if and only if
Gb is embeddable into On. Now let us suppose that GT ≤ G ∪̇ On. With the notation just
introduced

(
⋃̇

a∈A
Ga

)T

≤
(

⋃̇

a∈A
Ga

)

∪̇ On

⋃̇

a∈A
GT

a ≤
(

⋃̇

a∈A
Ga

)

∪̇ On

(
⋃̇

b∈B
GT

b

)

∪̇
(

⋃̇

c∈C
GT

c

)

≤
(

⋃̇

b∈B
Gb

)

∪̇
(

⋃̇

c∈C
Gc

)

∪̇ On

which obviously implies

⋃̇

c∈C
GT

c ≤
(

⋃̇

c∈C
Gc

)

∪̇
(

⋃̇

b∈B
Gb

)

∪̇ On

︸ ︷︷ ︸
=:X

. (2)

If there exists a c ∈ C for which GT
c ≤ X, then GT

c ≤ On, for X consists of weakly
connected components embeddable into On. Then, according to our first observation, GT

c =
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Gc which means Gc ≤ On, a contradiction. This means there is no c ∈ C for which
GT

c ≤ X so from Eq. 2 we deduce
⋃̇

c∈C
GT

c ≤
⋃̇

c∈C
Gc, and

(
⋃̇

c∈C
Gc

)T

≤
⋃̇

c∈C
Gc.

By transposing both sides the direction of the embeddability stays the same obviously, but
we get the converse, implying

(
⋃̇

c∈C
Gc

)T

=
⋃̇

c∈C
Gc.

Using our first observation once more, we obtain
(

⋃̇

b∈B
Gb

)T

=
⋃̇

b∈B
GT

b =
⋃̇

b∈B
Gb.

Finally, putting together what we have we get

G =
⋃̇

a∈A
Ga =

(
⋃̇

b∈B
Gb

)

∪̇
(

⋃̇

c∈C
Gc

)

=
(

⋃̇

b∈B
Gb

)T

∪̇
(

⋃̇

c∈C
Gc

)T

= GT .

Definition 3.2 Let us call Xn (see Fig. 13) the digraph with

V (Xn) = {v, v1, v2, . . . , vn}, E(Xn) = {(v1, v), (v2, v), . . . , (vn, v)}.

Theorem 3.3 The poset (D,≤) has exactly two automorphisms, namely the trivial and the
one that maps every digraph to its transpose. Consequently, the automorphism group of
(D,≤) is isomorphic to Z2.

Fig. 13 The digraph X4
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Proof It is easily seen that an automorphism can only move the elements of D inside defin-
able sets, therefore from Theorem 2.38 it follows that it either does not move an element or
maps it to its transpose. Let us consider an automorphism ϕ : D �→ D for which there exists
G ∈ D such that G �= GT and ϕ(G) = G. We must show that ϕ is the identity function.
This can be done by showing that adding G to the language of partially ordered sets as a
constant results in every element of D becoming definable. So let us add G to the language
of partially ordered sets as a constant and pick an arbitrary F ∈ D that is not isomorphic to
its transpose (those digraphs that are isomorphic to their transposes are definable by Theo-
rem 2.38). Our goal will be to show that F is definable.
Let V (G) = {v1, v2, . . . , vn}. Lemma 3.1 lets us define G ∪̇ On+1 as the unique element
from the definable set

{G ∪̇ On+1, (G ∪̇ On+1)
T = GT ∪̇ On+1}

that G is embeddable into. Let us use the notation

V (G ∪̇ On+1) = V (G) ∪ {v′1, v′2, . . . , v′n+1}.

We create a digraph G′ (see Fig. 14) by adding edges to G ∪̇ On+1 as follows:

E(G′) = E(G ∪̇ On+1) ∪ {(v′1, v1), (v
′
2, v1), (v

′
3, v1), . . . , (v

′
n+1, v1)}. (3)

Now G′ is definable as the unique element of the set {G′, (G′)T } into which G ∪̇ On+1

is embeddable. Xn+1 is the unique element from the set {Xn+1, (Xn+1)
T } that is embed-

dable into G′ so it is definable too. A is the unique element from the set {A,AT } that is
embeddable into Xn+1. So far we have proven that A is definable.

Now we do the same as above, but backwards. Let m be the number of vertices of F .
Xm+1 is the unique element in the set {Xm+1, (Xm+1)

T } that A is embeddable into. Let
F ′ be created from F analogously to how G′ was created from G in Eq. 3 (see Fig. 14).
Now F ′ is the only element from the set {F ′, (F ′)T } that Xm+1 is embeddable into. Next,
F ∪̇ Om+1 is the only element from the definable set

{F ∪̇ Om+1, (F ∪̇ Om+1)
T = FT ∪̇ Om+1}

that is embeddable into F ′. Finally, by Lemma 3.1, F is definable as the only element from
the set {F,FT } that is embeddable into F ∪̇ Om+1.

O3 O3

Fig. 14 The digraph O3 and a corresponding O ′
3
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