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Abstract For a positive integer k, let k + k denote the poset consisting of two disjoint
k-element chains, with all points of one chain incomparable with all points of the
other. Bosek, Krawczyk and Szczypka showed that for each k ≥ 1, there exists a
constant ck so that First Fit will use at most ckw

2 chains in partitioning a poset P
of width at most w, provided the poset excludes k + k as a subposet. This result
played a key role in the recent proof by Bosek and Krawczyk that O(w16 log w)

chains are sufficient to partition on-line a poset of width w into chains. This result
was the first improvement in Kierstead’s exponential bound: (5w − 1)/4 in nearly
30 years. Subsequently, Joret and Milans improved the Bosek–Krawczyk–Szczypka
bound for the performance of First Fit to 8(k − 1)2w, which in turn yields the modest
improvement to O(w14 log w) for the general on-line chain partitioning result. In
this paper, we show that this class of posets admits a notion of on-line dimension.
Specifically, we show that when k and w are positive integers, there exists an integer
t = t(k, w) and an on-line algorithm that will construct an on-line realizer of size t
for any poset P having width at most w, provided that the poset excludes k + k as a
subposet.
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1 Introduction

Recall that a family R = {L1, L2, . . . , Lt} of linear extensions of a partially ordered
set (poset) P is called a realizer of P if x < y in P if and only if x < y in Li for each
i = 1, 2, . . . , t. The dimension of P is then defined as the least t for which P has a
realizer of cardinality t. We refer the reader to Trotter’s monograph [17] and survey
article [18] for extensive background material on dimension and combinatorial
problems for finite posets.

When P and Q are posets and there is no subposet of P that is isomorphic to
Q, we will simply say that P excludes Q. In this paper, we will consider the on-line
version of dimension introduced in [12], and we will consider classes of posets that
exclude two long incomparable chains. To be more precise, for a positive integer k,
let k + k denote the poset consisting of two disjoint k-element chains, with all points
of one chain incomparable with all points of the other. Then our principal result will
be the following theorem.

Theorem 1.1 Let k and w be positive integers. Then there exists an integer t = t(k, w)

and an on-line algorithm that will construct an on-line realizer of size t for any poset
P having width at most w and excluding k + k.

The remainder of this paper is organized as follows. In the next section, we provide
a brief sketch of results that motivate our line of research. In Section 2, we develop
some key properties of posets that exclude k + k, and in Section 4, we provide
the proof of our principal theorem. Finally, in Section 5, we highlight some open
problems.

2 Background Material

As is customary in discussions of on-line algorithms, we consider the problem as
a two-person game: OL-Dim(P, n, t) where P is a class of posets and n and t are
positive integers. One person, called a Builder, constructs a poset P from P one point
at a time, while the second player, called an Assigner, builds a realizer of this poset
in an on-line manner. If the ground set is {x1, x2, . . . , xn}, then at round i, Builder
will have described the subposet of Pi induced by the elements {x1, x2, . . . , xi} and
Assigner will have determined a family Ri = {Li

1, Li
2, . . . , Li

t} of linear extensions
forming a realizer of Pi. Both constructions proceed in an on-line manner, i.e., when
i > 1, Builder need only list the elements of {x1, x2, . . . , xi−1} that are, respectively,
less than xi, greater than xi and incomparable with xi in Pi. Subsequently, for each
j = 1, 2, . . . , t, Assigner reveals how each Li−1

j from Ri−1 will be extended to form a
linear extension Li

j, while maintaining the property that Ri must be a realizer of Pi.
The game ends, with Builder declared the winner, if at some round i with 2 ≤ i ≤ n,

Builder presents the required information for Pi but Assigner cannot extend the
extensions from Ri−1 to maintain Ri as a realizer of Pi. Assigner wins if Builder does
not, i.e., after all n rounds are completed, Assigner has a realizer Rn of the final poset
P = Pn.

We say the on-line dimension of a class P of posets is infinite if for every t,
there is some n so that Builder has a winning strategy for the game OL-Dim(P, n, t).
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Here, we are particularly interested in classes C for which the on-line dimension is
finite, i.e., there is some t for which Assigner has a winning strategy for the game
OL-Dim(P, n, t) for all n. The least such t is called the on-line dimension of the class,
and when we are unable to settle the exact value, we would at least like to provide
reasonable upper bounds.

