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Abstract A finite lattice L is called slim if no three join-irreducible elements of
L form an antichain. Slim lattices are planar. After exploring some elementary
properties of slim lattices and slim semimodular lattices, we give two visual structure
theorems for slim semimodular lattices.
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1 Introduction

By a slim lattice we mean a finite lattice M such that J(M), the poset (partially
ordered set) of its non-zero join-irreducible elements, contains no three-element
antichain. By Dilworth [4], a finite lattice M is slim iff J(M) is the union of two
chains. By Lemma 6 of [3], slim lattices are planar. So they are relatively easy objects
to understand.
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A lattice L is called (upper) semimodular, if b ∨ c covers or equals a ∨ c for all
a, b, c ∈ L with a ≺ b. Because of their links to combinatorics and geometry, the
study of these lattices is an important branch of Lattice Theory; see Stern [11] for
a survey. See also [1] and [2] for recent developments.

Semimodular lattices have recently proved to be useful in strengthening a classical
group theoretical result, namely, the Jordan–Hölder theorem. Grätzer and Nation [9]
proved that given two composition series of a group, there is a matching between
their factors such that the corresponding factors are isomorphic for a very spe-
cific reason: they are related by the composite of a down-perspectivity with an up-
perspectivity. In [3], this matching is shown to be unique. The main role in [3] is
played by slim semimodular lattices (introduced in Grätzer and Knapp [6]), due to
the fact that any two finite maximal chains of a semimodular lattice generate a join-
subsemilattice that is a slim semimodular lattice.

As it has been pointed out by Grätzer and Knapp [6] (see Proposition 9 below),
planar semimodular lattices can easily be obtained from slim ones. This way slim
semimodular lattices play an important role in a series of papers by Grätzer and
Knapp [6–8] on the Congruence Lattice Representation problem.

These developments motivate a deeper study of slim semimodular lattices. Our
main results, the twin Theorems 11 and 12, are constructive visual structure theorems
of these lattices. While it seems to be difficult to provide many examples of small
(and, preferably, planar) semimodular lattices when one is getting acquainted with
Lattice Theory, this should not be a problem using Theorems 11 and 12. Some easy
results on slim lattices and planar lattices are also surveyed or proved.

All lattices in this paper are assumed to be f inite. We will rely, sometimes only
implicitly, on the rigorous study of planar lattices by Kelly and Rival [10].

2 Definitions and Elementary Facts

A finite lattice L is planar if it has a planar diagram, that is a diagram in which the
edges intersect can only have their endpoints in common. A planar lattice is finite by
definition. The edges of a planar diagram divide the plane into regions. The minimal
regions are called cells, exemplified by the five-element non-distributive lattices: N5

has only one cell while M3 has two. Note that a planar lattice has no cell iff it is
a chain.

L is a 4-cell lattice (see Grätzer and Knapp [6]) if it is planar and each cell is
formed by exactly four edges. Then for each cell there are elements a, b ∈ L, called
the left corner and the right corner of the cell, such that the cell is surrounded by
its lower edges a ∧ b ≺ a and a ∧ b ≺ b and its upper edges a ≺ a ∨ b and b ≺ a ∨ b,
and a is to the left of b. The elements a ∧ b and a ∨ b are called the bottom and
the top of the cell, respectively. If x1 ≺ y1 and x2 ≺ y2 are edges of a 4-cell such
that {x1, y1} ∩ {x2, y2} = ∅, then these two edges are called opposite edges of the
4-cell. By a covering square we mean a subset {a ∧ b, a, b, a ∨ b} such that a ∧ b ≺ a,
a ∧ b ≺ b, a ≺ a ∨ b, and b ≺ a ∨ b. Note that 4-cells are covering squares but, as it
is exemplified by M3, not conversely. For a ∈ L, the principal ideal [0, a] = {x ∈ L :
x ≤ a} and the principal filter [a, 1] will be denoted by ↓a and ↑a, respectively.

The left boundary and the right boundary of L are denoted by Bleft(L) and
Bright(L), respectively. Their meaning should be clear, or see Kelly and Rival [10] for
a rigorous technical definition. Note that Bleft(L) and Bright(L) are maximal chains
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in L. The common name for Bleft(L) and Bright(L) is boundary chain. The union
B(L) := Bleft(L) ∪ Bright(L) of the boundary chains is the boundary of L.

Proposition 1 ([3] and, mainly, Grätzer and Knapp [6]) For every f inite lattice L, the
following f ive conditions are equivalent:

(i) L is a slim semimodular lattice;
(ii) L is a slim semimodular 4-cell lattice;

(iii) L is a planar semimodular lattice without cover-preserving M3-sublattices;
(iv) L is a planar semimodular lattice in which 4-cells and covering squares are the

same.
(v) L is a 4-cell lattice in which no two distinct 4-cells have the same bottom.

Proof The equivalence of the first four conditions is stated in Lemma 7 of [3], whose
proof heavily relies on Grätzer and Knapp [6]. Note that third condition is clearly
equivalent with the definition of a slim semimodular lattice given in [6].

The first four conditions imply the fifth one by Lemma 7 of [6].
Assume the fifth condition. Then L is semimodular by Lemma 5 of [6]. If L had

a cover-preserving M3, then it would clearly have two distinct 4-cells with the same
bottom. Hence the third condition follows. �

Semimodularity is not assumed in the next seven statements.

Lemma 2 Each element of a slim lattice L has at most two covers.

For a slim semimodular lattice, this is Lemma 6 of Grätzer and Knapp [8].

Proof of Lemma 2 Assume that u ∈ L is covered by three distinct elements, v1, v2,
and v3. Then we can choose an element pi ∈ (

J(L) ∩ ↓vi
) \ ↓u, for i ∈ {1, 2, 3}. Since

vi = u ∨ pi, we conclude that {p1, p2, p3} is a three-element antichain in J(L), a
contradiction. �

Let us recall the following lemma.

