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Abstract A Condorcet domain is a subset of the set of linear orders on a finite set
of candidates (alternatives to vote), such that if voters preferences are linear orders
belonging to this subset, then the simple majority rule does not yield cycles. It is well-
known that the set of linear orders is the Bruhat lattice. We prove that a maximal
Condorcet domain is a distributive sublattice in the Bruhat lattice. An explicit lattice
formula for the simple majority rule is given. We introduce the notion of a symmetric
Condorcet domain and characterize symmetric Condorcet domains of maximal size.

Keywords Weak Bruhat order · Distributive lattice · Binary plane tree ·
Simple majority rule

1 Introduction

A Condorcet domain is a set of linear orders on a finite set of candidates (alternatives
to vote), such that if voters preferences are linear orders belonging to this set, then
the simple majority rule does not yield cycles. We use the abbreviation CD for a
Condorcet domain. A CD is maximal if it is not possible to add a linear order outside
of the CD such that the expanded set is a CD.

In this paper we study normal CDs on the set [n] = {1, ..., n}. A CD is normal if
it contains the natural linear order α = (1 < 2 < ... < n) and the opposite to it, the
‘anti-natural’ linear order ω = (n < n − 1 < ... < 1).
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The first interesting example of a normal CD was constructed by Black [3].
Namely he showed that the set of single-peaked linear orders forms a normal CD. For
other examples of CDs see [1, 4, 9]; Monjardet [11] gives a state of art of the theory.
In [7] and then in [1, 4, 6], a connection between normal CDs and the lattice structure
on the set LO, so-called the Bruhat lattice, was revealed. Specifically, Chameni–
Nembua in [4] shows that if a CD is a sublattice of the Bruhat lattice then it is a
distributive sublattice.

In Theorem 1 we prove that any maximal normal CD is a sublattice of the Bruhat
lattice. Next, we provide in Theorem 2 an explicit lattice polynomial formula for the
simple majority rule when preferences of voters belong to a normal CD. In particular,
this formula shows that the aggregated (due to the majority rule) linear order belongs
to the sublattice generated by the preferences of voters. Hence, if preferences of
all voters belong to a maximal normal Condorcet domain D then the majority rule
ordering belongs to D as well.

We apply these results to study symmetric CDs. A CD is symmetric if it contains
with any linear order the opposite linear order as well. We show that any symmetric
CD on [n] has at most 2n−1 elements. We obtain in Theorem 3 a complete description
of symmetric CDs of maximal size 2n−1. Describing the structure of maximal symmet-
ric CDs of smaller size is an open problem. We show that, for every 2 ≤ m < n, there
exists a maximal symmetric CD of size 2m.

In Section 2 we recall the notion of weak Bruhat order on the set LOn of
linear orders on [n]. In Section 3 we define a key notion of compatibility of linear
orders, for the first time considered by Chameni–Nembua in [4]. We prove that
any maximal clique (a maximal collection of pairwise compatible linear orders) is
a distributive sublattice of the Bruhat lattice. In Section 4 an explicit lattice formula
for the simple majority rule is given. As a consequence we obtain that a maximal
normal CD is a distributive lattice. We also get a bijection between normal CDs and
cliques established in [4]. Section 5 is devoted to general facts on symmetric CDs. A
classification of maximal size symmetric CDs in term of plane binary trees is given in
Section 6. In the last section we construct maximal symmetric CDs of size 4 for every
n ≥ 3.

2 Bruhat Lattice

Fix a natural number n and denote by [n] the set {1, ..., n}. A (strict) linear order on
[n] is a complete irreflexive transitive binary relation < on [n]. One can identify a
linear order x1 < x2 < ... < xn with the word x1x2...xn of n different symbols from
[n]. We denote by LOn or LO the set of linear orders on [n]. Elements of LO will
be denoted by Greek letters like σ , τ and so on; we use also the notation <σ . For a
linear order σ we denote by σ ◦ the opposite linear order, that is x <σ y if and only
if y <σ ◦ x. The set [n] possesses two distinguished linear orders: the natural linear
order 1 < 2 < ... < n, denoted as α, and the opposite to α, denoted as ω.

Let � = �n = {(i, j), 1 ≤ i < j ≤ n}. A pair (i, j) from � is called an inversion of
a linear order σ if j <σ i, that is if σ inverses the natural relation i < j. The set of
all inversions of σ is denoted Inv(σ ); it is a subset of �. For example, Inv(α) is the
empty subset, whereas Inv(ω) is the whole �. In general, Inv(σ ◦) = � − Inv(σ ).

