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Abstract We introduce generalized Priestley quasi-orders and show that subalgebras
of bounded distributive meet-semilattices are dually characterized by means of
generalized Priestley quasi-orders. This generalizes the well-known characteriza-
tion of subalgebras of bounded distributive lattices by means of Priestley quasi-
orders (Adams, Algebra Univers 3:216–228, 1973; Cignoli et al., Order 8(3):299–
315, 1991; Schmid, Order 19(1):11–34, 2002). We also introduce Vietoris families
and prove that homomorphic images of bounded distributive meet-semilattices are
dually characterized by Vietoris families. We show that this generalizes the well-
known characterization (Priestley, Proc Lond Math Soc 24(3):507–530, 1972) of
homomorphic images of a bounded distributive lattice by means of closed subsets of
its Priestley space. We also show how to modify the notions of generalized Priestley
quasi-order and Vietoris family to obtain the dual characterizations of subalgebras
and homomorphic images of bounded implicative semilattices, which generalize
the well-known dual characterizations of subalgebras and homomorphic images of
Heyting algebras (Esakia, Sov Math Dokl 15:147–151, 1974).

The work of the first author was partially supported by the Georgian National Science
Foundation grant GNSF/ST06/3-003.
The work of the second author was partially supported by 2009SGR-1433 research grant from
the funding agency AGAUR of the Generalitat de Catalunya and by the MTM2008-01139
research grant of the Spanish Ministry of Education and Science.

G. Bezhanishvili (B)
Department of Mathematical Sciences, New Mexico State University,
Las Cruces NM 88003-8001, USA
e-mail: gbezhani@nmsu.edu

R. Jansana
Departament de Lògica, Història i Filosofia de la Ciència,
Universitat de Barcelona, Montalegre 6, 08001 Barcelona, Spain
e-mail: jansana@ub.edu



202 Order (2011) 28:201–220

Keywords Distributive semilattices · Implicative semilattices ·
Heyting algebras · Duality theory

Mathematics Subject Classifications (2010) 06A12 · 06D05 · 06D20

1 Introduction

By the Priestley duality [9, 10], each bounded distributive lattice can be represented
as the lattice of clopen upsets of a Priestley space. This provides a generalization of
the Stone duality [12] by which each Boolean algebra is represented as the Boolean
algebra of clopen subsets of a Stone space. Subalgebras of a given Boolean algebra B
can dually be characterized by means of “good” equivalence relations on the Stone
space X of B (see, e.g., [7, Sec. 8.2]). On the other hand, equivalence relations on
the Priestley space X of a bounded distributive lattice L are no longer sufficient to
characterize subalgebras of L. Nevertheless, as follows from [1, 5, 11], subalgebras of
L can be characterized by means of “good” quasi-orders on X. The aim of this paper
is to solve a similar problem in the more general setting of bounded distributive
meet-semilattices. In [2] (see also [4]) we have developed a new “Priestley-like”
duality for the category of bounded distributive meet-semilattices and bounded
meet-semilattice homomorphisms. In this paper we take advantage of this duality
to give the dual characterization of subalgebras of a given bounded distributive
meet-semilattice. As a corollary, we obtain the dual characterization of [1, 5, 11] of
subalgebras of a bounded distributive lattice.

In [2] (see also [3]) we have also developed a similar duality for bounded
implicative semilattices. Based on it, we give the dual characterization of subalgebras
of a bounded implicative semilattice. As a particular case, we obtain the dual
characterization of [6] of subalgebras of a Heyting algebra, from which the dual
characterization of subalgebras of a Boolean algebra follows as a corollary.

In addition, we give the dual characterization of homomorphic images of a
bounded distributive meet-semilattice by means of Vietoris families. In the particular
case of bounded distributive lattices, this leads to the well-known characterization
of homomorphic images of a bounded distributive lattice L by means of closed
subsets of the Priestley space of L. We conclude the paper by showing that Vietoris
families also provide the dual characterization of homomorphic images of bounded
implicative semilattices, and show how in the particular case of Heyting algebras
this leads to the dual characterization of [6] of homomorphic images of a Heyting
algebra by means of closed upsets of its Esakia space. This immediately leads to the
well-known dual characterization of homomorphic images of a Boolean algebra as
closed subsets of its Stone space.

Since we rely heavily on the results and techniques developed in [2–4], it might be
useful to have [2–4] handy, although we try to give all the needed background from
[2–4] in the next section.

2 Duality for Distributive and Implicative Semilattices

In this preliminary section we recall the basics of the duality for distributive and
implicative semilattices developed in [2–4].
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We recall that a meet-semilattice is a commutative idempotent monoid L =
〈L,∧, 1〉. A partial order ≤ is defined on L by a ≤ b iff a = a ∧ b . It is easy
to see that a ∧ b is the greatest lower bound of {a, b}, and that 1 is the largest
element of 〈L, ≤〉. We call L bounded if L has a least element, we denote by 0. A
bounded meet-semilattice L = 〈L,∧, 0, 1〉 is distributive if for each a, b 1, b 2 ∈ L with
b 1 ∧ b 2 ≤ a, there exist c1, c2 ∈ L such that b 1 ≤ c1, b 2 ≤ c2, and a = c1 ∧ c2. Let L
and S be bounded meet-semilattices. A map h : L → S is a bounded meet-semilattice
homomorphism if for each a, b ∈ L, we have h(a ∧ b) = h(a) ∧ h(b), h(1) = 1, and
h(0) = 0. We denote by BDM the category of bounded distributive meet-semilattices
and bounded meet-semilattice homomorphisms. Let also BDL denote the category of
bounded distributive lattices and bounded lattice homomorphisms. Since the meet-
semilattice reduct of a bounded distributive lattice belongs to BDM, we view BDL as
a subcategory of BDM.

A bounded meet-semilattice L is a bounded implicative semilattice if for each
a ∈ L, the order-preserving map a ∧ (−) : L → L has a right adjoint, denoted by a →
(−) : L → L. For two bounded implicative semilattices L and S, a map h : L → S is
a bounded implicative semilattice homomorphism if h is a bounded meet-semilattice
homomorphism and h(a → b) = h(a) → h(b) for each a, b ∈ L. We denote by BIM
the category of bounded implicative semilattices and bounded implicative semilattice
homomorphisms. It is well-known that the meet-semilattice reduct of a bounded
implicative semilattice belongs to BDM. Thus, we view BIM as a subcategory of BDM.
If a bounded implicative semilattice L is in addition a lattice, then L is a Heyting
algebra. A Heyting algebra homomorphism h from a Heyting algebra A to a Heyting
algebra B is a bounded implicative semilattice homomorphism preserving join (that
is, h : A → B is in addition a lattice homomorphism). Let HA denote the category
of Heyting algebras and Heyting algebra homomorphisms. Since the implicative
semilattice reduct of a Heyting algebra belongs to BIM, we view HA as a subcategory
of BIM.

For a partially ordered set 〈X, ≤〉 and A ⊆ X, let ↑A = {x ∈ X : ∃a ∈ A with a ≤
x} and ↓A = {x ∈ X : ∃a ∈ A with x ≤ a}. If A is the singleton {a}, then we write ↑a
and ↓a instead of ↑{a} and ↓{a}, respectively. We call A an upset (resp. downset) if
A = ↑A (resp. A = ↓A). In addition, we denote by Au the set of upper bounds of A
and by Al the set of lower bounds of A. Thus, Aul denotes the set of lower bounds
of the set of upper bounds of A.

A Priestley space is a compact ordered topological space X = 〈X, τ,≤〉 satisfying
the Priestley separation axiom: if x �≤ y, then there is a clopen (closed and open) upset
U of X such that x ∈ U and y �∈ U . It follows from the Priestley separation axiom
that X is Hausdorff and that the clopen sets form a basis for the topology. Thus, each
Priestley space is a Stone space (that is, it is compact Hausdorff zero-dimensional).
For two Priestley spaces X and Y, a map f : X → Y is a Priestley morphism if f
is continuous and order-preserving. We denote the category of Priestley spaces and
Priestley morphisms by PS.

It is a well-known result of Priestley [9, 10] that BDL is dually equivalent to
PS. The functors (−)∗ : BDL → PS and (−)∗ : PS → BDL establishing the dual
equivalence are constructed as follows: If L is a bounded distributive lattice, then
L∗ = 〈X, τ,≤〉, where X is the set of prime filters of L, ≤ is set-theoretic inclusion,
and τ is the topology generated by the basis {ϕ(a) − ϕ(b) : a, b ∈ L}, where

ϕ(a) = {x ∈ X : a ∈ x}
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is the Stone map. If h ∈ hom(L, K), then h∗ = h−1. If X is a Priestley space, then X∗
is the lattice of clopen upsets of X, and if f ∈ hom(X, Y), then f ∗ = f −1.