Lemma 3 (Lemma 1.2 of Kelly and Rival [10]) Let x ≤ y in a planar lattice L. If x
and y are on dif ferent sides of a maximal chain C in L, then there is a z ∈ C such that
x ≤ z ≤ y.

We will also need the following lemma.

Lemma 4 If L is a planar lattice, a and b belong to the same boundary chain of L and
a ≺ b, then either a is meet-irreducible or b is join-irreducible.

Proof Suppose the contrary, and let a, b ∈ Bleft(L) with a ≺ b. Then there are
elements a′ and b ′ in L such that a ≺ b ′ ‖ b and b � a′ ‖ a. Let A = ↓a ∩ Bleft(L) and
B = ↑a ∩ Bleft(L); they are chains. Extend {a, b ′} to a maximal chain C of ↑a. The
maximal chains B and C of ↑a surround a region R of L. By Lemma 1.3 of Kelly and
Rival [10], a is the least element of R. Hence a′ /∈ R, whence b and a′ are on different
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sides of the maximal chain A ∪ C. Lemma 3 yields an element x ∈ A ∪ C such that
x ∈ [a′, b ] = {a, b}. This is a contradiction, because a′ /∈ A ∪ C and b /∈ A ∪ C. �

Proposition 5 (Lemmas 5 and 6 in [3])

(i) Slim lattices are planar.
(ii) Let E = {0 = e0 ≺ e1 ≺ · · · ≺ en} and F = {0 = f0 ≺ f1 ≺ · · · ≺ fm} be non-

empty chains of a f inite lattice L such that J(L) ⊆ E ∪ F. Then L has a planar
diagram such that Bleft(L) = E ∪ ↑en and Bright(L) = F ∪ ↑ fm.

(iii) If e is a maximal element of J(L), then ↑e is a chain and ↑e ⊂ B(L).

Let us call a finite lattice L linearly indecomposable if for each x ∈ L \ {0, 1} there
is a y ∈ L such that x and y are incomparable. It follows easily from Lemma 1.3 of
Kelly and Rival [10] that an arbitrary planar lattice L is linearly indecomposable iff
Bleft(L) ∩ Bright(L) = {0, 1}.

Lemma 6 If L is a slim lattice, then, for every planar diagram, J(L) ⊆ B(L).

Proof By way of contradiction, we assume that p ∈ J(L) \ B(L). Let q stand for
the unique lower cover of p. Let u be the greatest element of ↓p ∩ Bleft(L), and let
u+ stand for its upper cover in Bleft(L). Similarly, v denotes the greatest element
of ↓p ∩ Bright(L), and let v+ ∈ Bright(L) such that v ≺ v+. Since u+ �≤ p and p �= u ∈
Bleft(L), the equation u = u+ ∧ p shows that u is meet-reducible. Hence Lemma 4
yields that u+ ∈ J(L), and v+ ∈ J(L) follows similarly.

If we had p < u+, then u ≤ q < p < u+ would contradict u ≺ u+. Hence p ‖ u+,
and the same reasoning yields that p ‖ v+. Since L is slim, {p, u+, v+} is not a three-
element antichain. So we conclude that either u+ = v+ or, say, u+ < v+. If u+ = v+,
then L is linearly decomposable at u+, and u+ � ‖ p is a contradiction. If u+ < v+, then
the join-irreducibility of v+ gives that u+ ≤ v < p, a contradiction again. �

Lemma 7 Let L be a slim lattice. Then B(L) is uniquely determined. If, in addition,
L is linearly indecomposable, then the boundary chains of L are also uniquely
determined.

Proof If c ∈ L is comparable with any other element of L, then c belongs to all
boundary chains, since they are maximal chains. Thus, we can assume that L is
linearly indecomposable and |L| ≥ 3.

Since L is linearly indecomposable, it has exactly two atoms by Lemma 2. Let a1

and b1 be these atoms. They must belong to different boundary chains. Now we
have a choice: let, say, a1 belong to Bleft(L). We intend to show that no more choice
remains and

Bleft(L) = {0 ≺ a1 ≺ a2 ≺ · · · ≺ 1},

Bright(L) = {0 ≺ b1 ≺ b2 ≺ · · · ≺ 1}

are uniquely defined. (Note that these boundary chains may be of different length.)
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We prove by induction on k that, say, ak is uniquely determined. Assume that
k > 1 and ak−1 is uniquely determined. If ak−1 is meet-irreducible, then it has a unique
cover y. Since Bleft(L) is a maximal chain, ak = y.

Next, assume that ak−1 is meet-reducible. Then it has exactly two covers, x and
y by Lemma 2. We know from Proposition 1 that L is planar, so there is a left
boundary chain and it contains x or y. Invoking Lemma 4 we infer that x or y is join-
irreducible. If both x and y are join-irreducible, then they are on the boundary by
Lemma 6, but they belong to different boundary chains, because x ‖ y. Their unique
lower cover, the common ak−1, belongs to both boundary chains. Hence L is linearly
decomposable at ak−1, a contradiction. Consequently, exactly one of the elements x
and y is join-irreducible. This element is ak by Lemma 6. �

The boundary B(L) of a planar lattice L is a poset. Note that B(L) is a (planar)
lattice, but not a sublattice of L, in general. By a contour we mean a fixed planar
diagram of a planar lattice M such that M = B(M). For a planar lattice L, we say
that the contour of L is arbitrary, if L has the following property:

for each contour C that is order-isomorphic to the boundary of L in some planar
diagram, L has a planar diagram in which B(L) is congruent to C in the Euclidean
metric.

Let us say that L satisfies the Jordan–Hölder chain condition if all of its maximal
chains have the same length. It is well-known that finite semimodular lattices satisfy
this condition. This allows us to define the height h(x) of an element in a finite
semimodular lattice: it is the length of any maximal chain of [0, x].