2.1 On-Line Chain Partitions

Any discussion of on-line dimension can’t go very far without mentioning the
companion problem of constructing an on-line chain partition of a poset. Here we
have a two person game OL-ChainPart(P, n, s) where P is a class of posets and n and
s are positive integers. In this game, Builder constructs a poset one point at a time
and Partitioner constructs a chain partition in an on-line manner. At round i, with 1 ≤
i ≤ n, Builder describes the subposet Pi induced by the elements of {x1, x2, . . . , xi}.
Partitioner currently has a chain partition Ci−1 = {Ci−1

1 , Ci−1
2 , . . . , Ci−1

s } (initialized by
setting all chains in C0 to be empty), and this partition is updated to Ci by choosing
an appropriate j0 with 1 ≤ j0 ≤ s and setting Ci

j0 = {xi} ∪ Ci−1
j0 . Of course, for all

j = 1, 2, . . . , s, with j �= j0, Ci
j = Ci−1

j .
We say that class P can be partitioned on-line into s chains when Partioner has a

winning strategy for the game OL-ChainPart(P, n, s), for every n.
Historically, the following theorem of Kierstead [8] played a very important role

in motivating research on on-line problems for posets.

Theorem 2.1 The class of all posets of width at most w can be partitioned on-line into
(5w − 1)/4 chains.

From below, an argument due to Szemerédi shows that any on-line algorithm can
be forced to use at least w(w + 1)/2 chains to partition on-line posets of width w

into chains. In [3], this argument is presented, together with an improved lower
bound of (1 − o(1))w2. The upper bound has proved equally resilient, but quite
recently, Bosek and Krawczyk [1] made a significant advancement by proving the
first subexponential bound for on-line chain partitioning.

Theorem 2.2 The class of all posets of width at most w can be partitioned on-line into
w16 log w chains.

2.2 Excluding Two Incomparable Chains

Posets that exclude 2 + 2 as subposets are just the interval orders [5], and for this
class, we have the following result [11].

Theorem 2.3 The class of all interval orders of width at most w can be partitioned
on-line into 3w − 2 chains. Furthermore, this is best possible.

In fact, it is shown in [11] that order is not essential. It is enough to know whether
elements are comparable or not, i.e., the result can be stated in terms of coloring
interval graphs where only adjacencies are provided by the Builder and not an
interval representation.
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Theorem 2.4 The class of all interval graphs of maximum clique size at most k can be
colored on-line using 3k − 2 colors. Furthermore, this is best possible.

Moreover, it is known that First Fit performs reasonably well in coloring interval
graphs. In fact, in a series of published papers [9, 10, 13, 14, 19], an unpublished
but widely circulated 2003 manuscript by Brightwell, Kierstead and Trotter, and
personal communication from D. Howard, incremental improvements have been
made in analyzing the performance of First Fit in the coloring of interval graphs
with maximum clique size at most k, with the current upper bound being 8k − 4.

From below, Chrobak and Ślusarek [4] and Ślusarek [15] have given a computer
based proof to show that when k is sufficiently large, First Fit can be forced to use
more than 4.5k colors on an interval graph with maximum clique size k. Currently,
the best lower bound is due to D. Smith and is included in his 2011 Ph.D. thesis at
Arizona State University, where it is shown that for every ε > 0, there is a k0 so that
First Fit can be forced to use (5 − ε)k colors on an interval graph with maximum
clique size k, provided k ≥ k0.

The fact that interval orders exclude 2 + 2 plays a pivotal role in the following
result due to Hopkins [6].

Theorem 2.5 The on-line dimension of the class of interval orders of width at most w

is at most 4w − 4.

On the other hand, First Fit does not perform well when used as an algorithm
for chain partitioning on general posets. In [8], it is shown that on a width 2 poset
having O(n2) points, First Fit can be forced to use n chains. Nevertheless, Bosek et al.
[2] showed that First Fit works surprisingly well in partitioning posets into chains
provided they exclude two long incomparable chains.

Theorem 2.6 For each k ≥ 3, there exists a constant ck so that the class of posets having
width at most w and excluding k + k will be partitioned into ckw

2 chains using First
Fit.