The mapping Inv embeds the set LO into the set of subsets of �. To describe the
image of this mapping we need some notions.
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Definition 1 A subset S of � is transitive if (i, j) ∈ S and ( j, k) ∈ S implies (i, k) ∈
S. A set S ⊂ � is co-transitive if (i, k) ∈ S and i < j < k implies either (i, j) ∈ S or
( j, k) ∈ S (or both).

Note that the union of co-transitive sets is co-transitive, and the intersection of
transitive sets is transitive.

Lemma 1 [13] For a subset S of � the following assertions are equivalent:

(i) S is transitive and co-transitive (for short, TcoT);
(ii) S = Inv(σ ) for some linear order σ .

The implication (ii) ⇒ (i) is obvious. The inverse implication is proved by an explicit
construction of the corresponding linear order σ . Namely, we set i <σ j if either i < j
and (i, j) /∈ S or j < i and ( j, i) ∈ S. We leave to the reader to prove that σ is a linear
order.

Thus, the set LO of linear orders on [n] can be identified with the set of TcoT-
subsets in �. Because of this, one can compare linear orders via the inclusion of their
inversion sets.

Definition 2 For linear orders σ and τ , we write σ � τ if Inv(σ ) ⊆ Inv(τ). The
relation � is called the weak Bruhat order.

The linear order α is the minimal element of the Bruhat poset (LO,�) whereas ω

is the maximal one. The poset (LO,�) is a lattice indeed, see, for example [2, 8, 13].
It is convenient to use here the following lemma which remained unproved in [13].

Lemma 2 Let S be a co-transitive subset in �. Then the transitive closure of S is co-
transitive as well.

Proof Let R be the transitive closure of S. By definition, a pair (i, i′) belongs to R if
there exists a chain i = i0 < i1 < · · · < ip = i′ such that every neighbor pair (is, is+1)

belongs to S.
Suppose now that (i, k) ∈ R and i < j < k. We have to prove that either (i, j) ∈ R

or ( j, k) ∈ R.
Let i0, . . . , ip be a chain as above which connects i and k. If j is one of the nodes

of this chain then (i, j) and ( j, k) belong to R. If not then j lies inside some link
of the chain, is < j < is+1. The pair (is, is+1) belongs to S. Due to the co-transitivity
of S, we have either (is, j) ∈ S or ( j, is+1) ∈ S. In the first case we obtain the chain
i = i0 < · · · < js < j connecting i with j and giving (i, j) ∈ R. In the second case we
have a chain from j to k and ( j, k) ∈ R. ��

For linear orders σ and τ , denote S = Inv(σ ) and T = Inv(τ). Let R be the
transitive closure of S ∪ T. Since S ∪ T is co-transitive, the set R is transitive and
co-transitive due to Lemma 2. Therefore R is the inversion set for some linear order
ρ. Obviously, σ � ρ and τ � ρ. Now, suppose that ρ ′ is a linear order such that
σ, τ � ρ ′. Let R′ = Inv(ρ ′). Due to σ � ρ ′ we have S ⊆ R′; similarly T ⊆ R′, hence
S ∪ T ⊆ R′. Since R′ is a transitive set, R′ contains the transitive closure of S ∪ T
whence ρ � ρ ′.
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Fig. 1 The Bruhat lattice LO4
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This proves the existence of the join σ ∨ τ in the poset (LO,�). The existence of
the meet follows by the formula σ ∧ τ = (σ ◦ ∨ τ ◦)◦.

Thus, the poset (LO,�) is a lattice called the Bruhat lattice (Fig. 1). The operation
σ �→ σ ◦ is an ortho-complementation of the lattice, that is an antitone involution such
that σ ∨ σ ◦ = ω for every σ .

3 Chameni–Nembua Relation

In general case, the set Inv(σ ∨ τ) is strictly larger than Inv(σ ) ∪ Inv(τ). Similarly
the set Inv(σ ∧ τ) can be strictly smaller than Inv(σ ) ∩ Inv(τ).

Example 1 Let n = 3, σ = 213, τ = 132. The linear order σ has one inversion (1, 2),
τ also has one inversion (2, 3). However the set {(1, 2), (2, 3)} is not transitive since
it does not contain the pair (1, 3). If we add this pair, we obtain σ ∨ τ = ω. Similarly,
Inv(σ ◦) ∩ Inv(τ ◦) consists of the single pair (1, 3) and is not co-transitive.