While C and L in Fig. 1 indicate that the contour of a planar lattice is not arbitrary,
in general, we have the following statement.

Proposition 8 Let L be a planar lattice satisfying the Jordan-Hölder chain condition.
Then the contour of L is arbitrary.

Proof We prove the statement by induction on |L|. We can assume that |L| ≥ 4,
L is linearly indecomposable, and the statement holds for all lattices with less than
|L| elements. Consider a planar diagram of L, and let C be an arbitrary contour
that is order isomorphic with B(L); let ϕ : B(L) → C be an order-isomorphism. By
Theorem 2.5 of Kelly and Rival [10], we can choose a doubly irreducible element
b ∈ L such that b ∈ Bleft(L). Since Bleft(L) is a maximal chain, the unique lower

Fig. 1 A contour C and
a slim lattice L
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cover a and the unique upper cover c of b belong to Bleft(L). By the chain condition
and the assumption on linear indecomposability, the cell containing a, b, c is a
4-cell with left corner b. Let d denote the right corner of this cell. Removing b
from the diagram, we get a planar diagram of the sublattice L′ = L \ {b} such that
a, d, c ∈ Bleft(L′). If d /∈ Bright(L), then we obtain a new contour C ′ from C by moving
ϕ(b) slightly, horizontally towards the interior of the polygon C and keeping other
vertices unchanged. If d ∈ Bright(L), then, to obtain C ′, we move ϕ(b) to ϕ(d). By the
induction hypothesis, L′ has a diagram whose boundary is congruent with C ′. Clearly,
if we put ϕ(b) back to C ′, we get a planar diagram of L whose boundary is congruent
with C. �

Let L be a planar semimodular lattice, and let C4(L) be the collection of all 4-cells
of L (with respect to a fixed planar diagram). For each 4-cell S, we insert nS ≥ 0 new
elements cS,1, . . . , cS,nS , called “eyes”, into the interior of S such that 0S ≺ cS,i ≺ 1S

for i = 1, . . . , nS. This way we obtain a new lattice, which is called an anti-slimming
of L. If n = ∑

S∈C4(L) nS, then we speak of an n-step anti-slimming. This terminology
is motivated by Grätzer and Knapp [6]. For example, M3 is a 1-step anti-slimming of
the four-element Boolean lattice—which is slim.

Proposition 9 [6] Every anti-slimming of a planar semimodular lattice is a planar
semimodular lattice. Conversely, every planar semimodular lattice is an anti-slimming
of a slim semimodular lattice.

This statement shows that, in a sense, the description of planar semimodular lat-
tices reduces to that of slim semimodular lattices. The rest of the paper deals only
with slim semimodular lattices.

3 Forks, Corners, and Visual Constructions

Let d be a doubly irreducible element of a slim semimodular lattice L. Then d is on a
boundary chain of L by Lemma 6. Clearly, the unique lower cover d− and the unique
upper cover d+ of d belong to the same boundary chain. If d− is meet-reducible and
d+ is join-reducible, then the doubly irreducible element d is called a weak corner of
L. It is clear by Lemma 2 that d− has exactly two upper covers, provided that d is
a weak corner. This motivates the following definition: by a corner of L we mean a
weak corner d such that d+ has exactly two lower covers. For example, the grey-filled
element d of L2 is a weak corner of L2 in Fig. 2, while the black-filled element is a
corner of L3. (It will be evident by Proposition 10 or Theorem 11 that the lattices in
Figs. 2, 3, 5, 6 and 7 are semimodular, but we do not need this fact now.)

A corner or a weak corner can be removed and a sublattice remains. The reverse
procedure will be called adding a weak corner and adding a corner, respectively.
More exactly, if L is a slim semimodular lattice, a ≺ b ≺ c are elements of one of
its boundary chains and a is meet-irreducible, then we can add a new element d to L
such that a ≺ d ≺ c; we say that the lattice L ∪ {d} is obtained from L by adding a
weak corner. If, in addition, c ∈ J(L), then we say that L ∪ {d} is obtained from L
by adding a corner. For example, L2 in Fig. 2 is obtained from L1 by adding a weak
corner, while L3 is is obtained from L2 by adding a corner.
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Fig. 2 Weak corner and corner

Proposition 10

(i) If we add a weak corner (or, in particular, a corner) to a slim semimodular
lattice, then we obtain a slim semimodular lattice.

(ii) If we remove a weak corner (or, in particular, a corner) from a slim semimodular
lattice, then we obtain a slim semimodular lattice.

(iii) Each slim semimodular lattice can be obtained from a chain by adding weak
corners, one by one, in a f inite number of steps.

Proof Clearly, if L′ is obtained from a 4-cell lattice L by adding a weak corner, then
L′ is again a 4-cell lattice. If L has no two distinct 4-cells with a common bottom,
then neither has L′. Hence the first part of the statement follows from Proposition 1.

The second part follows analogously.
To prove the third part by induction on the size, let L be a slim semimodular

lattice. We know that L is planar, and we can assume that it is not a chain. By
Theorem 2.5 of Kelly and Rival [10], L has a doubly irreducible element d ∈
Bright(L) \ {0, 1}. We can assume that d /∈ Bleft(L), because otherwise L would be
linearly decomposable at d and the induction hypothesis would apply to ↓d and
↑d. Clearly, d belongs to a unique 4-cell, which is a covering square S = {a =
b ∧ d, b, d, c = b ∨ d}. Removing d from L means that S is removed from the set
of 4-cells. Hence

K = L \ {d} is a slim semimodular lattice (1)

by Proposition 1. By the induction hypothesis, K can be obtained from a chain by
adding weak corners finitely many times. One of the upper covers of a, namely d, is
removed, whence d is a meet-irreducible element in K by Lemma 2. So, L is obtained
from K by adding a weak corner. �

Usually, adding a corner results in a more aesthetic diagram than adding a weak
corner, see Fig. 2. Unfortunately, we cannot drop “weak” from Proposition 10.