We should note that this last result played a key role in Bosek and Krawczyk’s
proof of Theorem 2.2. However, it was noted in [2] that the inequality in Theorem 2.6
might not be tight, and quite recently, this issue has been settled by Joret and
Milans [7] with the following strengthening.

Theorem 2.7 If r, s ≥ 2, then First Fit will use at most 8(r − 1)(s − 1)w chains in
partitioning a poset into chains provided the width of the poset is at most w and it
excludes r + s.

We note that the elegant argument given by Joret and Milans is an extension of
the column labeling method introduced by Pemmaraju et al. [14]. Sharpening this
labeling tool was a central component in the approaches taken by Narayanaswamy
and Babu [13].

When the improved bound from Theorem 2.7 is substituted into the argument for
Theorem 2.2, the new upperbound for the general on-line chain partitioning problem
becomes O(w14 log w).

We encourage the reader to consult the recent survey paper [3] for an up-to-date
discussion of results on on-line chain partitioning.



Order (2013) 30:1–12 5

2.3 Crowns and On-Line Dimension

Here is a second instance where two long incomparable chains play a key role.
For integers n and k with n ≥ 3 and k ≥ 0, let Sk

n denote the poset of height 2
having n + k maximal elements a1, a2, a3, . . . , an+k and n + k minimal elements
b 1, b 2, b 3, . . . , b n+k. The order relation is defined (cyclically) by setting bi to be
incomparable with ai, ai+1, ai+2, . . . , ai+k and under the remaining n − 1 maximal
elements. This family of posets are called generalized crowns, and Trotter [16] gave
the following formula for their dimension.

Theorem 2.8 For n ≥ 3 and k ≥ 0, dim(Sk
n) = �2(n + k)/(k + 2)�.

When k = 0, the poset S0
n has 2n points and dimension n. It is also called the

standard example of an n-dimensional poset, and in most settings, it is just denoted
as Sn. The standard example Sn is irreducible, i.e., the removal of any point lowers
the dimension of the remaining subposet to n − 1.

When n = 3, the posets in the family F = {Sk
3 : k ≥ 0} have dimension 3 and they

are also irreducible. Historically, the posets in F were studied before this more
general definition was made, and in early papers, they were called crowns.

In [12], the following results are proved.

Theorem 2.9 The on-line dimension of the class of posets having width at most 2 is at
most 5.

Theorem 2.10 The on-line dimension of the class of posets having width at most 3 is
inf inite.

The proof of Theorem 2.10 provides a strategy for Builder to win the
OL-Dim(P, n, t) game where P is the class of posets of width at most 3, provided
n is sufficiently large in comparison to t. Builder starts by constructing two long
incomparable chains, which the Assigner can force to be at least of size t − 2. Builder
then wins the game by appropriately adding elements that form S0

3 = S3, which is
both a crown and a standard example.

Subsequently, Kierstead et al. proved the following result.

Theorem 2.11 The on-line dimension of the class of width at most w and excluding all
crowns in F = {Sk

3 : k ≥ 0} has on-line dimension at most s!, provided the posets in the
class can be partitioned on-line into s chains.

From Theorem 2.10, we know that one must exclude the smallest crown S3 in
order to have a chance for finite on-line dimension, but it is still not known whether
it is necessary to exclude all crowns when the width is allowed to be larger than 3.
The proof given in [12] depends heavily on this assumption, but it may actually be
the case that it is enough to exclude S3.

Regardless, in view of Theorem 2.6 and of the proof of Theorem 2.10 the following
question emerges naturally. Let k and w be positive integers with k ≥ 3 and w ≥ 2.
Does the class of posets of width at most w and excluding k + k have finite on-line
dimension? The principal result of this paper will be the following affirmative answer.
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Theorem 2.12 Fix positive integers k and w. If the class P(w, k) of posets having width
at most w and excluding k + k can be partitioned on-line into s chains, then the online
dimension of P(w, k) is at most m!, where m = s(6k − 11).

3 Preliminaries

Here is an elementary consequence of the property that a poset excludes k + k.

Proposition 3.1 Let C1 = {x1 < x2 < · · · < xk} and C2 = {y1 < y2 < · · · < yk} be dis-
joint k-element chains in a poset P excluding k + k. Then either x1 < yk in P or y1 < xk

in P.