Nevertheless, sometimes the set Inv(σ ) ∪ Inv(τ) is transitive. In such a case we
denote by σ ∪ τ the join σ ∨ τ . Similarly, in the case of co-transitivity of the set
Inv(σ ) ∩ Inv(τ), we denote by σ ∩ τ the meet σ ∧ τ . The following notion was
introduced by Chameni–Nembua [4].

Definition 3 Linear orders σ and τ are compatible if the set Inv(σ ) ∪ Inv(τ) is
transitive and the set Inv(σ ) ∩ Inv(τ) is co-transitive. The same terminology is
applied to TcoT-sets as well.

For instance, σ and τ are compatible if σ � τ . In particular, α and ω are com-
patible with any linear order. For any σ , the linear orders σ and σ ◦ are compatible.
Linear orders σ and τ are compatible if and only if σ ◦ and τ ◦ are compatible.
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Lemma 3 Let three linear orders ρ, σ , and τ be pairwise compatible. Then ρ is
compatible with σ ∪ τ and σ ∩ τ and ρ ∩ (σ ∪ τ) = (ρ ∩ σ) ∪ (ρ ∩ τ).

Proof We prove the compatibility of ρ and σ ∪ τ ; the compatibility ρ and σ ∩ τ is
proved similarly. Let R, S, and T be the inversion sets for ρ, σ and τ . We have to
check that the sets R ∪ (S ∪ T) and R ∩ (S ∪ T) are transitive and co-transitive.

The co-transitivity of R ∪ S ∪ T is obvious. The transitivity follows from a simple
observation. If two pairs (i, j) and ( j, k) belong to R ∪ S ∪ T then together they
belong to at most two of the sets R, S or T, for instance, to R and T. But the union
of R and T is transitive, hence (i, k) ∈ R ∪ T ⊆ R ∪ S ∪ T.

The transitivity of the intersection R ∩ (S ∪ T) follows from transitivity of R and
S ∪ T. The set R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T) is co-transitive as the union of two
co-transitive sets R ∩ S and R ∩ T. ��

A clique is a subset in LO which consists of pairwise compatible linear orders.
Because of Lemma 3, one can expand any clique by adding joins and meets of

elements of the clique. In particular, if a clique is maximal (by inclusion) then it is a
sublattice, moreover, a distributive lattice (since it is implemented by means of the
intersection and union operations). This proves the following

Theorem 1 Let C be a maximal clique. Then C is a distributive sublattice of the Bruhat
lattice (LO,�).

Example 2 Let us list all maximal cliques in the case n = 3. It was shown in Example
1 that there are two pairs of non-compatible linear orders: 213 and 132, and 231
and 312. All other pairs are compatible. Therefore a maximal clique must contain
exactly one element from the first pair and one from the second pair. We obtain four
maximal cliques:

1) 123, 132, 312, and 321. The alternative 2 is never the worst. This is the peak
domain D3(∩).

2) 123, 213, 231, and 321. Here 2 is never the best; it is the pit domain D3(∪).
3) 123, 213, 312, and 321. Here 1 and 2 appear a tight group separated from the

alternative 3. We denote this domain as D(→).
4) 123, 132, 231, and 321. Here 1 is separated from 2 and 3, this is the domain D(←).

For what follows, it is useful to establish properties of the compatibility relation
under restrictions to subsets.

Let ϕ : [m] → [n] be a strictly increasing (hence, injective) mapping. Then the
restriction mapping

ϕ∗ : LOn → LOm

is monotone with respect to weak Bruhat orders. Indeed, if σ is a linear or-
der on [n] then Inv(ϕ∗(σ )) = ϕ∗(Inv(σ )). Further, ϕ∗ commutes with the ortho-
complementations. Moreover, ϕ∗ sends αn in αm and ωn in ωm. However, in general,
ϕ∗ does not commute with joins and meets.
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Example 3 Let σ = 213, τ = 132; then σ ∨ τ = 321. Under the restriction to the
subset {1, 3}, σ is sent into 13, τ is sent into 13, and their join 13 differs from the
restriction of 321 to {1, 3} which is equal to 31. Similarly for the meet of 231 and 312.

However, there are at least two cases when the restriction ϕ∗ commutes with ∨
and ∧. The first case is when ϕ is the natural inclusion of [n − 1] into [n]. The second
case is when σ and τ are compatible.

Proposition 1 Let σ and τ be compatible linear orders on [n]. Then, for any strictly
increasing mapping ϕ : [m] → [n], the linear orders ϕ∗(σ ) and ϕ∗(τ ) are compatible.
Moreover, ϕ∗(σ ∪ τ) = ϕ∗(σ ) ∪ ϕ∗(τ ) and ϕ∗(σ ∩ τ) = ϕ∗(σ ) ∩ ϕ∗(τ ).