Esakia’s duality for Heyting algebras is a restricted Priestley duality. We recall
that an Esakia space is a Priestley space X = 〈X, τ,≤〉 in which the downset of each
clopen is again clopen. We also recall that an Esakia morphism from an Esakia space
X to an Esakia space Y is a Priestley morphism f such that for all x ∈ X and y ∈ Y,
from f (x) ≤ y it follows that there is z ∈ X with x ≤ z and f (z) = y. We denote the
category of Esakia spaces and Esakia morphisms by ES. Then it follows from [6] that
HA is dually equivalent to ES. In fact, the same functors (−)∗ and (−)∗, restricted to
HA and ES, respectively, establish the desired dual equivalence.

2.1 Duality for Distributive Meet-Semilattices

In [2–4] we generalized the above dualities to the settings of distributive and
implicative semilattices. We summarize the main results of [2–4] below. Let 〈X, τ,≤〉
be a Priestley space and X0 be a dense subset of X. For a clopen subset U of
X, let max(U) denote the set of maximal points of U . We call X0 cof inal in U if
max(U) ⊆ X0. Let U be a clopen upset of X. We call U X0-admissible if X0 is cofinal
in X − U . For x ∈ X, let Ix denote the family of X0-admissible clopen upsets U of X
such that x �∈ U . A quadruple X = 〈X, τ,≤, X0〉 is said to be a generalized Priestley
space if it satisfies the following five conditions:

(1) 〈X, τ,≤〉 is a Priestley space.
(2) X0 is a dense subset of X.
(3) For each x ∈ X, there is y ∈ X0 such that x ≤ y.
(4) x ∈ X0 iff Ix is updirected (that is, U, V ∈ Ix imply the existence of W ∈ Ix

such that U ∪ V ⊆ W).
(5) x ≤ y iff x ∈ U implies y ∈ U for each X0-admissible clopen upset U of X.

For a generalized Priestley space X = 〈X, τ,≤X , X0〉, let X∗ denote the set of X0-
admissible clopen upsets of X.

Let X and Y be nonempty sets and R ⊆ X × Y be a binary relation. For each x ∈
X, let R[x] = {y ∈ Y : xRy}; and for each A ⊆ Y, let �R A = {x ∈ X : R[x] ⊆ A}.
Let X and Y be generalized Priestley spaces. We call a binary relation R ⊆ X × Y a
generalized Priestley morphism if the following three conditions are satisfied:

(1) If xR�y, then there is a Y0-admissible clopen upset U of Y such that R[x] ⊆ U
and y �∈ U .

(2) If U is a Y0-admissible clopen upset of Y, then �RU is a X0-admissible clopen
upset of X.

(3) For each x ∈ X there is y ∈ Y such that xRy.

Remark 2.1 It follows from conditions (1) and (2) that �R(U ∩ V) = �RU ∩ �RV
for U, V ∈ Y∗ and that �RY = X; in addition, condition (3) guarantees that �R∅ =
∅. In [2–4] the binary relations R satisfying conditions (1) and (2) were called
generalized Priestley morphisms. If in addition R satisfied condition (3), then R
was called a total generalized Priestley morphism. Since in this paper we are only
interested in bounded meet-semilattice homomorphisms, we restrict our attention
to the binary relations that satisfy all three conditions (1)–(3) and simply call them
generalized Priestley morphisms.



Order (2011) 28:201–220 205

We point out that conditions (1) and (2) imply that for each B ⊆ Y the set
R−1[B] = {x ∈ X : ∃y ∈ B with xRy} is a downset of X and that for each A ⊆ X
the set R[A] = {y ∈ Y : ∃x ∈ A with xRy} is an upset of Y.

Note that the usual (set-theoretic) composition of two generalized Priestley mor-
phisms may not be a generalized Priestley morphism. Let R ⊆ X × Y and S ⊆ Y × Z
be two generalized Priestley morphisms. We define the composition of R and S as
the binary relation S ∗ R ⊆ X × Z given by

x(S ∗ R)z iff (∀U ∈ Z ∗)((S ◦ R)[x] ⊆ U ⇒ z ∈ U),

where S ◦ R is the usual set-theoretic composition of R and S. Then S ◦ R ⊆ S ∗ R,
S ∗ R is a generalized Priestley morphism, and if S ◦ R is already a generalized
Priestley morphism, then S ∗ R = S ◦ R. With this composition, generalized Priestley
spaces and generalized Priestley morphisms form a category we denote by GPS.
The categories BDM and GPS turn out to be dually equivalent. The functors
(−)∗ : BDM → GPS and (−)∗ : GPS → BDM that establish their dual equivalence
are constructed as follows.

The functor (−)∗ Let L be a bounded distributive meet-semilattice. We call a
nonempty subset I of L a Frink ideal (F-ideal) if for each finite subset A of I we have
Aul ⊆ I. Equivalently, I is an F-ideal iff for each a1, . . . , an ∈ I and c ∈ L, whenever⋂n

i=1 ↑ai ⊆ ↑c, we have c ∈ I. We call an F-ideal I prime if a ∧ b ∈ I implies a ∈ I or
b ∈ I. A subset F of L is said to be an optimal f ilter if F = L − I for some prime
F-ideal I of L. It turns out that F-ideals are exactly the traces of prime ideals and
optimal filters are exactly the traces of prime filters of the distributive envelope D(L)

of L, where D(L) is the free distributive lattice generated by the meet-semilattice L
(for a proper definition of D(L) see [2, Sec. 4.1] or [4, Sec. 3].) An important property
of optimal filters is that they separate filters and F-ideals from each other; that is, if
F is a filter and I is an F-ideal such that F ∩ I = ∅, then there exists an optimal filter
P such that F ⊆ P and P ∩ I = ∅. We refer to this as the optimal f ilter lemma.

Let F be a proper filter of L. We call F prime if for each two filters G and H
of L we have G ∩ H ⊆ F implies G ⊆ F or H ⊆ F. It turns out that each prime
filter is optimal, but that the two concepts coincide only when L is a lattice. We also
mention that, like in a distributive lattice, there is a 1–1 correspondence between
prime filters and prime ideals of L, which is established, as usual, by taking set-
theoretic complements. However, the notion of an ideal in L is slightly different
from the usual definition of an ideal in a lattice. Namely, a nonempty subset I of L
is an ideal if I is an updirected downset; that is, I is a downset and a, b ∈ I implies
{a, b}u ∩ I �= ∅. Equivalently, a nonempty downset I is an ideal iff for each a, b ∈ I
we have (↑a ∩ ↑b) ∩ I �= ∅. The notion of a prime ideal is usual: a proper ideal I is
prime if a ∧ b ∈ I implies a ∈ I or b ∈ I. Although there are less prime filters than
optimal filters of L, prime filters are still capable of separating filters from ideals;
that is, if F is a filter and I is an ideal such that F ∩ I = ∅, then there exists a prime
filter P such that F ⊆ P and P ∩ I = ∅. We refer to this as the prime f ilter lemma.

We give a simple example, which is illustrative in separating the concept of ideal
from that of F-ideal, and the concept of prime filter from that of optimal filter. Let
L be the distributive meet-semilattice shown in Fig. 1. Note that L is in fact an
implicative semilattice. Moreover, I = {0, a, b} is an F-ideal, but it is not an ideal
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Fig. 1 The implicative
semilattice L
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of L. Furthermore, F = {1, c1, c2, . . . } is an optimal filter, which is not a prime filter
of L.

Let L∗ be the set of optimal filters of L and let L+ be the set of prime filters
of L. For a ∈ L, let ϕ(a) = {x ∈ L∗ : a ∈ x}. We set L∗ = 〈L∗, τ,≤, L+〉, where τ is
the topology generated by the subbasis {ϕ(a) : a ∈ L} ∪ {ϕ(b)c : b ∈ L} and ≤ is set-
theoretic inclusion. For h ∈ hom(L, K), let Rh ⊆ K∗ × L∗ be given by

xRh y iff h−1(x) ⊆ y

for each x ∈ K∗ and y ∈ L∗. We set f∗ = Rh. Then (−)∗ : BDM → GPS is a well-
defined functor.