Fig. 3 The lattice S7 (on the
left) and S9 (on the right)
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Fig. 4 The downward-going
procedure

Indeed, the lattice S7 depicted in Fig. 3, which has a crucial role in this paper, cannot
be obtained from a chain by adding corners. Figure 3 shows the notation for its ele-
ments. The only meet-irreducible but join-reducible element of S7 will be called the
middle element of S7, denoted by s. The lower covers of s are denoted by v1 and v2.
The upper cover of s is the top of this S7, it is denoted by t. The double irreducible
cover of vi is denoted by wi.

We are now in the position of giving one of the crucial definitions. Let S be a 4-
cell of a slim semimodular lattice L. Then S is a covering square {a = b1 ∧ b2, b1, b2,
c = b1 ∨ b2}. We change L to a new lattice L′ as follows.

Firstly, we replace S by a copy of S7. This way we get three new 4-cells instead
of S.

Secondly, as long as there is a chain u ≺ v ≺ w such that v is a new element and
T = {x = u ∧ z, z, u, w = z ∨ u} is a 4-cell in the original lattice L but x ≺ z at the
present stage, see Fig. 4, we insert a new element y such that x ≺ y ≺ z and y ≺ v.
(This way we get two 4-cells to replace the cell T.) When this “downward-going”
procedure terminates, we obtain L′. The collection of all new elements, which is a
poset, will be called a fork. We say that L′ is obtained from L by adding a fork to L
(at the 4-cell S), see Fig. 5 for an illustration. Adding forks to L means to add several
forks to L one by one.

Theorem 11 Each slim semimodular lattice can be obtained from a chain by using the
following two operations

(i) adding a fork
(ii) adding a corner

f initely many times. Moreover, the class of slim semimodular lattices is closed with
respect to these operations.

Fig. 5 Adding a fork to L
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Notice that neither of the two operations can be omitted from Theorem 11. For ex-
ample, S9 in Fig. 3 cannot be obtained from a distributive lattice by adding fork(s).
Similarly, S7 cannot be obtained from a distributive lattice by adding corner(s).

A slim lattice L is called a rectangular lattice, if J(L) is the union of two disjoint
chains C and D such that every element of C is incomparable with all elements of
D. Note that rectangular lattices are at least four-element. Although the definition
of rectangular lattices given by Grätzer and Knapp [7] is different from ours, for
slim lattices the two definitions are equivalent. The advantage of starting from a
rectangular slim lattice is that rectangular lattices can be depicted in a very aesthetic
“rectangular” way; see several figures in [7] or see the lattice on the right-hand side
of Fig. 7. A chain with more than one element is called a nontrivial chain.

Theorem 12 Let L be a slim semimodular lattice consisting of at least three elements.
Then L can be obtained from the direct product of two nontrivial f inite chains such
that

(i) f irst we add f initely many forks one by one,
(ii) and then we remove corners, one by one, f initely many times.

4 Proofs and Further Lemmas

The proofs of Theorems 11 and 12 require some lemmas. Two lower covers of an
element are called neighboring if one of them is immediately to the right of the other
one in a fixed planar diagram.

Lemma 13 Let x and y be two neighboring lower covers of z in a 4-cell lattice. Then
{x ∧ y, x, y, z} is a 4-cell.

Although this lemma looks quite evident visually, we give a formal rigorous proof
in the style of Kelly and Rival [10].

Proof Let b := x ∧ y, and assume that y is on the right of x. Let D be the rightmost
chain between b and x. That is, we consider the interval [b, x], which is a region by
Lemma 1.5 of Kelly and Rival [10], and D is the right boundary of this interval.
Similarly, let E be the leftmost chain between b and y. Choose maximal chains D′
and E′ such that D′ ⊇ D ∪ {z} and E′ ⊇ E ∪ {z}. By the definition of a meet, D ∩
E = {b} = E ∩ ↓x. This together with Lemma 3 easily implies that every element of
D \ {b} is on the left-hand side of E′. Similarly, every element of E \ {b} is on the
right-hand side of D′. Hence D ∪ {z} and E ∪ {z} are the left and right boundary
chains of a region T, respectively, and the intersection of these boundary chains of
T is {b, z}.

We now suppose, by way of contradiction, that there is an element u in the interior
of T. Since b and z are the least and the greatest elements of T by Lemma 1.3 of
Kelly and Rival [10], we know that b < u < z. Observe that u �< x, because otherwise
taking a maximal chain from b to u inside T and continuing it from u to x inside T
we would get a new maximal chain from b to x on the right of D, a contradiction.
Similarly, u �< y. Therefore, if we take a maximal chain from u to z inside T, then
the last but one element of this chain is a lower cover of z strictly on the right of x
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and strictly on the left of y. This contradicts the assumption that y is an immediate
right neighbor of x. Therefore, T is a cell. Hence it is a 4-cell, because L is a 4-cell
lattice. �

Lemma 14 Let L be a slim semimodular lattice. Let t be an element of L such that t has
at least three lower covers, and suppose that t is minimal with respect to this property.
Then t is the top of a cover-preserving S7 sublattice.

Proof Since L is planar by Proposition 1, we fix a planar diagram of L. Let x1, x2, x3

be three neighboring lower covers of t such that xi+1 is immediately to the right of xi,
for i = 1, 2. Lemma 13 gives us two 4-cells, Q1 = {b1, x1, x2, t} and Q2 = {b2, x2, x3, t},
see Fig. 6. The Jordan–Hölder condition gives h(t) − 1 = h(x1) = h(x2) = h(x3) =
h(b1) + 1 = h(b2) + 1. So, if we had b1 ≤ x3, then x1, x2 and x3 would be three dis-
tinct covers of b1, which would contradict Lemma 2. Hence b1 �≤ x3 and b2 �≤ x1.
In particular, b1 �= b2. Since t was minimal with more than two lower covers, b1

and b2 are the only lower covers of x2. Let b = b1 ∧ b2. Lemma 13 yields that
Q3 := {b, b1, b2, x2} is a covering square.