Proposition 1 follows from a simple remark: if S ⊆ �n is a transitive (or co-transitive)
set then ϕ∗(S) is a transitive (respectively, co-transitive) set in �m.

The reverse to this remark is partly true. Namely, if the intersection of a set S ⊂ �n

with every triple {i, j, k} is transitive (co-transitive) then S is transitive (co-transitive).
In particular, linear orders σ and τ are compatible if the restriction of σ and τ to
every triple are compatible.

4 Cliques and Condorcet Domains

Recall that a Condorcet domain (CD) is a subset D ⊆ LOn such that the simple
majority rule does not yield cycles. Let us say this more precisely. A D-opinion is a
mapping ν : D → N = {0, 1, 2, ...}. Intuitively, this means that ν(σ ) voters have the
preference σ on the set [n] of alternatives. The number |ν| = ∑

σ∈D ν(σ ) is equal to
total number of voters. Let sm(ν) denote the binary relation (the ‘social preference’)
on [n] defined by the simple majority rule:

i sm(ν) j if and only if the number of voters which prefer i to j
is strictly larger than the number of voters having opposite preference.

If (obviously, asymmetric) relation sm(ν) is acyclic for every D-opinion ν, the set D
is called a Condorcet domain (or an acyclic set of linear orders).

It is well known (see, for example, [11]) that in this definition one can consider
only D-opinions with odd number of voters. In this case the relation sm(ν) is
complete (and is a linear order provided that D is a CD). Below we give an explicit
lattice polynomial expression for this linear order.

Let C be a set of linear orders and ν be a C-opinion. We say that a subset A ⊆ C is
ν-admissible if ν(A) := ∑

σ∈A ν(σ ) > |ν|/2.

Theorem 2 Let C be a clique and let |ν| be odd. Then

sm(ν) =
∨

A

(
∧

σ∈A

σ

)

, (1)

where A runs over ν-admissible subsets of C.

Proof It suffices to check that the left and the right hand sides of Eq. 1 coincide
under the restriction to arbitrary two-element subsets in [n]. Let ϕ : [2] → [n] be
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a strictly increasing mapping. By definition, ϕ∗(sm(ν)) = sm(ϕ∗(ν)) (where ϕ∗(ν)

is the corresponding recalculated opinion). Due to Proposition 1, ϕ∗(∨A(∧A)) =
∨A(∧ϕ∗(A)). Thus, we have to check the equality 1 in the case n = 2. In this case
there are only two linear orders: α = 12 and ω = 21. And an opinion ν is given by two
numbers: ν(α) and ν(ω), |ν| = ν(α) + ν(ω). Exactly one of these numbers is larger
than |ν|/2.

Suppose that ν(α) > |ν|/2. Then sm(ν) = α. On the other hand, any ν-admissible
set A contains α, so that ∧A = α and the join of all ∧A is equal to α as well.

Suppose now that ν(ω) > |ν|/2. Then sm(ν) = ω. In this case the set A0 = {ω} is
admissible, and ∧A0 = ω. Hence the join (over all admissible A) is equal to ω as
well. ��

Remark 1 For an arbitrary opinion ν : LO → N (with odd |ν|), the right hand side
of the formula 1 defines an aggregation rule with values in LO. This rule is a simple
majority rule if the set ν−1(N \ {0}) is a clique.

Corollary Let C be a maximal clique. Then, for every C-opinion ν with odd |ν|, the
social preference sm(ν) belongs to C.

Indeed, due to Theorem 1, C is a sublattice of the Bruhat lattice. Therefore the
right hand side of the above formula belongs to C.

Remark 2 The simple majority rule is an anonymous rule in the case of aggregation
of binary relations. For a so-called majority system F (see [10]), one can define more
general aggregation rule aF : aF (R1, ..., RN) = ∪A∈F (∩i∈A Ri). This rule has a form
resembling the right hand side of Eq. 1. The same reasons as above show that if
preferences Ri, i = 1, . . . , N, are linear orders and belong to a maximal clique C then,
for the aggregated preference aF ((Ri)), there hold: i) it is a linear order, and ii) it
belongs to C. The assertion i) was proved in [10].

Recall that a subset D ⊂ LO is normal if it contains α and ω. It follows from
Theorems 2 that any maximal clique is a normal CD. Thus we get a half of the proof
of the following proposition from [4].

Proposition 2 Let C be a subset of LO containing α and ω. Then C is a CD if and only
if C is a clique.