The functor (−)∗ For a generalized Priestley space X, we set X∗ = 〈X∗, ∩, X, ∅〉.
For R ∈ hom(X, Y), let hR : Y∗ → X∗ be given by

hR(U) = �RU

for each U ∈ Y∗. We set R∗ = hR. Then (−)∗ : GPS → BDM is a well-defined
functor. Moreover, the functors (−)∗ : BDM → GPS and (−)∗ : GPS → BDM es-
tablish the desired dual equivalence of BDM and GPS. More precisely, the natural
transformation from the identity functor idBDM : BDM → BDM to the functor (−)∗∗ :
BDM → BDM is given by associating with each object L of BDM the morphism
ϕ : L → L∗∗ of BDM, which is an isomorphism; and the natural transformation from
the identity functor idGPS : GPS → GPS to the functor (−)∗∗ : GPS → GPS is given
by first defining the order-homeomorphism ε : X → X∗∗ by

ε(x) = {U ∈ X∗ : x ∈ U}
for each x ∈ X ∈ GPS, and then associating with each object X of GPS the mor-
phism Rε ⊆ X × X∗∗ of GPS by

xRε∇ iff ε(x) ⊆ ∇
for each x ∈ X and ∇ ∈ X∗∗.

2.2 Duality for Implicative Semilattices

In the case of bounded implicative semilattices, we obtain the following restricted
version of the above duality. Let X = 〈X, τ,≤, X0〉 be a generalized Priestley space.
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Then each clopen U in X has the form
⋃n

i=1

⋂m
j=1(Ui − V j), where Ui, V j ∈ X∗. We

call U an Esakia clopen if U has the form
⋃n

i=1(Ui − Vi), where Ui, Vi ∈ X∗, and we
call X a generalized Esakia space if for each Esakia clopen U , the set ↓U is clopen
in X. For a generalized Esakia space X, define the binary operation → on X∗ =
〈X∗,∩, X,∅〉 by

U → V = {x ∈ X : ↑x ∩ U ⊆ V}.
Then 〈X∗, →〉 is a bounded implicative semilattice. Let X and Y be generalized
Priestley spaces and R ⊆ X × Y be a generalized Priestley morphism. We call R
a generalized Esakia morphism if for each x ∈ X and y ∈ Y0, there exists z ∈ X0

such that x ≤ z and R[z] = ↑y. If R ⊆ X × Y is a generalized Esakia morphism, then
hR : Y∗ → X∗ is a homomorphism of bounded implicative semilattices.

LetGES denote the category of generalized Esakia spaces and generalized Esakia
morphisms. (Again, the composition of two generalized Esakia morphisms is defined
as for generalized Priestley morphisms.) Then the restriction of (−)∗ toGES is a well-
defined functor (−)∗ : GES → BIM. The converse is also true; that is, the restriction
of (−)∗ to BIM is a well-defined functor (−)∗ : BIM → GES. These functors establish
the desired dual equivalence of BIM and GES.

2.3 Priestley and Esakia Dualities as Particular Cases

We give a brief account of how Priestley duality between bounded distributive
lattices and Priestley spaces and Esakia duality between Heyting algebras and Esakia
spaces can be obtained as particular cases of the above dualities.

Let L be a bounded distributive meet-semilattice. If L happens to be a lattice,
then the notions of optimal and prime filters of L coincide, so L∗ = L+, and so L∗ is
simply the Priestley space 〈L+, τ,≤〉. Similarly, if X = 〈X, τ,≤, X0〉 is a generalized
Priestley space such that X0 = X, then X is simply the Priestley space 〈X, τ,≤〉.

Let X and Y be generalized Priestley spaces and R ⊆ X × Y be a generalized
Priestley morphism. We call R functional if for each x ∈ X there exists y ∈ Y such
that R[x] = ↑y. If X and Y happen to be Priestley spaces, then functional generalized
Priestley morphisms correspond to Priestley morphisms. The correspondence is
obtained as follows: If R ⊆ X × Y is a functional generalized Priestley morphism,
then fR : X → Y defined by

fR(x) = the least lement of R[x]
is a Priestley morphism; if f : X → Y is a Priestley morphism, then R f ⊆ X × Y
defined by

xR f y iff f (x) ≤ y

is a functional generalized Priestley morphism. Moreover, fR f = f and R fR = R.
Thus, the category PSF of Priestley spaces and functional generalized Priestley
morphisms is isomorphic to PS. On the other hand, BDL is dually equivalent to PSF.
Priestley duality follows.

Similarly, if L is a bounded implicative semilattice which happens to be a Heyting
algebra, then L∗ is simply the Esakia space 〈L+, τ,≤〉; and if X = 〈X, τ,≤, X0〉
is a generalized Esakia space in which X0 = X, then X is simply the Esakia
space 〈X, τ,≤〉. Moreover, functional generalized Esakia morphisms between Esakia
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spaces correspond to Esakia morphisms, and so the category ESF of Esakia spaces
and functional generalized Esakia morphisms is isomorphic to ES. Furthermore, HA
is dually equivalent to ESF. Esakia duality follows.

2.4 The Correspondence Between 1–1 and onto Morphisms

As a consequence of the dualities described above, we obtain that 1–1 morphisms in
one category correspond to onto morphisms in its dual category and vice versa. Here
we give an exact formulation of this for the categories BDM and GPS which contain
all the other categories we consider in this paper as subcategories. Let X and Y be
generalized Priestley spaces and let R ⊆ X × Y be a generalized Priestley morphism.
We say that R is onto if for each y ∈ Y there exists x ∈ X such that R[x] = ↑y. We
also say that R is 1–1 if for each x ∈ X and U ∈ X∗ with x �∈ U , there exists V ∈ Y∗
such that R[U] ⊆ V and R[x] �⊆ V. Then we have that R ⊆ X × Y is 1–1 iff hR :
Y∗ → X∗ is onto, and that R is onto iff hR is 1–1. Consequently, for two bounded
distributive meet-semilattices L and K and a homomorphism h : L → K, we have
that h is 1–1 iff Rh ⊆ K∗ × L∗ is onto, and that h is onto iff Rh is 1–1.

3 Generalized Priestley Quasi-Orders

Let X = 〈X, τ,≤〉 be a Priestley space and let Q be a quasi-order on X extending ≤.
We call U ⊆ X a Q-upset if x ∈ U and xQy imply y ∈ U . We say that Q is a Priestley
quasi-order if xQ�y implies there exists a clopen Q-upset U of X such that x ∈ U and
y /∈ U . In other words, Q is a Priestley quasi-order if xQy iff x ∈ U implies y ∈ U for
each clopen Q-upset U of X. Let L be a bounded distributive lattice. It is well-known
[1, 5, 11] that subalgebras of L dually correspond to Priestley quasi-orders on L+. In
fact, the complete lattice 〈S, ⊆〉 of subalgebras of L is isomorphic to the complete
lattice 〈P, ⊇〉 of Priestley quasi-orders on L+.

We generalize the notion of a Priestley quasi-order to that of a generalized
Priestley quasi-order and show that subalgebras of a bounded distributive meet-
semilattice L dually correspond to generalized Priestley quasi-orders on L∗. In fact,
we introduce a partial order ≤ on the set GP of generalized Priestley quasi-orders on
L∗ and show that the poset 〈S, ⊆〉 of subalgebras of L is isomorphic to 〈GP,≥〉.
We also introduce the notion of a generalized Esakia quasi-order and show that
the complete lattice 〈S, ⊆〉 of subalgebras of a bounded implicative semilattice L
is isomorphic to the poset 〈GE,≥〉 of generalized Esakia quasi-orders on L∗. In
addition, we show how the isomorphism between the lattice of subalgebras of a
bounded distributive lattice L and the lattice of Priestley quasi-orders on L+ and
the isomorphism between the lattice of subalgebras of a Heyting algebra A and the
lattice of Esakia quasi-orders on A+ are both easy consequences of our results.

3.1 Subalgebras of Bounded Distributive Meet-Semilattices

By a subalgebra of a bounded distributive meet-semilattice L we mean a bounded
distributive meet-semilattice S, which is a (∧, 0, 1)-subalgebra of L. (Note that not
every (∧, 0, 1)-subalgebra of L is necessarily distributive.)
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Lemma 3.1 Let L be a bounded distributive meet-semilattice and let S be a subalgebra
of L.

(1) If x ∈ S∗, then there is y ∈ L∗ such that x = y ∩ S.
(2) If x ∈ S+, then there is y ∈ L+ such that x = y ∩ S.

Proof

(1) Let x ∈ S∗. Consider the filter G = ↑Lx of L and the F-ideal J of L generated
by S − x. We claim that G ∩ J = ∅. If not, then there is a ∈ G ∩ J. Therefore,
there exist b ∈ x and c1, . . . , cn ∈ S − x such that b ≤L a and

⋂n
i=1 ↑Lci ⊆ ↑La.

Since ↑La ⊆ ↑Lb , we have
⋂n

i=1 ↑Lci ⊆ ↑Lb . Thus,
⋂n

i=1 ↑Sci ⊆ ↑Sb . Since x
is an optimal filter of S, we have S − x is an F-ideal of S. Thus, b ∈ S − x, a
contradiction. We conclude that G ∩ J = ∅. Then, by the optimal filter lemma,
there is y ∈ L∗ such that G ⊆ y and y ∩ J = ∅. Consequently, y ∩ S = x.