Finally, knowing that Q1, Q2, and Q3 are covering squares, it is routine to check
that {b, b1, b2, x1, x2, x3, t} is a cover-preserving S7 sublattice of L. �

Lemma 15 Let L be a slim semimodular lattice. Then L is distributive if and only if
S7 is not a cover-preserving sublattice of L.

Proof The “only if” part trivially follows from the fact that S7 is non-distributive.
Conversely, assume that L is a slim semimodular non-distributive lattice. We

know from Lemma 3 of Grätzer and Knapp [6] that L is not modular. But L is
semimodular, so Corollary IV.2.3 of Grätzer [5] implies that L is not dually (=lower)
semimodular. There exist two distinct 4-cells with the same top, because otherwise L
would be dually semimodular by the dual of Proposition 1. Consequently, there is an
element t ∈ L with at least three lower covers. Hence Lemma 14 applies. �

Lemma 16 Every slim distributive lattice is dually slim.

Proof Lemma 14 together with distributivity imply that no element has three or
more lower covers. Hence no two distinct 4-cells have the same top, and the lattice is
dually slim by the dual of Proposition 1. �

Fig. 6 Constructing an S7 in
the proof of Lemma 15
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In a semimodular lattice L, let s be the middle element of a cover-preserving
S7 such that the top t of this S7 is minimal. (Note that there can be several cover-
preserving S7 sublattices with minimal top, even with the same top.) As usual, see
Fig. 3, the left and the right lower covers of s are denoted by v1 and v2, respectively.
Define

F = F(s) := {x ∈ L : x ≤ s and the interval [x, s] is a chain},
Fi = Fi(s) := F ∩ ↓vi (i = 1, 2), and

K = K(s) := L \ F.

F defined above is called the weak fork determined by the middle element s. The
strong fork determined by s is defined as

F∗ = F∗(s) := {x ∈ F : x = s or x is meet-reducible}.
For an illustration in a slim semimodular lattice and in a slim semimodular rectangu-
lar lattice, see Fig. 7. Let us summarize the terminology: s determines a weak fork or
a strong fork (always with adjective), but we add a fork (without adjective) to L. If we
add finitely many forks one by one, then we speak of adding forks. For i = 1, 2, let

F∗
i := F∗ ∩ ↓vi, f ∗

i :=
∧

F∗
i , fi =

∧
Fi.

Lemma 17 ↓s is a slim and dually slim distributive sublattice of L.

Proof Since t was minimal, Lemmas 15 and 16 apply. �

Fig. 7 Weak and strong forks
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The following lemma justifies the appearance of Fig. 7.

Lemma 18 For i = 1, 2, Fi is the chain [ fi, vi] and F∗
i is the chain [ f ∗

i , vi]. Further, F
is the disjoint union of F1, F2 and {s} while F∗ is the disjoint union of F∗

1 , F∗
2 and {s}.

Proof If x ∈ F1 ∩ F2, then v1, v2 ∈ [x, s] shows that [x, s] is not a chain, whence x /∈
F, a contradiction. This shows that the union F1 ∪ F2 ∪ {s} is a disjoint union, and
therefore the same holds for F∗

1 ∪ F∗
2 ∪ {s}. Note that s has only two lower covers:

v1 and v2. So, if x ∈ F \ {s}, then x ≤ v1 or x ≤ v2 implies x ∈ F1 ∪ F2. Hence F ⊆
F1 ∪ F2 ∪ {s}, while the converse inclusion is trivial. This also yields that F∗ = F∗

1 ∪
F∗

2 ∪ {s}.
Suppose, by way of contradiction, that F1 is not a chain. Then there are x, y ∈ F1

such that x ‖ y. Let z = x ∨ y, and consider an arbitrary w ∈ [x, z]. Since w ≤ v1 and
[w, s] ⊆ [x, s], we obtain that [w, s] is a chain and w ∈ F1. In particular, z ∈ F1 and
there is an x′ with x ≤ x′ ≺ z such that x′ ∈ F1. Similarly, there is an y′ with y ≤ y′ ≺ z
such that y′ ∈ F1. Clearly, z = x′ ∨ y′. We know that neither of x′, y′, z is in ↓v2,
because otherwise v1 and v2 would be two incomparable elements in the chain, say,
[x′, s]. Hence the distributivity of ↓s, see Lemma 17, yields that z ∧ v2 ≺ z ∧ s = z,
and z has three distinct lower covers: x′, y′ and z ∧ v2. Hence Lemma 14 yields
a cover-preserving S7 in ↓s, which contradicts the minimality of t (or Lemmas 15
and 17). Thus, F1 is a chain. So is F2, and so are their subsets F∗

1 and F∗
2 .

Since Fi is a chain, its smallest element is fi. Hence Fi ⊆ [ fi, vi]. Conversely, if
z ∈ [ fi, vi], then [z, s] ⊆ [ fi, s] yields that [z, s] is a chain, whence z ∈ Fi. This shows
that Fi = [ fi, vi].

Finally, it suffices to prove that

F∗
i is a filter of Fi. (2)

Clearly, vi, the greatest element of Fi, belongs to F∗
i . Suppose that x ∈ F∗

i \ {vi}, y ∈
Fi and x ≺ y; we have to show that y ∈ F∗

i , that is, y is meet-reducible or y = s. We
can assume that y �= s. Since x is meet-reducible and [x, s] is a chain, there is an
a ∈ L \ [x, s] such that x ≺ a. Let b = a ∨ y; it covers y by semimodularity. Notice
that b �≤ s, because otherwise a ≤ s, which is not the case. Hence y = b ∧ s shows
that y is meet-reducible. Thus, y ∈ F∗

i . �

We continue to use the notation introduced right before Lemma 17.