Proof It remains to show that a normal CD is a clique. It is well-known (see, for
example, [11]) that D is a CD if and only if the restrictions of D to every triple ijk (i <

j < k) get into one of the domains D3(∩), D3(∪), D3(→) or D3(←) from Example 2.
Because of the remark at the end of Section 3, the proposition follows. ��

If a CD does not contain α and ω, then it might be not a clique, see Example 4.
From Proposition 2 and Theorem 1 we obtain the following strengthening of a result
of [1].

Corollary Let D be a maximal normal Condorcet domain. Then it is a distributive
sublattice of the Bruhat lattice.
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We say that a Condorcet domain D is normalizable if there exists a pair of opposite
linear orders σ and σ ◦ such that the set D ∪ {σ, σ ◦} is a CD as well. For normalizable
CD all above results are valid for the reordered set {σ(1), . . . , σ (n)}. Thus, without
loss of generality, one can assume that σ = α and consider normal CDs.

The class of normalizable Condorcet domains does not exhaust all Condorcet
domains. Namely, the following example shows the existence of a non-normalizable
CD.

Example 4 Let the domain D in LO4 consists of four linear orders α = 1234, β =
2314, γ = 2413 δ = 2143. One can directly check that D is a CD. We assert that
this domain is not normalizable. In other words, for any pair σ , σ ◦ of opposite linear
orders, the domain D ∪ {σ , σ ◦} is not a CD.

For the proof we consider the restriction to the subset {1, 3, 4}, that is we delete
the alternative 2. We obtain four orders 134, 314, 413 and 143. These orders form
a maximal CD on the set {1, 3, 4}. From this observation, one can see that, after
deleting 2, the pair σ, σ ◦ has to be the pair 314, 413. Wlog we assume that the
restriction of σ is 314. Thus, we have to examine four possibility for σ : 2314, 3214,
3124 and 3142.

1) σ = 2314 or 3214. Delete the alternative 3 (and denote the restriction by ′). Then
σ ′◦ = 412, α′ = 124, δ′ = 241 form a cyclic triple. Therefore D ∪ {σ ◦} is not a CD.

2) σ = 3124 or 3142. Deleting the alternative 4 we obtain the following cyclic triple
σ ′ = 312, α′ = 123, β ′ = 231. Therefore D ∪ {σ } is not a CD.

5 Symmetric Condorcet Domains

A large class of the so-called tiling type (or peak-pit) CDs was considered in [5] (see
also [1, 6, 9]). A tiling type CD is a normal CD and it does not contains other pairs of
opposite linear orders, except α and ω. Here we present a kind of a complementary
class of normal CDs (Fig. 2).

Definition 4 A Condorcet domain D is called symmetric if, for every linear order
σ ∈ D, the opposite linear order σ ◦ belongs to the domain D as well.

Fig. 2 Black circles depict three CDs in the lattice LO4 (see Fig. 1). On the left is a tiling CD, in the
middle is the symmetric CD ((1 ∗ 2) ∗ 3) ∗ 4 from Section 6, on the right is the maximal CD of size 4
from Section 7
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In other words, D◦ = D. Domains D3(→) and D3(←) are examples of symmetric
CDs. Of course, a symmetric CD is normalizable. In what follows it is convenient to
consider normal symmetric CDs. We do not loss generality under this assumption.

Suppose that D is a normal symmetric CD, that is a symmetric clique (by virtue
of Proposition 2). If a linear order σ is compatible with every elements of D then its
opposite order σ ◦ is also compatible with every element of D (and with σ ). Therefore
any symmetric CD can be extended to a maximal and symmetric CD.

How to construct symmetric CDs? Suppose we have a partition � = S1
∐

...
∐

St

(
∐

denotes disjoint union). Denote by B(S1, ..., St) the Boolean algebra of subsets
of � generated by S1, ..., St. It consists of S(I) = ∪i∈I Si, where I runs over subsets
of [t].

Lemma 4 In these notations suppose that the sets Si, i = 1, ..., t, are co-transitive. Then
any element S(I) of the Boolean algebra B(S1, ..., St) is a TcoT-set.

Indeed, any set S(I) is co-transitive as the union of co-transitive sets Si and is
transitive as the complement (in �) to the co-transitive set S([t] − I).