(2) Let x ∈ S+. Then S − x is a prime ideal of S. We show that ↓L(S − x) is an
ideal of L. If a, b ∈ ↓L(S − x), then there exist a′, b ′ ∈ S − x such that a ≤L a′
and b ≤L b ′. Since S − x is an ideal, ↑Sa′ ∩ ↑Sb ′ ∩ (S − x) �= ∅. Let c ∈ ↑Sa′ ∩
↑Sb ′ ∩ (S − x). Then c ∈ ↑La ∩ ↑Lb ∩ ↓L(S − x). Thus, ↓L(S − x) is an ideal
of L. We claim that ↑Lx ∩ ↓L(S − x) = ∅. If a ∈ ↑Lx ∩ ↓L(S − x), then there
exist b ∈ x and c ∈ S − x such that b ≤L a ≤L c. Thus, b ≤S c, and so c ∈ x, a
contradiction. By the prime filter lemma, there is a prime filter y of L such that
↑Lx ⊆ y and y ∩ ↓L(S − x) = ∅. Consequently, x = y ∩ S. ��

Definition 3.2 Let L be a bounded distributive meet-semilattice and let S be a
subalgebra of L. We set YS = {x ∈ L+ : x ∩ S ∈ S+}.

Lemma 3.3 Let L be a bounded distributive meet-semilattice, S be a subalgebra of L,
and x ∈ L∗. Then x ∩ S = ⋂{y ∩ S : x ∩ S ⊆ y ∈ YS}.

Proof It is clear that x ∩ S ⊆ ⋂{y ∩ S : x ∩ S ⊆ y ∈ YS}. Conversely, let a /∈ x ∩ S.
Then a ∈ S − x, and so (x ∩ S) ∩ ↓Sa = ∅. By the prime filter lemma, there is a prime
filter z of S such that x ∩ S ⊆ z and a /∈ z. By Lemma 3.1, there is y ∈ L+ such that
z = y ∩ S. Then y ∈ YS and a /∈ y ∩ S. Thus,

⋂{y ∩ S : x ∩ S ⊆ y ∈ YS} ⊆ x ∩ S. ��

Let L be a bounded distributive meet-semilattice and let S be a subalgebra of L.
Define a binary relation QS ⊆ L∗ × L∗ by

xQS y iff x ∩ S ⊆ y.

Lemma 3.4 The relation QS is a quasi-order on L∗. Moreover, for each x, y ∈ L∗, if
x ⊆ y, then xQS y.

Proof Straightforward. ��

Let L be a bounded distributive meet-semilattice and S be a subalgebra of L. We
characterize the sets ϕL(a) with a ∈ S. For X ⊆ L∗, let ↓QS

(X) = y ∈ L∗ : ∃x ∈ X
with yQSx.
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Lemma 3.5 Let L be a bounded distributive meet-semilattice, S be a subalgebra of L,
and a ∈ S.

(1) ϕL(a) is a QS-upset of L∗.
(2) ϕL(a) = [↓QS

(YS − ϕL(a))]c.

Proof

(1) Let x ∈ ϕL(a) and xQS y. Then x ∩ S ⊆ y, and as a ∈ x ∩ S, we have a ∈ y. Thus,
y ∈ ϕL(a), and so ϕL(a) is a QS-upset of L∗.

(2) By (1), ϕL(a) is a QS-upset of L∗. Therefore, ϕL(a) ∩ ↓QS
(YS − ϕL(a)) = ∅,

and so ϕL(a) ⊆ [↓QS
(YS − ϕL(a))]c. Conversely, suppose that x ∈ [↓QS

(YS −
ϕL(a)]c. Then (∀y ∈ YS)(xQS y ⇒ a ∈ y). If a /∈ x, then a /∈ x ∩ S. By Lemma
3.3, there exists y ∈ YS such that x ∩ S ⊆ y and a /∈ y. Therefore, xQS y, and
so a ∈ y, a contradiction. Thus, a ∈ x, and so x ∈ ϕL(a). It follows that ϕL(a) =
[↓QS

(YS − ϕL(a))]c. ��

Lemma 3.6 Let L be a bounded distributive meet-semilattice, S be a subalgebra of L,
and a ∈ L. If ϕL(a) = [↓QS

(YS − ϕL(a))]c, then a ∈ S.

Proof Suppose that a /∈ S. First assume that there exist a1, . . . , an ∈ S such that a =
a1 ∨L . . . ∨L an. Then ϕL(a) = ϕL(a1) ∪ . . . ∪ ϕL(an). If a1 ∨S . . . ∨S an exists in S and
a1 ∨S . . . ∨S an = b , then

⋂n
i=1 ↑Sai = ↑Sb and a < b . By the optimal filter lemma,

there exists x ∈ L∗ such that b ∈ x and a /∈ x. Then x /∈ ϕL(a) = [↓QS
(YS − ϕL(a))]c,

and so there exists y ∈ YS such that xQS y and y /∈ ϕL(a). Since b ∈ x ∩ S ⊆ y, we
have

⋂n
i=1 ↑Sai = ↑Sb ⊆ y ∩ S ∈ S+. Therefore, ↑Sai ⊆ y ∩ S for some i ≤ n. Thus,

ai ∈ y, and so y ∈ ϕL(ai) ⊆ ϕL(a), a contradiction. It follows that a1 ∨S . . . ∨S an does
not exist in S. Let F = ⋂n

i=1 ↑Sai and I be the F-ideal of S generated by {a1, . . . , an}.
If there is c ∈ F ∩ I, then

⋂n
i=1 ↑Sai = ↑Sc. This implies that c = a1 ∨S . . . ∨S an, a

contradiction. Thus, F ∩ I = ∅, and by the optimal filter lemma, there exists x ∈ S∗
such that F ⊆ x and x ∩ I = ∅. By Lemma 3.1, there exists y ∈ L∗ such that x = y ∩ S.
If y ∈ ϕL(a), then y ∈ ϕL(a1) ∪ . . . ∪ ϕL(an). So ai ∈ y for some i ≤ n, which is a
contradiction as ai ∈ I and (y ∩ S) ∩ I = x ∩ I = ∅. Thus, y /∈ ϕL(a) = [↓QS

(YS −
ϕL(a))]c, and so there exists z ∈ YS − ϕL(a) such that yQSz. Therefore, y ∩ S ⊆ z,
so

⋂n
i=1 ↑Sai ⊆ y ∩ S ⊆ z, and so there is i ≤ n such that ↑Sai ⊆ z. Thus, ai ∈ z, and

so z ∈ ϕL(ai) ⊆ ϕL(a), a contradiction. It follows that our assumption that there exist
a1, . . . , an ∈ S such that a = a1 ∨L . . . ∨L an is false.

Consider the filter ↑La and the F-ideal J of L generated by ↓La ∩ S. If there is b ∈
↑La ∩ J, then a ≤L b and there exist c1, . . . , cn ∈ ↓La ∩ S such that

⋂n
i=1 ↑Lci ⊆ ↑Lb .

So a ∈ ⋂n
i=1 ↑Lci ⊆ ↑Lb ⊆ ↑La, and so

⋂n
i=1 ↑Lci = ↑La. Therefore, a = c1 ∨L · · · ∨L

cn, a contradiction. Thus, ↑La ∩ J = ∅, and by the optimal filter lemma, there exists
x ∈ L∗ such that ↑La ⊆ x and x ∩ J = ∅. Now consider the filter G of L generated
by x ∩ S and the ideal ↓La. If there is b ∈ G ∩ ↓La, then c ≤L b ≤L a for some c ∈
x ∩ S. Therefore, c ≤L a, so c ∈ ↓La ∩ S, which is not possible because c ∈ x and x ∩
(↓La ∩ S) = ∅. Therefore, G ∩ ↓La = ∅, and by the prime filter lemma, there is y ∈
L+ such that G ⊆ y and y ∩ ↓La = ∅. Thus, x ∩ S ⊆ y and a /∈ y. So xQS y and y ∈
YS − ϕL(a), and so x /∈ [↓QS

(YS − ϕL(a))]c = ϕL(a), a contradiction. Consequently,
our assumption that a /∈ S is false, and so a ∈ S. ��



Order (2011) 28:201–220 211

Let L be a bounded distributive meet-semilattice and let S be a subalgebra of L.
We set

YS
∗ = {ϕL(a) : ϕL(a) = [↓QS

(YS − ϕL(a))]c}.
The next lemma is an immediate consequence of Lemmas 3.5 and 3.6.