Lemma 19 f1, f2 ∈ J(L).

Proof Assume, by way of contradiction, that, say, f1 is join-reducible. Since ↓s is
distributive by Lemma 17, f1 ∧ v2 ≺ f1. Hence f1 has a lower cover a ≺ f1 such
that a �= f1 ∧ v2. We know that [a, s] is not a chain, because a /∈ F. Hence there are
u1, u2 ∈ [a, s] such that u1 ‖ u2. If u1 is comparable with all elements of F1 ∪ {a, s},
which is a maximal chain in [a, s], then, by the maximality of this chain, u1 ∈ F1 ∪
{a, s}. Therefore either u1 or u2 is incomparable with some element of F1 ∪ {a, s}.

Consequently, we can choose a maximal element y ∈ F1 ∪ {a, s} such that y is in-
comparable with some element of [a, s]. Clearly, y ∈ F1. Let y+ denote the unique
upper cover of y in F1 ∪ {s}. Choose a maximal element x ∈ [a, s] such that x ‖ y. The
maximality of y yields that x < y+, and then the maximality of x gives that x ≺ y+.
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If x < z ≤ s, then the maximality of y implies that z is comparable with all ele-
ments of the chain [y+, s] ∪ {x}, which is a maximal chain in [x, s], so z ∈ [y+, s] ∪ {x}.
This shows that [x, s] is a chain, whence x ∈ F. Since F1 is a chain by Lemma 18, y ∈
F1 and x ‖ y, we obtain that x /∈ F1. Clearly, x �= s. Consequently, x ∈ F2 = [ f2, v2].
This yields that a ≤ x ≤ v2. Therefore, a ≤ f1 ∧ v2. This together with a ≺ f1 and
f1 ∧ v2 ≺ f1 imply a = f1 ∧ v2, a contradiction. �

Lemma 20 K = L \ F is sublattice of L, and it is a slim semimodular lattice. More-
over, L can be obtained from K by adding a fork and then adding |F \ F∗| corners.

Proof Suppose a1, a2 ∈ K but a1 ∨ a2 /∈ K. Then a1 ∨ a2 ∈ F, so a1 and a2 belong to
↓s, which is a distributive lattice by Lemma 17. Since F = F1 ∪ F2 ∪ {s}, there is an
i ∈ {1, 2} such that fi ≤ a1 ∨ a2 ≤ s. Since fi is join-irreducible by Lemma 19, there
is a j ∈ {1, 2} such that fi ≤ a j ≤ s. Then a j ∈ Fi ∪ {s} ⊆ F contradicts a j ∈ K. This
shows that K is closed with respect to joins.

Suppose, seeking a contradiction, that K is not closed with respect to meets. Then
we can choose a maximal element z such that z ∈ F and z is the meet of some a, b ∈
K. Since s is meet-irreducible, we can assume that z ∈ F1. Since v1 = x ∧ y clearly
implies s ∈ {x, y} and s /∈ K, we can also assume that z < v1. We know that z is meet-
reducible, so it has exactly two covers by Lemma 2. One of its covers, denoted by
z+, is in the chain F1. The other cover c of z is not in F1, because z ∈ F1 and F1

is a chain. Let, say a ≥ c. Then b ≥ z+, because the other possibility would lead to
z = a ∧ b ≥ c ∧ c = c.

Let d := c ∨ z+. Then z+ ≺ d by semimodularity. We have d ∈ K, because oth-
erwise z, d ∈ F and z ≤ c ≤ d would imply c ∈ F. We also have d �≤ b, because
otherwise z = a ∧ b ≥ c. Using the covering z+ ≺ d and the relation z+ ≤ b, we
obtain z+ = d ∧ b. Since d, b ∈ K, this contradicts the maximality of z. Thus, K is
a sublattice of L.

The next plan is to omit the minimal element(s) of F \ F∗ one by one, and to
show that this procedure preserve semimodularity and slimness. So assume that F∗ ⊂
F, and, say, f1 < f ∗

1 . Then, by definition and Lemma 19, f1 is a doubly irreducible
element. Let f −

1 and f +
1 be its unique lower cover and upper cover, respectively. If

f −
1 was meet-irreducible, then [ f −

1 , s] = { f −
1 } ∪ [ f1, s] would be a chain and f −

1 would
belong to F1 = [ f1, v1], a contradiction. Hence f −

1 is meet-reducible. If f +
1 was join-

irreducible, then the distributivity of ↓s (by Lemma 17) would imply f +
1 ∧ v2 ≺ f +

1 ,
whence f1 = f +

1 ∧ v2 ≤ v2 ≤ s, so v1, v2 ∈ [ f1, s] would contradict the fact that [ f1, s]
is a chain. Hence f +

1 is join-reducible, and f1 is a weak corner. In fact, for i = 1, 2,

fi is a corner of L, provided fi < f ∗
i , (3)

by Lemma 17 and the dual of Lemma 2.
Let c denote the upper cover of f −

1 distinct from f1; note that c ≺ f +
1 . Since the

distributivity of ↓s gives f +
1 ∧ v2 ≺ f +

1 , f1 �≤ v2 and f +
1 has only two lower covers, we

conclude that c = f +
1 ∧ v2 ≤ v2. Let L′ := L \ { f1}; it is a slim semimodular lattice by

Proposition 10. Since c, the only lower cover of f +
1 in L′, is below v2, the weak fork

determined by s in L′ is F \ { f1} but the strong fork determined by s remains the
same. Repeating this procedure in |F \ F∗| steps we arrive at a slim semimodular
sublattice of L in which the weak fork and the strong fork determined by s are
the same.
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Therefore, by changing the notation if necessary, we can assume that

F = F∗.