In particular, the Boolean algebra B(S1, ..., St) consists of pairwise compatible sets
and, due to Proposition 2, defines a CD, which is denoted by the same symbol. Since
B(S1, ..., St) is stable with respect to ◦, this CD is symmetric. It can be non-maximal
if there exists a finer partition. But any maximal symmetric CD D has such a form.
Indeed, due to Theorem 1 and Proposition 2, D is a distributive sublattice of the
Bruhat lattice. By virtue of symmetry, D is ortho-complemented. Therefore D is a
Boolean lattice. Let σ1, ..., σt be atoms of the Boolean lattice, and Si = Inv(σi), i =
1, ..., t, be the corresponding inversion sets. Obviously, the Si’s do not intersect and
moreover they cover �.

Proposition 3 The size of a symmetric CD does not exceed 2n−1.

Proof We can assume that the symmetric CD D is maximal. Therefore it has the
form B(S1, ..., St) for some partition of � by TcoT-sets, and its size is equal to 2t. It
remains to remark that every (non-empty) co-transitive set S ⊆ � contains a ‘short
arrow’, that is a pair of the form (i, i + 1). Therefore every set Sr contains a ‘short
arrow’. Since there are n − 1 ‘short arrows’, we conclude that t ≤ n − 1. ��

6 Structure of Symmetric Condorcet Domains of Maximal Size

From Proposition 3, we know that the size of a symmetric CD is less or equal to
2n−1. Therefore any symmetric CD of size 2n−1 is maximal. Here we give a complete
description of such CDs. This description uses the following simple construction (a
particular case of the more general block construction from [9]).

Let 1 < m < n, and suppose we have two normal CDs, D on the set [m] and D′
on the set [m′] = [n − m]. Denote by D ∗ D′ the set of linear orders on [n] of the
form σσ ′ or σ ′σ , where σ ∈ D, σ ′ ∈ D′. Here we consider σ and σ ′ as words in the
alphabet 1, . . . , m and m + 1, . . . , n respectively. We regard the set [m′] as the set of
the last n − m symbols in [n].
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Lemma 5 D ∗ D′ is a normal CD on [n].

Intuitively, it is quite clear. Suppose we have a D ∗ D′-opinion. At first we decide
whether to put the first m alternatives above or below the last m′ alternatives. Then
we rank the first m alternatives (because D is a CD) and similarly for the last m′
alternatives (because D′ is a CD).

One can argue more formally using Proposition 2. We have to check that every
two linear orders from D ∗ D′ are compatible. Here four cases are possible. For
instance, σσ ′ and ττ ′, or σσ ′ and τ ′τ . In any case, it is useful to consider the inversion
sets for σσ ′ and σ ′σ . Let S = Inv(σ ), S′ = Inv(σ ′). Then Inv(σσ ′) = S ∪ S′ whereas
Inv(σ ′σ) = S ∪ S′ ∪ P, where P = {(i, j), i ≤ m, j ≥ m + 1}. Consider, for example,
the join of σσ ′ and τ ′τ (setting T = Inv(τ) and T ′ = Inv(τ ′)). Let us prove that
(S ∪ S′) ∪ (T ∪ T ′ ∪ P) is transitive (the co-transitivity is obvious). The set S ∪ T is
transitive due to compatibility of σ and τ ; S′ ∪ T ′ is transitive due to compatibility
of σ ′ and τ ′. The union of these transitive sets is transitive because, for any pair of
arrows from S and T, the end of the arrow from S cannot be the origin of the arrow
from T, and vice versa. Adding P does not violate the transitivity. Similarly with the
other cases.

Lemma 6 Let D and D′ be symmetric CDs. Then D ∗ D′ is a symmetric CD.

This follows from (σσ ′)◦ = σ ′◦σ ◦.

Proposition 4 Let D and D′ be maximal normal CDs. Then D ∗ D′ is a maximal
normal CD.

Proof Suppose that a linear order ρ is compatible with all elements from D ∗ D′.
Then it is compatible with the linear order ωmωm′ whose inversion set is equal to
�m ∪ �m′ . In particular, Inv(ρ) ∪ (�m ∪ �m′) must be transitive. Further, due to
compatibility of ρ and αm′αm, the intersection Inv(ρ) ∩ P must be co-transitive. We
assert that it is possible only in two cases: either Inv(ρ) contains P or Inv(ρ) does
not intersect P.

Namely, suppose that R = Inv(ρ) contains a pair of the form (i, j), where i ≤ m,
j ≥ m + 1. Since the set R ∩ P is co-transitive, it contains the short arrow (m, m + 1).
The set �m contains any arrow (i, m) (i ≤ m), the set �m′ contains any arrow (m +
1, j) ( j ≥ m + 1). Due to the transitivity, R ∪ �m ∪ �m′ contains all arrow of the form
(i, j), that is R ⊃ P.