Lemma 3.7 Let L be a bounded distributive meet-semilattice and let S be a subalgebra
of L. Then YS

∗ = {ϕL(a) : a ∈ S}.

Lemma 3.8 Let L be a bounded distributive meet-semilattice and let S be a subalgebra
of L. For each x ∈ L+, we have x ∈ YS if f for each a1, . . . , an ∈ S with x /∈ ϕL(a1) ∪
. . . ∪ ϕL(an), there is a ∈ S such that x /∈ ϕL(a) and ϕL(a1) ∪ . . . ∪ ϕL(an) ⊆ ϕL(a).

Proof Suppose that x ∈ YS. Then x ∈ L+ and x ∩ S ∈ S+. Let a1, . . . , an ∈ S with
x /∈ ϕL(a1) ∪ . . . ∪ ϕL(an). If

⋂n
i=1 ↑Sai ⊆ x ∩ S, then as x ∩ S ∈ S+, there is i ≤ n such

that ↑Sai ⊆ x ∩ S, so x ∈ ϕL(ai) ⊆ ϕL(a1) ∪ . . . ∪ ϕL(an), a contradiction. Therefore,⋂n
i=1 ↑Sai �⊆ x ∩ S. Thus, there is a ∈ S such that a ∈ ⋂n

i=1 ↑Sai and a /∈ x. This implies
that ϕL(a1) ∪ . . . ∪ ϕL(an) ⊆ ϕL(a) and x /∈ ϕL(a). Conversely, suppose that x ∈ L+
and for each a1, . . . , an ∈ S with x /∈ ϕL(a1) ∪ . . . ∪ ϕL(an), there is a ∈ S such that
x /∈ ϕL(a) and ϕL(a1) ∪ . . . ∪ ϕL(an) ⊆ ϕL(a). We show that x ∩ S is a prime filter
of S. If not, then there exist filters F1 and F2 of S such that F1 ∩ F2 ⊆ x ∩ S, F1 �⊆
x ∩ S, and F2 �⊆ x ∩ S. Let a1 ∈ F1 − x and a2 ∈ F2 − x. Then x /∈ ϕL(a1) ∪ ϕL(a2). By
the assumption, there exists a ∈ S such that x /∈ ϕL(a) and ϕL(a1) ∪ ϕL(a2) ⊆ ϕL(a).
Therefore, a /∈ x and a1, a2 ≤ a. Thus, a ∈ ↑Sa1 ∩ ↑Sa2 ⊆ F1 ∩ F2 ⊆ x, a contradic-
tion. It follows that x ∩ S is a prime filter of S, and so x ∈ YS. ��

The properties of QS and YS suggest the following definition. Let X = 〈X, τ,≤,

X0〉 be a generalized Priestley space, Q be a quasi-order on X extending ≤, and
Y ⊆ X0. We set

Y∗ = {U ∈ X∗ : U = [↓Q(Y − U)]c}.

Definition 3.9 Let X be a generalized Priestley space. We call a pair 〈Q, Y〉 a
generalized Priestly quasi-order if 〈Q, Y〉 satisfies the following conditions:

(1) Q is a quasi-order on X extending ≤.
(2) Y ⊆ X0.
(3) For each x ∈ X there is y ∈ Y such that xQy.
(4) If x ∈ X0, then x ∈ Y iff for each U1, . . . , Un ∈ Y∗ with x /∈ U1 ∪ . . . ∪ Un, there

is V ∈ Y∗ such that x /∈ V and U1 ∪ . . . ∪ Un ⊆ V.
(5) xQy iff (∀U ∈ Y∗)(x ∈ U ⇒ y ∈ U).

Theorem 3.10 Let L be a bounded distributive meet-semilattice and let S be a subal-
gebra of L. Then 〈QS, YS〉 is a generalized Priestley quasi-order on L∗.

Proof By Lemma 3.4, 〈QS, YS〉 satisfies condition (1) of Definition 3.9. The
definition of YS implies that 〈QS, YS〉 satisfies condition (2). We show that 〈QS, YS〉
satisfies condition (3). For each x ∈ L∗ by Lemma 3.3, there exists y ∈ YS such that
x ∩ S ⊆ y, so xQS y, and so condition (3) is satisfied. That 〈QS, YS〉 satisfies condition
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(4) follows from Lemmas 3.7 and 3.8. Finally, it follows from Lemmas 3.5 and 3.6
and the definition of QS that 〈QS, YS〉 satisfies condition (5). Thus, 〈QS, YS〉 is a
generalized Priestley quasi-order on L∗. ��

Lemma 3.11 Let X be a generalized Priestley space and let (Q, Y) be a generalized
Priestley quasi-order on X. Then:

(1) 〈Y∗, ∩, X, ∅〉 is a bounded distributive meet-semilattice.
(2) Y∗ is a subalgebra of X∗.

Proof

(1) Since [↓Q(Y − X)]c = (↓Q∅)c = ∅c = X, we have X ∈ Y∗. Also, [↓Q(Y −
∅)]c = (↓QY)c = Xc = ∅, and so ∅ ∈ Y∗. Next we show that Y∗ is
closed under ∩. Let U, V ∈ Y∗. Then U, V ∈ X∗, so U ∩ V ∈ X∗. More-
over, U ∩ V = [↓Q(Y − U)]c ∩ [↓Q(Y − U)]c = [↓Q(Y − U) ∪ ↓Q(Y − V)]c =
[↓Q((Y − U) ∪ (Y − V))]c = [↓Q(Y − (U ∩ V))]c. Thus, U ∩ V ∈ Y∗. Finally,
we show that Y∗ is distributive. Suppose that U, V, W ∈ Y∗ and U ∩ V ⊆ W.
Let x �∈ W = [↓Q(Y − W]c. Then there exists y ∈ Y − W such that xQy. We
have y ∈ U or y /∈ U . If y ∈ U , then y /∈ V, so y /∈ W ∪ V. Therefore, by
condition (4) of Definition 3.9, there exists Zx ∈ Y∗ such that y /∈ Zx and
W ∪ V ⊆ Zx. If y /∈ U , then y �∈ W ∪ U , so there exists Zx ∈ Y∗ such that
y /∈ Zx and W ∪ U ⊆ Zx. In both cases we have x /∈ Zx because Zx is a Q-
upset of X and xQy /∈ Zx. Then Wc = ⋃{Z c

x : x /∈ W}. Since X is compact,
there is a finite A ⊆ (W ∪ V)c and a finite B ⊆ (W ∪ U)c such that Wc =⋃{Z c

x : x ∈ A} ∪ ⋃{Z c
x : x ∈ B}. Let U ′ = ⋂{Zx : x ∈ A} and V ′ = ⋂{Zx : x ∈

B}. Then U ′, V ′ ∈ Y∗, U ⊆ U ′, V ⊆ V ′, and W = U ′ ∩ V ′. Thus, 〈Y∗,∩, X, ∅〉 is
a bounded distributive meet-semilattice.

(2) follows from (1). ��

Let X be a generalized Priestley space and let GP denote the set of generalized
Priestley quasi-orders on X. For 〈Q, Y〉, 〈R, Z 〉 ∈ GP , we set 〈Q, Y〉 ≤ 〈R, Z 〉 if Y ⊆
Z and xQy implies xRy for all x, y ∈ Y. Clearly ≤ is a partial order on GP .

Theorem 3.12 For a bounded distributive meet-semilattice L, the poset 〈S, ⊆〉 of
subalgebras of L is isomorphic to 〈GP, ≥〉.