In work to follow, we need a somewhat stronger version of this basic result, and
we need to allow the chains to intersect. For this purpose, we make the following
definition: Let P be a poset, and let N0 denote the set of non-negative integers.
Define a function ρ : P × P −→ N0 by setting (a) ρ(x, y) = 0 when x �< y; and
(b) when x < y in P, ρ(x, y) is the largest positive integer m for which there is a chain
x = z1 < z2 < · · · < zm < y in P. For emphasis, we state the following elementary
property satisfied by this function.

Proposition 3.2 If x ≤ y ≤ z in P, then ρ(x, z) ≥ ρ(x, y) + ρ(y, z).

The following elementary lemma will be key to our proof of Theorem 2.12.

Lemma 3.3 Let k ≥ 2, let x1, x2, y1, y2 be points in a poset P that excludes k + k. If
ρ(x1, x2) ≥ k − 1 and ρ(y1, y2) ≥ k − 1, then

ρ(x1, y2) + ρ(y1, x2) ≥ ρ(x1, x2) + ρ(y1, y2) − 2k + 3

Proof We argue by induction on the non-negative integer q = ρ(x1, x2) +
ρ(y1, y2) − 2k + 2. First consider the base case q = 0, where we need only show that
either x1 < y2 or y1 < xm in P. Let n = ρ(x1, x2) and m = ρ(y1, y2). Then choose
chains C1 = x1 = u1 < u2 < · · · < un < x2 and C2 = y1 = v1 < v2 < · · · < vm < y2.
Without loss of generality, we may assume that n ≥ m. If C1 ∩ C2 �= ∅, then x1 < y2

and y1 < x2, so we may assume that C1 ∩ C2 = ∅. Now the conclusion that either
x1 < y2 or y1 < x2 follows from the fact that P excludes k + k.

Now suppose that q > 0 and that the conclusion of the lemma holds for smaller
values of q. We may assume without loss of generality that n ≥ m. Since P does
not contain k + k, we conclude that either x1 < y2 or y1 < x2. If x1 < y2, we apply
the inductive hypothesis to the elements u2, x2, y1, y2 and conclude that ρ(u2, y2) +
ρ(y1, x2) ≥ q. Since ρ(x1, y2) ≥ ρ(u2, y2) + 1, we conclude that

ρ(x1, y2) + ρ(y1, x2) ≥ q + 1 = ρ(x1, x2) + ρ(y1, y2) − 2k + 3.

If on the other hand, y1 < x2, we apply the inductive hypothesis to x1, un, y1, y2. Now
we observe that ρ(x1, y2) + ρ(y1, un) ≥ q, and from this the desired inequality again
follows immediately. ��



Order (2013) 30:1–12 7

4 Proof of the Main Theorem

Readers who are familiar with the proof techniques in [12] will recognize that we
are adapting for our purposes the following concepts that first appear in that paper:
(a) an auxiliary partial order on the chains in an on-line chain partition; (b) the
construction of an on-line realizer using permutations; and (c) the notion of a
blocking chain. However, there are some key moments where the proof we present
will diverge from the approach of [12].

For convenience, we write x‖y when x and y are distinct incomparable points
of P.

Our main theorem is trivial if either w = 1 or k = 1, so we may assume w ≥ 2 and
k ≥ 2. The case w = 2 is handled by Theorem 2.9, while the case k = 2 is handled by
Theorem 2.5. So for the remainder of the proof, we fix integers w ≥ 3 and k ≥ 3, and
we let P = P(w, k) be the class of posets of width at most w and excluding k + k.

4.1 Modifying the Chain Partition

We suppose that the poset P is partitioned on-line into s chains, and denote these
chains as C1, C2, . . . , Cs. It is not important how this partition is obtained, so for
example, it could be determined using the algorithm of Bosek and Krawczyk from
Theorem 2.2, but it could even be given to us by a generous Builder. Regardless, we
elect to modify the partition using chains of the form: Ci, j where i and j are integers
with 1 ≤ i ≤ s and 1 ≤ j ≤ 6k − 11. Accordingly, there will be s(6k − 11) chains in
the revised scheme. Assignment to these new chains is determined by the following
simple rule. When a point x enters, if the old algorithm would assign x to chain Ci,
the new algorithm assigns it to chain Ci, j, using First Fit to break ties on the second
coordinate so that the following key property is maintained:

The Separation Principle If u and v are distinct points in a chain Ci, j and u < v in P,
then ρ(u, v) ≥ 3k − 5.