Thus, either P does not intersect R or P ⊆ R. In the first case ρ has the form
ττ ′, where τ is a linear order on [m] and τ ′ is a linear order on [m′]. In the second
case ρ has the form τ ′τ . Since τ is compatible with every element of D, τ ∈ D due to
maximality of D. Similarly τ ′ ∈ D′. ��

Let us consider a particular case of the construction when m = n − 1. In this
case we take D′ as the set of linear orders on the singleton {n}. This set contains
a single element denoted by n (we hope that this misuse of language does not yield
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a confusion). In this case the set D ∗ D′ = D ∗ n consists of linear orders of the form
σn or nσ , where σ ∈ D. If D is a symmetric (respectively, maximal) CD on [n − 1]
then D ∗ n is a symmetric (respectively, maximal) CD on [n] and doubles the size
of D.

This construction can be iterated. In particular, one can define by induction a CD
for any binary parenthesization of the expression 1 ∗ 2 ∗ ... ∗ n. For instance, (1 ∗ (2 ∗
3)) ∗ (4 ∗ 5) is one of 14 possible parenthesizations of the set [5]. Here the symbol i
is considered as a unique linear order on the set {i}. (It is well-known that the set of
parenthesizations is bijective to the set of plane binary tree with n leaves. Exercise
6.19 in Stanley’s book [12] contains yet 64 interpretations of parenthesizations.)

Example 5 Obviously, 1 ∗ 2 = LO2. The domain (1 ∗ 2) ∗ 3 is exactly the Condorcet
domain on the set [3], in which the alternative 3 is never middle, that is the domain
D3(→) from Example 2. Similarly 1 ∗ (2 ∗ 3) is the domain D3(←).

Example 6 Let us consider in detail the case (...((1 ∗ 2) ∗ 3)...) ∗ n. Linear orders
from this domain are characterized by the following property: every alternative i
either is better than any element from the set [i − 1] or is worse than any element
from it. N.S.Kukushkin proposed the following interpretation of such linear orders.
Let us consider alternatives as ‘reform projects’, increasingly ordered by their degree
of ‘radicalism’. Then every project is perceived either better than all of the project
that preceded it, or worse than all of them. This domain is somewhat similar to the
Black’s domain of single-peaked preferences. As for the single-peaked domain, there
is a simple inductive procedure for aggregation of these preferences. At first, we
compare the alternatives n and n − 1. If n wins in the comparison, it becomes the
best in the group sense. In the opposite case it is worst. Next we compare n − 1 and
n − 2, and so on.

Similarly one can aggregate the preferences for any CD, produced by a parenthe-
sization of 1 ∗ 2 ∗ ... ∗ n.

Let P be a binary parenthesization of 1 ∗ 2 ∗ ... ∗ n, and D(P) be the correspond-
ing CD. Then D(P) is a symmetric CD of size 2n−1, hence is a maximal CD. We assert
that the converse is also true.

Theorem 3 Let D be a symmetric Condorcet domain of size 2n−1. Then it has the form
D(P) for some parenthesization P of 1 ∗ 2 ∗ ... ∗ n.

We need the following

Lemma 7 Let P be a co-transitive set in �, which contains the ‘long arrow’ (1, n) and
a unique short arrow (m, m + 1). Then P = {(i, j), i ≤ m < j}.

Proof First of all, P ⊆ {(i, j), i ≤ m < j}. Indeed, if P contains an arrow (i, j) with
i, j ≤ m then it contains a short arrow of the same form. This contradicts the
uniqueness of the short arrow (m, m + 1). Similarly for i, j > m.
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On the other hand, every arrow (i, j) with i ≤ m, j ≥ m + 1 belongs to P. In-
deed, applying the definition of co-transitivity to the arrow (1, n) and the symbol
i, we obtain that either (1, i) ∈ P or (i, n) ∈ P. The first case is impossible, since
P ⊆ {(i, j), i ≤ m < j}. Therefore (i, n) ∈ P. Applying again the definition of co-
transitivity to the arrow (i, n) and he symbol j, we obtain (i, j) ∈ P. ��

Proof of Theorem 3 It follows from Section 5 that D is defined by a partition
� = S1

∐
...