We claim that K = L \ F = L \ F∗ is a slim semimodular lattice and, in addition, L
can be obtained from K by adding a fork.

We start from F1 = F∗
1 = { f ∗

1 = z1 ≺ · · · ≺ zn = v1}, where n ∈ N; see Fig. 7 with
n = 3. Define xi = zi ∧ v2. Since v2 ≺ s, the distributivity of ↓s yields that xi ≺ zi

and xi ≺ xi+1, that is, Ti := {xi, zi, xi+1, zi+1} is a covering square for 1 ≤ i < n. By
Lemma 2, f ∗

1 = z1 has a unique upper cover y1 outside F∗
1 . Define yi = zi ∨ y1

for 1 < i ≤ n. Although the yi are not in ↓s, the semimodularity of L yields that
Pi := {zi, yi, zi+1, yi+1} is a covering square for 1 ≤ i < n. Covering squares of L are
4-cells.

Clearly, when we delete the elements of F∗
1 , then, for each i ∈ {1, . . . , n}, two 4-

cells, Ti and Pi, are replaced by a single 4-cell, {xi, yi, xi+1, yi+1}. The same happens
when we delete the elements of F∗

2 . Finally, when we delete the middle element s,
then we get a single 4-cell instead of three old ones. This shows that L \ F∗ remains
a 4-cell lattice. The bottom of each new 4-cell is the bottom of some old 4-cell. Thus,
no two distinct 4-cells of K have the same bottom, and Proposition 1 implies that K
is a slim semimodular lattice. Finally, the consideration above shows that L can be
obtained from K by adding back the (strong) fork we have just deleted. �

Proof of Theorem 11 By Proposition 10, the class Ssm of all slim semimodular lat-
tices is closed with respect to adding a corner. When we add a fork, then all the new
cells are 4-cells, no two new cells have the same bottom, and if a new cell has the
same bottom as an old one, then the old cell is deleted. Hence Proposition 1 implies
that Ssm is closed with respect to adding a fork.

We have to prove that each L ∈ Ssm can be obtained from a chain by the two
permitted operations. We prove this by induction on |L|. We can assume that |L| ≥ 3
and the statement holds for every slim semimodular lattice with size smaller than |L|.

If L happens to be distributive, then Theorem 2.5 of Kelly and Rival [10] allows
us to choose a doubly irreducible element d ∈ Bright(L) \ {0, 1}. Lemma 2 together
with its dual and Lemma 16 yield that d is a corner of L. Consider the sublattice
K = L \ {d}. It is a slim semimodular (in fact, distributive) lattice by Eq. 1. So, the
induction hypothesis yields that K can be obtained by the two permitted operations.
The same holds for L, because L is obtained from K by adding a corner.

Thus, we can assume that L is not distributive. By Lemma 15, we can choose a
cover-preserving S7 sublattice with minimal top. This determines a weak fork F,
see right before Lemma 17. Then K = L \ F is a slim semimodular lattice by
Proposition 20. So, the induction hypothesis implies that K can be obtained from
a chain by the two permitted operations. The same holds for L by Proposition 20.

�

The proof of Theorem 12 is divided into the following two lemmas, both also of
separate interest.

Lemma 21 Let L be a slim semimodular lattice consisting of at least three elements.
Then L can be obtained from a rectangular slim semimodular lattice by removing a
corner f initely many times.
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Proof Let L0 be a slim semimodular lattice of length n ≥ 2, that is, of size at least 3.
If we add corners to L0, each after each, then we obtain a slim semimodular lattice L
of the same length by Theorem 11. However, Lemma 6 yields that |L| ≤ 22n. Hence
the procedure of adding new and new corners terminates in a finite number of steps.
So we can assume that L is a slim semimodular lattice such that no corner can be
added to L; we have to show that L is rectangular.

Let c1 and d1 be the largest element of Bleft(L) ∩ J(L) and Bright(L) ∩ J(L),
respectively. Define C = Bleft(L) ∩ ↓c1 and D = Bright(L) ∩ ↓d1.

We claim that J(L) = (C ∪ D) \ {0}. Lemma 6 implies that J(L) ⊆ (C ∪ D) \ {0}.
Assume, by way of contradiction, that the converse inclusion fails. Then some
element of, say, C \ {0} is join-reducible; let x be the largest such element. Let
x− ∈ Bleft(L) and x+ ∈ Bleft(L) be the lower cover and the upper cover of x on the left
boundary, respectively. Then x+ ∈ J(L) by the maximality of x, and Lemma 4 yields
that x− is meet-irreducible. Hence we can add a corner d to L such that x− ≺ d ≺ x+,
a contradiction. This shows that J(L) = (C ∪ D) \ {0}.

Clearly, L is not a chain, because otherwise a corner could be added to it.
Therefore, C �= D.

Assume, seeking a contradiction, that C ∩ D �= {0}. If x ≺ y ∈ C ∩ D and x ∈ C,
then x ∈ C ∩ D, because otherwise y would not be join-irreducible. Therefore, there
is an atom a ∈ C ∩ D. Since a belongs to both boundary chains, a is the only atom
in L. Hence 0 is meet-irreducible. Let a+ be the unique cover of a in C. It is join-
irreducible, because a is the only atom. Hence we can add a corner d to L such that
0 ≺ d ≺ a+, a contradiction. This shows that C ∩ D = {0}.

Next, by way of contradiction, we suppose that L is not rectangular. Then, up
to C-D symmetry, there is a minimal y ∈ D such that (C \ {0}) ∩ ↓y �= ∅. Let x ∈
(C \ {0}) ∩ ↓y. Since y is not an atom, it has a unique lower cover y− ∈ D. Since
x �≤ y−, we have y = x ∨ y−, which contradicts y ∈ D ⊆ J(L). Consequently, L is
rectangular. �

Lemma 22 Each rectangular slim semimodular lattice L can be obtained from the
direct product of two nontrivial chains by adding forks f initely many times.