Proof Suppose that S is a subalgebra of L. By Theorem 3.10, 〈QS, YS〉 is a
generalized Priestley quasi-order on L∗. Conversely, if 〈Q, Y〉 is a generalized
Priestley quasi-order on L∗, then Lemma 3.11 implies that Y∗ is a subalgebra of
L∗∗, thus is isomorphic to a subalgebra of L. We show that this correspondence
is 1–1. If S is a subalgebra of L, then Lemma 3.7 implies that S is isomorphic to
YS

∗. If 〈Q, Y〉 is a generalized Priestley quasi-order on L∗, then we show that ε

is an isomorphism between 〈Q, Y〉 and 〈QY∗ , Y∗〉. By the definition of QY∗ and
condition (5) of Definition 3.9, ε(x)QY∗ε(y) iff ε(x) ∩ Y∗ ⊆ ε(y) iff (∀U ∈ Y∗)(U ∈
ε(x) ⇒ U ∈ ε(y)) iff (∀U ∈ Y∗)(x ∈ U ⇒ y ∈ U) iff xQy. Moreover, ε(x) ∈ YY∗ iff
ε(x) ∈ (L∗∗)+ and ε(x) ∩ Y∗ ∈ (Y∗)+. Now, if x ∈ Y, then x ∈ L+, so ε(x) ∈ (L∗∗)+.
Also, by condition (4) of Definition 3.9, Y∗ − (ε(x) ∩ Y∗) is a prime ideal of Y∗,
and so ε(x) ∩ Y∗ ∈ (Y∗)+. Therefore, ε(x) ∈ YY∗ . Conversely, suppose that ε(x) ∈
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YY∗ . Then ε(x) ∈ (L∗∗)+ and ε(x) ∩ Y∗ ∈ (Y∗)+. So x ∈ L+. To see that x ∈ Y, let
a1, . . . , an ∈ L be such that ϕL(a1), . . . , ϕL(an) ∈ Y∗ and x /∈ ϕL(a1) ∪ . . . ∪ ϕL(an).
Then ϕL(a1), . . . , ϕL(an) /∈ ε(x) and so ϕL(a1), . . . , ϕL(an) /∈ ε(x) ∩ Y∗. Since Y∗ −
(ε(x) ∩ Y∗) is a prime ideal of Y∗, there is b ∈ L such that ϕL(b) ∈ Y∗ − (ε(x) ∩ Y∗)
and ϕL(a1) ∪ . . . ∪ ϕL(an) ⊆ ϕL(b). Therefore, x /∈ ϕL(b), and so condition (4) of
Definition 3.9 implies that x ∈ Y.

Let S, T ∈ S with S ⊆ T. Then x ∈ YT implies x ∈ L+ and x ∩ T ∈ T+. Since S is
a subalgebra of T, from x ∩ T ∈ T+ it follows that x ∩ S ∈ S+. Therefore, YT ⊆ YS.
Moreover, if xQT y, then x ∩ T ⊆ y, so x ∩ S ⊆ y, and so xQS y. Thus, 〈QT , YT〉 ≤
〈QS, YS〉. Conversely, suppose that S �⊆ T. Then there exists a ∈ S − T. Since a /∈
T, by Lemma 3.5, there exist x ∈ ϕL(a) and y ∈ YT − ϕL(a) with xQT y. As a ∈ S,
we have ϕL(a) = [↓QS

(YS − ϕL(a)]c. Therefore, y /∈ YS or xQ�S y. Thus, YT �⊆ YS or
xQT y does not imply xQS y, and so 〈QT , YT〉 �≤ 〈QS, YS〉. Consequently, for S, T ∈ S
we have S ⊆ T iff 〈QT , YT〉 ≤ 〈QS, YS〉, which together with the 1–1 correspondence
between subalgebras of L and generalized Priestley quasi-orders on L∗ gives us that
〈S, ⊆〉 is isomorphic to 〈GP,≥〉. ��

3.2 Subalgebras of Bounded Distributive Lattices

Now we show how Theorem 3.12 implies easily the well-known correspondence
between subalgebras of a bounded distributive lattice L and Priestley quasi-orders
on L+.

Let L be a bounded distributive lattice and S be a subalgebra of L. Consider
〈YS, QS〉. It follows from conditions (1) and (5) of Definition 3.9 that QS is a
Priestley quasi-order on L+ = L∗. Moreover, since L+ = L∗ and YS

∗ is closed
under ∪, conditions (2) and (4) of Definition 3.9 imply that YS = L+. Thus, the
generalized Priestley quasi-order 〈YS, QS〉 simply becomes the Priestley quasi-order
QS. Moreover, given two generalized Priestley quasi-orders 〈Q, Y〉 and 〈R, Z 〉 on
L+, we obviously have that 〈Q, Y〉 ≤ 〈R, Z 〉 iff Q ⊆ R. Consequently, the poset
〈GP, ≤〉 of generalized Priestley quasi-orders is equal to the poset 〈P,⊆〉 of Priestley
quasi-orders on L+, and so Theorem 3.12 implies the following well-known dual
characterization of subalgebras of L.

Corollary 3.13 [1, 5, 11] For a bounded distributive lattice L, the complete lattice
〈S, ⊆〉 of subalgebras of L is isomorphic to the poset 〈P, ⊇〉 of Priestley quasi-orders
on L+.

3.3 Subalgebras of Bounded Implicative Semilattices

By a subalgebra of a bounded implicative semilattice L we mean a (∧,→, 0)-
subalgebra of L. We turn to the dual characterization of subalgebras of bounded
implicative semilattices. Let X be an Esakia space and let Q be a Priestley quasi-
order on X. Define ∼Q on X by

x ∼Q y iff xQy and yQx.

Clearly ∼Q is an equivalence relation on X. We call Q an Esakia quasi-order on X
if (∀x, y ∈ X)(xQy ⇒ (∃z ∈ X)(x ≤ z & z ∼Q y)).
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Definition 3.14 Let X be a generalized Esakia space and let 〈Q, Y〉 be a generalized
Priestley quasi-order on X. We call 〈Q, Y〉 a generalized Esakia quasi-order on X if
(∀x ∈ X)(∀y ∈ Y)(xQy ⇒ (∃z ∈ Y)(x ≤ z & z ∼Q y)).

For a generalized Esakia space X, let GE denote the set of generalized Esakia
quasi-orders on X, and let ≤ be the restriction of ≤ from GP to GE .

Lemma 3.15 Let L be a bounded implicative semilattice and let S be a subalgebra of
L. Then 〈QS, YS〉 is a generalized Esakia quasi-order on L∗.

Proof Since S is a subalgebra of L, it follows from Theorem 3.10 that 〈QS, YS〉 is a
generalized Priestley quasi-order on L∗. Let x ∈ L∗, y ∈ YS, and xQS y. Then x ∩ S ⊆
y. We have S − y is an ideal of S. Therefore, ↓L(S − y) is an ideal of L. Let F be
the filter of L generated by x ∪ (y ∩ S). We show that F ∩ ↓L(S − y) = ∅. If there
exists a ∈ F ∩ ↓L(S − y), then there exist b ∈ x, c ∈ y ∩ S, and d ∈ S − y such that
b ∧ c ≤ a ≤ d. Therefore, b ∧ c ≤ d, and so b ≤ c → d. Thus, c → d ∈ x ∩ S, and so
c → d ∈ y. As c ∈ y, it follows that d ∈ y ∩ S, a contradiction. Consequently, F ∩
↓L(S − y) = ∅. By the prime filter lemma, there exists z ∈ L+ such that F ⊆ z and
z ∩ ↓L(S − y) = ∅. Therefore, z ∩ S = y ∩ S ∈ S+. Thus, z ∈ YS, x ⊆ z, and z ∼QS y.
Consequently, 〈QS, YS〉 is a generalized Esakia quasi-order on L∗. ��

Lemma 3.16 Let X be a generalized Esakia space and let 〈Q, Y〉 be a generalized
Esakia quasi-order on X. Then Y∗ is a subalgebra of X∗.

Proof By Lemma 3.11, it is sufficient to show that Y∗ is closed under →. Let
U, V ∈ Y∗. Then U = [↓Q(Y − U)]c and V = [↓Q(Y − V)]c. We show that U →
V = [↓Q(Y − (U → V))]c. Let x ∈ U → V, y ∈ Y, and xQy. We claim that ↑y ∩
U ⊆ V. If not, then there exists z ∈ ↑y ∩ U such that z /∈ V. Then y ≤ z ∈ U and
z ∈ ↓Q(Y − V). Therefore, there exists z′ ∈ Y such that zQz′ and z′ /∈ V. Thus,
xQy ≤ zQz′, and so xQz′. Since 〈Q, Y〉 is a generalized Esakia quasi-order on X,
there exists z′′ ∈ Y such that x ≤ z′′ and z′′ ∼Q z′. So zQz′ Qz′′, and so zQz′′. Since
z ∈ U and U is a Q-upset of X, we have z′′ ∈ U . Therefore, z′′ ∈ ↑x ∩ U . As x ∈ U →
V, we have ↑x ∩ U ⊆ V. Thus, z′′ ∈ V, and since V is a Q-upset of X and z′′ Qz′, we
have z′ ∈ V, a contradiction. Consequently, ↑y ∩ U ⊆ V, so y ∈ U → V, and so x ∈
[↓Q(Y − (U → V))]c. Thus, U → V ⊆ [↓Q(Y − (U → V))]c. Conversely, suppose
that x /∈ U → V. Then there exists z ∈ X such that z ∈ ↑x ∩ U and z /∈ V. Therefore,
x ≤ z ∈ U and z ∈ ↓Q(Y − V). Thus, there exists y ∈ Y such that zQy and y /∈ V.
Since 〈Q, Y〉 is a generalized Esakia quasi-order on X, there is z′ ∈ Y such that
z ≤ z′ and z′ ∼Q y. Thus, z′ ∈ U and as U is a Q-upset of X and z′ Qy, we also have
y ∈ U . Therefore, y /∈ U → V, and since xQy, we obtain x ∈ ↓Q(Y − (U → V)).
Consequently, x /∈ [↓Q(Y − (U → V))]c, so [↓Q(Y − (U → V))]c ⊆ U → V, and so
U → V = [↓Q(Y − (U → V))]c. It follows that U → V ∈ Y∗. ��

Theorem 3.17 For a bounded implicative semilattice L, the complete lattice 〈S, ⊆〉 of
subalgebras of L is isomorphic to the poset 〈GE,≥〉 of generalized Esakia quasi-orders
on L∗.