∐
Sn−1 consisting of n − 1 TcoT-sets S1, ..., Sn−1. One of them (say,

S1) contains the long arrow (1, n). Moreover, S1 (as well as all other Sr) contains
a unique short arrow (m, m + 1). Due to Lemma 7, S1 = {(i, j), i ≤ m < j}. This
gives us the first decomposition of [n] on two sub-intervals: [m] and [m + 1..n], and
this corresponds to parenthesization (1...m)(m + 1...n). Now we repeat the previous
arguments to the interval [m] and decompose it into two sub-intervals. Similarly
for the interval [m + 1..n], and so on. This process leads us to a parenthesization
of 1 ∗ 2 ∗ ... ∗ n and completes the proof. ��

7 One More Example

Here we show that (for any n ≥ 3) there exists a maximal symmetric CD Qn ⊆ LOn

of size 4. It consists of four linear orders α, ω, σ and σ ◦, where σ has the form
24...(2k)1(2k ± 1)...53 (here 2k ± 1 is equal to 2k + 1 = n, if n is odd, and 2k − 1 =
n − 1 if n is even). In other words, at first even symbols go in increasing order,
further the symbol 1 stays, and then odd symbols (up to 3) go in decreasing order.
For example, σ = 2461753 for n = 7, whereas σ = 24681753 for n = 8. The opposite
order σ ◦ is arranged similarly: at first odd symbols (beginning with 3) go, further 1,
and next even symbols go in decreasing order.

Proposition 5 The domain Qn = {α, σ, σ ◦, ω} is a maximal Condorcet domain.

Proof Let S = Inv(σ ); this set is depicted by black circles in the Fig. 3.
Suppose that the domain Qn is not maximal. Then there exists a TcoT-set T

(corresponding to a linear order which can be added to Qn) which is compatible
with S and � − S (and differs from them). Passing to T ∩ S or to T ∩ (� − S), we can

Fig. 3 The picture is slightly
different for even and odd n.
Here n = 8
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suppose that T is contained in S or in � − S. We consider in detail the case when the
nonempty TcoT-set T is contained in � − S and T ∪ S is transitive (the other case is
considered similarly); we have to show that T coincides with � − S.

We will argue by induction. The induction base, n = 3, is obviously true. Therefore
we assume n ≥ 4. We will denote the reduction of the symbol n (or restriction on
[n − 1]) by a prime. By induction the domain D′ = {α′, ω′, σ ′, (σ ′)◦} is maximal.

We claim that T ′ is non-empty as well. Indeed, if T ′ is empty then T consists only
of arrows of the form (i, n). Moreover, T is co-transitive and, hence, contains the
short arrow (n − 1, n). Since T ⊆ � − S, this is possible only at odd n. (In this case i
has to be an even symbol or the symbol 1.) Further, (1, n − 1) ∈ S; due to transitivity
of T ∪ S we obtain that (1, n) ∈ T ∪ S. Since (1, n) /∈ S, we have (1, n) ∈ T. Since T
is co-transitive, we obtain (3, n) ∈ T, in contradiction with (3, n) ∈ S.

Thus, T ′ is non-empty. By the inductive assumption T ′ coincides with �′ − S.
Therefore T ∪ S contains whole �′ = �n−1. In other words, every arrow (i, j) belongs
to T ∪ S provided that j �= n. Moreover, the set T ∪ S is transitive. Recall we should
show that T = � − S. We consider the cases of even and odd n separately.

1. n is odd. In this case (1, 3) ∈ �′ ⊆ T ∪ S and (3, n) ∈ S; due to transitivity of T ∪
S we obtain (1, n) ∈ T ∪ S. But (1, n) /∈ S and hence (1, n) ∈ T. Let now i be
an even symbol. It lies between 1 and n; due to co-transitivity of T we obtain
that either (1, i) ∈ T or (i, n) ∈ T. The first is impossible, since then (1, i) ∈ � − S
that is not case. Therefore, for every even i we have (i, n) ∈ T. Together with
(1, n) ∈ T this gives the equality T = � − S.

2. n is even. In this case (2, 3) ∈ �′ ⊆ T ∪ S and (3, n) ∈ S; the transitivity of T ∪ S
implies (2, n) ∈ T ∪ S. But (2, n) /∈ S, hence (2, n) ∈ T. Again, let i be an even
symbol (greater than 2). It lies between 2 and n; due to the co-transitivity of T,
we have either (2, i) ∈ T or (i, n) ∈ T. The first is impossible since then (2, i) ∈
T ⊆ � − S, that is not the case. Thus, for every even symbol i we have (i, n) ∈ T,
which gives T = � − S.

��

Now one can easily construct a maximal (and symmetric) CD of the size 2m for any
m, 2 ≤ m < n. For this, one takes a domain of the form Qn−m+2 ∗ ((...(n − m + 3) ∗
...) ∗ n). For instance, at n = 5 the CD Q4 ∗ 5 has the size 8. It would be interesting to
find a structure which describes maximal symmetric CDs of any size.
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