It is obvious that the Separation Principle can be maintained as long as we have
6k − 11 choices for the second coordinate. This results from the fact that we need
only be able to break ties with (at most) 3k − 6 elements from Ci that are above x
and (at most) 3k − 6 elements from Ci that are below x.

4.2 The Winning Strategy for Assigner

Set m = s(6k − 11) and t = m!. We show that Assigner can build an on-line realizer
consisting of t linear extensions. Here is the winning strategy. First, relabel the m =
s(6k − 11) chains in the on-line chain partition satisfying the Separation Principle as
D1, D2, . . . , Dm. Also, when x is a point in P, we let φ(x) denote the unique subscript
α ∈ {1, 2, . . . , m} so that x ∈ Dα . The realizer R will contain a linear extension Lσ

for every permutation σ of the integers in {1, 2, . . . , m}, the set of subscript of the
chains in our modified on-line chain partition. Let σ = (α1, α2, . . . , αm) be such a
permutation. We explain how Assigner will build Lσ .

Suppose the new point x enters at round i and that during round i − 1, the Assigner
has constructed a linear extension Lσ of the poset determined by the first i − 1 points
of P. To update Lσ , we consider the set Vσ (x) consisting of (1) all points v with v > x
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in P together with (2) all points v with x‖v in P, v > u in Lσ for all u with x > u in P
and φ(x) < φ(v). If Vσ (x) = ∅, place x at the very top of Lσ . If Vσ (x) �= ∅, let v0 be
the least element of Vσ (x) in Lσ and insert x immediately under v0.

The following elementary property is stated for emphasis.

Proposition 4.1 Let σ be a permutation of {1, 2, . . . , m}. Then at every stage of the
game, if u is immediately under v in Lσ , then either (a) u < v in P or (b) u‖v and
φ(u) < φ(v) in σ .

The remainder of the proof consists of showing that this simple strategy produces
a win for Assigner. Let x and y be incomparable points in P. We show that there is
some Lσ for which x > y in Lσ . By symmetry, this is enough to show that Assigner
will maintain R as an on-line realizer. To accomplish this task, we freeze the poset at
the first moment in time that both x and y are present and argue about the poset P
that we have at that stage. Let φ(y) = a and φ(x) = b . We will restrict our attention
to those Lσ for which a is the first element in σ and b is the last. In any such Lσ ,
when x enters, it will go as high as possible, and when y enters, it will go as low as
possible.

We consider points in the following subposets of P:

U = {u : u < y in P and u‖x} and V = {v : v‖y, v �≤ x}.
For each u ∈ U , note that ρ(u, y) > 0. Also, if ρ(u, y) = q, and u = u1 < u2 <

· · · < uq < y is a chain, then u2, u3, . . . , uq all come from U .
Dually, for each v ∈ V, we let h(v) be the largest integer r for which there is a chain

v1 < v2 < v3 < · · · < vr = v with all elements in this chain coming from V ∪ {x}. Since
x and all elements of V are incomparable with y, we have the following elementary
observation.

Proposition 4.2 Let u ∈ U and v ∈ V. If ρ(u, y) ≥ k − 1 and h(v) ≥ k, then u < v

in P.

Let S = {1, 2, . . . , m} \ {a, b}, i.e., S is the set of all subscripts of chains, excepting
the chains containing x and y respectively. We will now determine an auxiliary partial
order Q on S. Subsequently we will show that we must have x > y in any Lσ with a
as its least element, b as its greatest element, and the m − 2 elements of S ordered
by any linear extension of Q.