Proof Apply Theorem 3.12 and Lemmas 3.15 and 3.16. ��
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3.4 Subalgebras of Heyting Algebras

Now we show how Theorem 3.17 implies the dual characterization of subalgebras
of a Heyting algebra A by means of Esakia quasi-orders on A+ = A∗. Let A be a
Heyting algebra and let S be a subalgebra of A. Then S is a bounded sublattice of A,
so QS is a Priestley quasi-order on A+. Moreover, since S is a (∧,→, 0)-subalgebra of
A, we have that QS is in fact an Esakia quasi-order on A+. Consequently, the poset
〈GE,≤〉 of generalized Esakia quasi-orders is equal to the poset 〈E, ⊆〉 of Esakia
quasi-orders on A+. Thus, Theorem 3.17 implies the following dual characterization
of subalgebras of A.

Corollary 3.18 For a Heyting algebra A, the complete lattice 〈S, ⊆〉 of subalgebras of
A is isomorphic to the poset 〈E, ⊇〉 of Esakia quasi-orders on A+.

Let X be an Esakia space and let ∼ be an equivalence relation on X. For x ∈ X
let [x] = {y ∈ X : x ∼ y}, and for Y ⊆ X let [Y] = ⋃{[y] : y ∈ Y}. We call Y ⊆ X
saturated if Y = [Y]. We say that ∼ is an Esakia equivalence relation if ∼ satisfies the
following two conditions:

(1) x �∼ y implies there exists a saturated clopen U of X such that x ∈ U and y /∈ U .
(2) (∀x, y, z ∈ X)((x ∼ y & y ≤ z) ⇒ (∃z ∈ X)(x ≤ z & z ∼ y)).

We point out that if E satisfies only condition (1), then E is an equivalence
relation which is a Priestley quasi-order. We call such equivalence relations Priestley
equivalence relations. Thus, an Esakia equivalence relation is a Priestley equivalence
relation satisfying condition (2).

There is a 1–1 correspondence between Esakia quasi-orders and Esakia equiva-
lence relations on an Esakia space X. Indeed, it is easy to verify that if Q is an Esakia
quasi-order on X, then ∼Q is an Esakia equivalence relation on X. Conversely, if ∼
is an Esakia equivalence relation on X, then Q∼ = (≤ ◦ ∼) is an Esakia quasi-order
on X. Moreover, Q∼Q = Q and ∼Q∼= ∼. Thus, Corollary 3.18 implies the following
well-known characterization of subalgebras of A.

Corollary 3.19 [6] For a Heyting algebra A, the complete lattice of subalgebras of
A (ordered by ⊆) is isomorphic to the poset of Esakia equivalence relations on A+
(ordered by ⊇).

If A is a Boolean algebra, then the Stone space of X is the space of ultrafilters
of X. Therefore, ≤ becomes simply =. Thus, Esakia equivalence relations become
simply Priestley equivalence relations, and so we obtain the following well-known
characterization of subalgebras of a Boolean algebra:

Corollary 3.20 (see, e.g., [7, Sec. 8.2]) For a Boolean algebra A, the complete lattice
of subalgebras of A (ordered by ⊆) is isomorphic to the poset of Priestley equivalence
relations on A+ (ordered by ⊇).
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4 Vietoris Families

In this section we give the dual descriptions of homomorphic images of bounded
distributive meet-semilattices and bounded implicative semilattices. We also show
how our dual descriptions lead to the well-known dual descriptions of homomorphic
images of bounded distributive lattices, Heyting algebras, and Boolean algebras.

4.1 Bounded Distributive Meet-Semilattices

Let L be a bounded distributive meet-semilattice. Since homomorphic images of L
are onto homomorphisms of L, dually they correspond to 1–1 generalized Priestley
morphisms R from some generalized Priestley space to L∗. We give a description of
homomorphic images of L purely in terms of L∗ without referring to any generalized
Priestley space other than L∗.

We start by considering a generalized Priestley space X = 〈X, τ,≤, X0〉 and a 1–1
generalized Priestley morphism R ⊆ X × L∗. Set

FR = {R[x] : x ∈ X} and (FR)0 = {R[x] : x ∈ X0}.
Then FR and (FR)0 are families of nonempty closed upsets of L∗ such that (FR)0 ⊆
FR. Since R is 1–1, we have x ≤ y iff R[y] ⊆ R[x]. Define the Vietoris topology (or
the hit-or-miss topology) τV on FR as follows: For a ∈ L, set

Ha = {R[x] : R[x] ∩ ϕ(a)c �= ∅} and
Ma = {R[x] : R[x] ∩ ϕ(a)c = ∅} = {R[x] : R[x] ⊆ ϕ(a)}.

Clearly Ma and Ha are set-theoretic complements of each other. We let

BV = {Ma : a ∈ L} ∪ {Ha : a ∈ L}
be a subbasis for τV .

Lemma 4.1 Let L be a bounded distributive meet-semilattice, X be a generalized
Priestley space, and R ⊆ X × L∗ be a 1–1 generalized Priestley morphism. Then for
each F ∈ FR we have F = ⋂{ϕ(a) : F ⊆ ϕ(a)}.

Proof Let F ∈ FR. Then there exists x ∈ X such that F = R[x]. Clearly R[x] ⊆⋂{ϕ(a) : R[x] ⊆ ϕ(a)}. Suppose that y /∈ R[x]. Then xR�y, and as R is a generalized
Priestley morphism, there exists a ∈ L such that y /∈ ϕ(a) and R[x] ⊆ ϕ(a). Thus,
R[x] = ⋂{ϕ(a) : R[x] ⊆ ϕ(a)}. ��

Lemma 4.2 Let L be a bounded distributive meet-semilattice, X be a generalized
Priestley space, and R ⊆ X × L∗ be a 1–1 generalized Priestley morphism. Then
〈FR, τV,⊇〉 is a Priestley space which is order-homeomorphic to 〈X, τ,≤〉.

Proof Since R is 1–1, we have x ≤ y iff R[y] ⊆ R[x], so 〈X, ≤〉 is order-isomorphic
to 〈FR,⊇〉. As τV is a Vietoris topology and L∗ is compact, we obtain that 〈FR, τV〉
is compact as well. To see that 〈FR, τV,⊇〉 satisfies the Priestley separation axiom,
let F �⊇ G with F, G ∈ FR. By Lemma 4.1, there exists a ∈ L such that F ⊆ ϕ(a) and
G �⊆ ϕ(a). Thus, F ∈ Ma and G /∈ Ma, and as Ma is a clopen upset of 〈FR, τV, ⊇〉, we
obtain that 〈FR, τV,⊇〉 is a Priestley space. We show that 〈FR, τV〉 is homeomorphic
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to 〈X, τ 〉. Define f : X → FR by f (x) = R[x]. Then f is a bijection. Moreover,
for a ∈ L and x ∈ X we have x ∈ f −1(Ma) iff f (x) ∈ Ma iff R[x] ⊆ ϕ(a) iff x ∈
�R(ϕ(a)). Consequently, f −1(Ma) = �R(ϕ(a)) and f −1(Ha) = �R(ϕ(a))c, and so f is
continuous. Finally, since f is a continuous map between compact Hausdorff spaces,
f is a homeomorphism. ��

Lemma 4.3 Let L be a bounded distributive meet-semilattice, X be a generalized
Priestley space, and R ⊆ X × L∗ be a 1–1 generalized Priestley morphism. Then
〈FR, τV,⊇, (FR)0〉 is a generalized Priestley space.