Proof We prove the lemma by induction on L. If there is no cover-preserving S7

sublattice in L, then L is distributive by Lemma 15. Moreover, since J(L) determines
L in this case, L is the direct product of two chains and there is nothing to do.

Next, we assume that L contains a cover-preserving S7 sublattice. Choose one with
minimal top t, see Fig. 7. Besides the notation of Fig. 3, the bottom element of this S7

is denoted by b. Let C = Bleft(L) ∩ J(L) and D = Bright(L) ∩ J(L). Observe that

C ∪ {0} and D ∪ {0} are ideals in L. (4)

Indeed, if c ∈ C, x ≤ c, and x /∈ C ∪ {0}, then d ≤ x for some d ∈ D and d ≤ c would
contradict the rectangularity of L. Hence C ∪ {0} is an ideal, and so is D ∪ {0}.

For x ∈ L, let cx and dx denote the largest element of (C ∪ {0}) ∩ ↓x and
(D ∪ {0}) ∩ ↓x, respectively. Note that the mappings ϕC : L → C ∪ {0}, x �→ cx and
ϕD : L → D ∪ {0}, x �→ dx are order-preserving. Further, x = cx ∨ dx.

Let q and r be distinct upper covers of an arbitrary element a ∈ L, and let b =
q ∨ r. Then {a, q, r, b} is a covering square, and we assert that

ca < cb and da < db . (5)
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Indeed, let c+
a and d+

a be the (unique) covers of ca and da in C and D, respectively.
They exist, because otherwise a could not have two distinct covers. We infer from
semimodularity that c+

a ∨ da and ca ∨ d+
a are covers of a = ca ∨ da, and clearly they

are the only covers of a. Hence, up to q-r symmetry, q = c+
a ∨ da and r = ca ∨ d+

a .
This gives b = q ∨ r = c+

a ∨ d+
a , implying Eq. 5.

Let X be a maximal chain that includes {b, v1, s}. Then cs, like any element of
Bleft(L), is on the left of X and v2 is on the right of X. If we had cs ≤ v2, then
Lemma 3 and v1 ‖ v2 would imply cs ≤ v1 ∧ v2 = b, whence cs ≤ cb, although Eq. 5
applied to {b, v1, v2, s} gives cb < cs. Therefore, cs �≤ v2. However, cs < s and s has
only two lower covers, v1 and v2, whence cs ≤ v1. This implies that cs ≤ cv1 . The
reverse inequality also holds, because ϕC is order-preserving. Hence cs = cv1 . So,
applying Eq. 5 to the covering squares {b, v1, v2, s} and {v1, w1, s, t}, see Fig. 7, and
using C-D symmetry, we conclude that

cb < cs = cv1 < ct and db < ds = dv2 < dt. (6)

The minimality of t together with Lemma 15 yield that ↓s is a distributive lattice.
Since b ∧ cs ∈ C by Eq. 4, we get that b ∧ cs ≤ cb. The reverse inequality is evident, so
we get that b ∧ cs = cb. On the other hand, cs = cv1 ≤ v1, b ≺ v1 and cs �≤ b by Eq. 6.
Therefore, b ∨ cs = v1. So, the distributivity of ↓s yields that cb ≺ cs. By Eq. 6, there
are a unique c̃ ∈ C and a unique d̃ ∈ D such that cs ≺ c̃ ≤ ct and ds ≺ d̃ ≤ dt. Taking
the C-D symmetry into account, Eq. 6 strengthens to

cb ≺ cv1 = cs ≺ c̃ ≤ ct and db ≺ dv2 = ds ≺ d̃ ≤ dt. (7)

Since L is rectangular, we know that c ‖ d for all c ∈ C and d ∈ D. Hence we
easily obtain that [cs, s] and [cd, s] are chains. This means that cs and ds belong to the
weak fork F = F(s). Since cs ∈ J(L), its only lower cover is cb. From v1, v2 ∈ [cb, s]
we infer that cb /∈ F. Hence cs = f1, the least element of F1. Since s ∧ c̃ = cs indicates
that cs is meet-reducible, cs = f1 = f ∗

1 by Eq. 2. Similarly, ds = f2 = f ∗
2 . Therefore,

F coincides with the strong fork F∗. Thus, by Lemma 20, L can be obtained from the
slim semimodular lattice K = L \ F∗ by adding a fork.

Finally, we claim that

J(K) = J(L) \ {cs, ds}. (8)

This will clearly imply that K is rectangular, whence the induction hypothesis applies
to it. To prove Eq. 8, it suffices to show that, for all x ∈ K, cx �= cs and dx �= ds.
Suppose the contrary. Then, say, cx = cs for some x ∈ K. Let y := x ∧ s and z :=
y ∨ c̃. Observe that y �= s, because otherwise s < x would lead to t ≤ x, yielding ct ≤
cx = cs, contradicting Eq. 7. Hence y ∈ [cs, v1] = [ f1, v1] = F1, and y has a unique
cover y+ in the chain F1 ∪ {s} = [cs, s]. On the other hand, c̃ �≤ y, because otherwise
c̃ ≤ cy ≤ cx = cs would contradict Eq. 7 again. Hence y ≺ z by semimodularity. Note
that c̃ �≤ s implies that z �≤ s. Hence z and y+ are distinct, so they are the only covers
of y by Lemma 2. Clearly, y < x follows from y ≤ x, x ∈ K, and y ∈ F. Consequently,
one of the two covers of y is less than or equal to x. However, y+ ≤ x would lead
to y+ ≤ x ∧ s = y < y+, a contradiction. The other possibility, z ≤ x, would lead to
c̃ ≤ cz ≤ cx = cs, contradicting Eq. 7. Thus, we have shown that cx �= cs, while dx �= ds

follows by symmetry. �

Proof of Theorem 12 By Lemmas 21 and 22. �
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