Let SU = {α ∈ S : φ(u) = α for some u ∈ U}, and let SV = {α ∈ S : φ(v) = α for
some v ∈ V}. The set SU ∪ SV is then partitioned as SU ∪ SV = S1 ∪ S2 ∪ S3 ∪ S4 ∪
S5, according to the following scheme:

(1) α ∈ S1 if α ∈ SU − SV .
(2) α ∈ S2 if (a) α ∈ SU ∩ SV and (b) there is some u in U with φ(u) = α and

ρ(u, y) < k − 1.
Note that if v ∈ V with φ(v) = α, then at least 2k − 3 elements of the longest
chain connecting u and v are in V. Therfore h(v) ≥ 2k − 2 for any such v.

(3) α ∈ S3 if (a) α ∈ SU ∩ SV , (b) ρ(u, y) ≥ k − 1 for any u ∈ U with φ(u) = α, and
(c) h(v) ≥ k for any v ∈ V with φ(v) = α.
Note that if α, β ∈ S3, then u < v in P for every u ∈ U and v ∈ V with φ(u) = α

and φ(v) = β.
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(4) α ∈ S4 if (a) α ∈ SU ∩ SV , (b) there is some v ∈ V with φ(v) = α and h(v) ≤
k − 1.
Note that we must have ρ(u, y) ≥ 2k − 3 for any u ∈ U with φ(u) = α.

(5) α ∈ S5 if α ∈ SV − SU .

Next, we define a binary relation Q on S by the following rules:

(1) Put (α, β) in Q if there are integers i, j with 1 ≤ i < j ≤ 5 so that α ∈ Si and
β ∈ S j.

(2) Let i ∈ {2, 4} and let α, β ∈ Si. Put (α, β) in Q if there are elements u ∈ U , v ∈ V
so that (a) φ(u) = α, (b) φ(v) = β, and (c) ρ(u, v) < k − 1.

Proposition 4.3 The binary relation satisf ies the following properties and is therefore
a partial order on S:

(1) Q is irref lexive, i.e., (α, α) �∈ Q, for every α ∈ S.
(2) Q is asymmetric, i.e., if (α, β) ∈ Q, then (β, α) �∈ Q.
(3) Q is transitive, i.e., if (α, β) ∈ Q and (β, γ ) ∈ Q, then (α, γ ) ∈ Q.

Proof The first property follows directly from the definition of Q and the sparcity
of the chains. Clearly, to prove the second and third properties, it is enough to show
that they hold for the restriction of Q to Si, for i = 2 and i = 4; and a single argument
suffices for this purpose. Fix i ∈ {2, 4}, and let α, β, γ ∈ Si and suppose that both
(α, β) and (β, γ ) belong to Q (note that we allow α = γ ). Choose uα ∈ U and vβ ∈ V
that witness (α, β) ∈ Q. Also choose uβ ∈ U and vγ ∈ V that witness (β, γ ) ∈ Q.
Then ρ(uα, vβ) ≤ k − 2 and ρ(uβ, vγ ) ≤ k − 2. Since uβ < vβ in P, ρ(uβ, vβ) ≥ 3k −
5. If α = γ , then ρ(uα, vγ ) ≥ 3k − 5; if α �= γ and (α, γ ) �∈ Q, then ρ(uα, vγ ) ≥ k − 1.
We conclude that

2(k − 2) ≥ ρ(uα, vβ) + ρ(uβ, vγ ) ≥ (3k − 5) + (k − 1) − 2k + 3 = 2k − 3.

The contradiction completes the proof. ��

Now that we have shown that Q is a partial order on S, we will write α < β in Q
rather than (α, β) ∈ Q. Next, let σ0 = (α1, α2, α3, . . . , αm−1, αm) be any permutation
of {1, 2, . . . , m} so that α1 = 1 = φ(y), αm = m = φ(x), and α2 < α3 < · · · < αm−1 is a
linear extension of Q. We will now proceed to show that x > y in Lσ0 .

We start with an easy but important lemma. The reader may note that the
conclusion of this lemma was precisely the motivation for our definition of the
auxiliary partial order Q.

Lemma 4.4 Let u ∈ U and v ∈ V. If u‖v in P, then φ(u) < φ(v) in Q.

Proof Let u ∈ U and v ∈ V and set α = φ(u) and β = φ(v). We assume that u‖v in
P and show that α < β in Q. Choose integers i and j so that α ∈ Si and β ∈ S j. Note
that j �= 1 and i �= 5. Furthermore, the conclusion of the lemma holds if i < j so we
may assume that i ≥ j.