Proof It follows from Lemma 4.2 that 〈FR, τV,⊇〉 is a Priestley space which is
order-homeomorphic to 〈X, τ,≤〉. This implies that (FR)0 = f (X0) is dense in F.
Moreover, for F ∈ FR, we have F = R[x] for some x ∈ X. Since X is a generalized
Priestley space, there exists y ∈ X0 such that x ≤ y. Therefore, R[y] ⊆ R[x], and so
there is G ∈ (FR)0 such that F ⊇ G. For F, G ∈ FR, it follows from Lemma 4.1 that
F ⊇ G iff (∀a ∈ L)(F ∈ Ma ⇒ G ∈ Ma). Thus, conditions (1), (2), (3), and (5) of the
definition of a generalized Priestley space are satisfied. To see that condition (4) is
satisfied as well, let F ∈ (FR)0. Then F = R[x] for some x ∈ X0. Let Ma, Mb ∈ IF .
Then F �⊆ ϕ(a), ϕ(b), so R[x] �⊆ ϕ(a), ϕ(b), and so x /∈ �Rϕ(a),�Rϕ(b). Therefore,
�Rϕ(a),�Rϕ(b) ∈ Ix and as x ∈ X0, there exists U ∈ X∗ such that x /∈ U and
�Rϕ(a),�Rϕ(b) ⊆ U . Since R is 1–1, x /∈ U implies there exists c ∈ L such that
R[U] ⊆ ϕ(c) and R[x] �⊆ ϕ(c). Thus, F = R[x] /∈ Mc, and so Mc ∈ IF . Let G ∈ Ma

and let G = R[y] for some y ∈ X. Then R[y] ⊆ ϕ(a), so y ∈ �Rϕ(a) ⊆ U , and so
G = R[y] ⊆ R[U] ⊆ ϕ(c). Therefore, G ∈ Mc, and so Ma ⊆ Mc. Similarly, Mb ⊆ Mc.
Thus, IF is updirected. Now let IF be updirected and let F = R[x]. We show that
x ∈ X0. Let U, V ∈ Ix. Then x /∈ U, V. Since R is 1–1, there exist a, b ∈ L such that
R[U] ⊆ ϕ(a), R[x] �⊆ ϕ(a), R[V] ⊆ ϕ(b), and R[x] �⊆ ϕ(b). Therefore, F /∈ Ma, Mb ,
and so Ma, Mb ∈ IF . As IF is updirected, there exists c ∈ L such that Mc ∈ IF and
Ma, Mb ⊆ Mc. Thus, x /∈ �Rϕ(c) and �Rϕ(a),�Rϕ(b) ⊆ �Rϕ(c), and so �Rϕ(c) ∈
Ix and U, V ⊆ �Rϕ(c). Consequently, Ix is updirected, so x ∈ X0, and so F ∈ (FR)0.
It follows that condition (4) of the definition of generalized Priestley space is also
satisfied, and so 〈FR, τV,⊇, (FR)0〉 is a generalized Priestley space. ��

Definition 4.4 Let L be a bounded distributive meet-semilattice. We call a pair
(F,F0) of families of nonempty closed upsets of L∗ a Vietoris family if the following
conditions are satisfied:

(1) F0 ⊆ F.
(2) F = ⋂{ϕ(a) : F ⊆ ϕ(a)} for each F ∈ F.
(3) 〈F, τV,⊇,F0〉 is a generalized Priestley space.

Let L be a bounded distributive meet-semilattice. For a Vietoris family (F,F0) we
define RF ⊆ F × L∗ by

F RFx iff x ∈ F.

Lemma 4.5 Let L be a bounded distributive meet-semilattice and let (F,F0) be a
Vietoris family. Then RF ⊆ F × L∗ is a 1–1 generalized Priestley morphism.
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Proof First we show that RF ⊆ F × L∗ is a generalized Priestley morphism. Suppose
that F ∈ F, x ∈ L∗, and F R�Fx. Then x /∈ F, and as F = ⋂{ϕ(a) : F ⊆ ϕ(a)}, there
exists a ∈ L such that x /∈ ϕ(a) and F ⊆ ϕ(a). Thus, there is a ∈ L such that x /∈
ϕ(a) and RF[F] ⊆ ϕ(a), and so condition (1) of the definition of a generalized
Priestley morphism is satisfied. Now let a ∈ L and F ∈ F. We have F ∈ �RF

(ϕ(a))

iff RF[F] ⊆ ϕ(a) iff {x ∈ L∗ : F RFx} ⊆ ϕ(a) iff {x ∈ L∗ : x ∈ F} ⊆ ϕ(a) iff F ⊆ ϕ(a)

iff F ∈ Ma. Thus, �RF
(ϕ(a)) = Ma, and so condition (2) of the definition of a

generalized Priestley morphism is satisfied. To see that condition (3) is also satisfied,
let F ∈ F. Since F �= ∅, there exists x ∈ F. This, by the definition of RF, gives us
F RFx. Therefore, for each F ∈ F there exists x ∈ L∗ such that F RFx. It follows that
RF is a generalized Priestley morphism. We show that RF is 1–1. Let F /∈ Ma. Then
RF[Ma] ⊆ ϕ(a) and RF[F] = F �⊆ ϕ(a). Thus, RF is 1–1. ��

Lemma 4.6 Let L be a bounded distributive meet-semilattice.

(1) If R ⊆ X × L∗ is a 1–1 generalized Priestley morphism, then for each x ∈ X and
y ∈ L∗ we have xRy if f R[x]RFR y.

(2) If (F,F0) is a Vietoris family, then F = FRF
.

Proof

(1) For x ∈ X and y ∈ L∗, we have R[x]RFR y iff y ∈ R[x] iff xRy.
(2) We have F ∈ FRF

iff (∃G ∈ F)(F = RF[G] = G) iff F ∈ F. Thus, FRF
= F. ��

Since homomorphic images of a bounded distributive meet-semilattice L are
dually characterized by 1–1 generalized Priestley morphisms of L∗, by putting
Lemmas 4.1, 4.2, 4.3, 4.5, and 4.6 together, we obtain:

Theorem 4.7 Homomorphic images of a bounded distributive meet-semilattice L are
dually characterized by Vietoris families on L∗.

4.2 Bounded Distributive Lattices

Now let L be a bounded distributive lattice. We show how our characterization of
homomorphic images of L simplifies considerably and becomes the usual character-
ization in case we are interested in onto bounded lattice homomorphisms of L.

Lemma 4.8 Let X be a Priestley space. Then 1–1 functional generalized Priestley
morphisms R ⊆ Y × X, where Y is a Priestley space, correspond to closed subsets
of X.

Proof Let R ⊆ Y × X be a 1–1 functional generalized Priestley morphism. By
[2, Lem. 11.19.1], fR : X → Y given by fR(x) = the least lement of R[x] is an em-
bedding. Thus, fR(Y) is a closed subset of X which is order-homeomorphic to Y.
Conversely, if Y is a closed subset of X, then the identity map f : Y → X is an
embedding. By [2, Cor. 11.20.1], R f ⊆ Y × X given by xR f y iff f (x) ≤ y is a 1–1
functional generalized Priestley morphism. It is obvious that this correspondence is
a bijection. ��
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Thus, we arrive at the following well-known characterization of homomorphic
images of bounded distributive lattices.

Corollary 4.9 [10] Let L be a bounded distributive lattice. Homomorphic images of L
dually correspond to closed subsets of L+.

Proof Homomorphic images of L dually correspond to 1–1 functional general-
ized Priestley morphisms R ⊆ X × L+, where X is a Priestley space. These, by
Lemma 4.8, correspond to closed subsets of L+. ��

4.3 Bounded Implicative Semilattices, Heyting Algebras, and Boolean Algebras

Let L be a bounded implicative semilattice. As an immediate consequence of the
bounded distributive meet-semilattice case, we obtain that homomorphic images of
L are dually characterized by those Vietoris families (F,F0) on L∗ for which (F, τV,

⊇,F0) is a generalized Esakia space. Another dual description of homomorphic
images of L can be obtained through filters of L. It is well-known [8, Thm. 3.2]
that homomorphic images of L are characterized by filters of L. In [2, Thm. 11.11]
(see also [4, Thm. 8.5]) we characterized filters of L dually as such closed upsets
C of L∗ for which L∗ − C = ↓(L+ − C). This leads to the following alterative dual
description of homomorphic images of L.

Theorem 4.10 Homomorphic images of a bounded implicative semilattice L are
dually characterized by closed upsets C of L∗ such that L∗ − C = ↓(L+ − C).

In the case of Esakia spaces, L∗ = L+, so the condition of Theorem 4.10 on the
closed upset C is redundant, and so we obtain the following well-known characteri-
zation of homomorphic images of Heyting algebras.

Corollary 4.11 [6] Homomorphic images of a Heyting algebra A are dually charac-
terized by closed upsets of A+.

If A is a Boolean algebra, then upsets of the Stone space A+ of A are simply sub-
sets of A+. Thus, Corollary 4.11 implies the following well-known characterization
of homomorphic images of Boolean algebras.

Corollary 4.12 (see, e.g., [7, Sec. 8.1]) Homomorphic images of a Boolean algebra A
are dually characterized by closed subsets of A+.
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