Suppose first that i = j. Since ρ(u, v) = 0, the conclusion of the lemma is witnessed
by u and v when i = j = 2 and when i = j = 4. However, ρ(u, v) = 0 implies that we
cannot have i = j = 3 (see the comment made when S3 was first defined). So we may
assume that i �= j, i.e., i > j. Then i is either 3 or 4 and j is either 2 or 3. From the
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definitions of S2, S3 and S4, we conclude that ρ(u, y) ≥ k − 1 and h(v) ≥ k. However,
these statements imply that u < v in P. The contradiction completes the proof. ��

4.3 Blocking Chains

For the remainder of the proof, we assume that x < y in Lσ0 and argue to a
contradiction. We say that a sequence x = z0, z1, z2, . . . , zr = y of points is a blocking
chain when for each i = 0, 1, 2, . . . , r − 1, zi precedes zi+1 in Lσ0 , and either zi < zi+1

in P or zi‖zi+1 and φ(zi) < φ(zi+1) in σ0. Note that the string of all elements in Lσ0

beginning with x and ending with y forms a blocking chain. Now consider a blocking
chain x = z0, z1, z2, . . . , zr with r as small as possible.

Lemma 4.5 Let x = z0, z1, z2, . . . , zr = y be a blocking chain with r as small as
possible. Then the following statements hold:

(1) The integer r is odd and φ(zi) �= φ(z j) whenever 0 ≤ i < j ≤ r.
(2) When i is even and 0 ≤ i < r, zi < zi+1 in P and φ(zi) > φ(zi+1) in σ0.
(3) When i is odd and 1 ≤ i < r, zi‖zi+1 and φ(zi) < φ(zi+1) in σ0.
(4) When 0 ≤ i < j ≤ r and j ≥ i + 2, zi‖z j and φ(zi) > φ(z j) in σ0.

Proof This proof is the same as in the argument given in [12]. First note that x < z1

and zr−1 < y because φ(y) is first and φ(x) is last in σ0. Since we choose a shortest
blocking chain there is no i with zi−1 < zi < zi+1 nor zi−1‖zi‖zi+1. This yields (2)
and (3) and implies that r is odd. If φ(zi) = φ(zi+1) we can skip zi. If i + 1 < j and
either φ(zi) = φ(z j) or φ(zi) < φ(z j) there is a shorter blocking chain. This yields the
remaining piece for (1) and (4). ��

To complete the proof, we note that zr−1 ∈ U while zr−2 ∈ V. Since zr−1‖zr−2, it
follows from Lemma 4.4 that φ(zr−1) < φ(zr−2), which is a contradiction.

4.4 An Alternate Approach

As we are very much interested in extending the results and techniques developed
here in new directions, we comment briefly that there is an alternative approach to
proving our principal theorem. When P excludes k + k, we may define a partial order
PI so that:

(1) If x < y in PI , then x < y in P, i.e., P is an extension of PI .
(2) If ρ(x, y) ≥ (k − 1)(w − 1) in P, then x < y in PI .
(3) PI is an interval order.

The definition of PI can be made using the following rule: For each x ∈ P,
associate with x the closed interval [dx, ux] where dx = |{y ∈ P : y < x in P}| and
ux = |P| − |{z ∈ P : z > x in P}|. With this approach, we need to use more values
(w(k − 1)) for the second coordinate in order to establish the Separation Principle.
However, the definition of the auxiliary order is simpler. Now it is enough to take
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α < β in Q when there exist points u ∈ U and v ∈ V with φ(u) = α, φ(v) = β and
u‖v in PI .

5 Concluding Remarks

The techniques we have introduced in this paper may shed some light on the question
first raised in [12]:

Question 5.1 Fix an integer w ≥ 3. Is the on-line dimension of the class of all posets
of width at most w and excluding the standard example S3 finite?

In [12] as well as in this paper, upper bounds are established on the on-line
dimension of a class of posets that have the general form s! where s is the number
of chains in an on-line chain partition. In [12], an exponential lower bound was
produced, but we do not see how to apply those techniques in this setting, and it may
indeed be the case that Assigner can actually construct an on-line realizer of much
more modest size for the class of posets of width at most k and excluding k + k.
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