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Abstract Let P be the ordered set of isomorphism types of finite ordered sets
(posets), where the ordering is by embeddability. We study first-order definability
in this ordered set. We prove among other things that for every finite poset P, the
set {p, p∂} is definable, where p and p∂ are the isomorphism types of P and its
dual poset. We prove that the only non-identity automorphism of P is the duality
map. Then we apply these results to investigate definability in the closely related
lattice of universal classes of posets. We prove that this lattice has only one non-
identity automorphism, the duality map; that the set of finitely generated and also
the set of finitely axiomatizable universal classes are definable subsets of the lattice;
and that for each member K of either of these two definable subsets, {K, K∂} is a
definable subset of the lattice. Next, making fuller use of the techniques developed
to establish these results, we go on to show that every isomorphism-invariant relation
between finite posets that is definable in a certain strongly enriched second-order
language L2 is, after factoring by isomorphism, first-order definable up to duality
in the ordered set P . The language L2 has different types of quantifiable variables
that range, respectively, over finite posets, their elements and order-relation, and
over arbitrary subsets of posets, functions between two posets, subsets of products
of finitely many posets (heteregenous relations), and can make reference to order
relations between elements, the application of a function to an element, and the
membership of a tuple of elements in a relation.
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1 Introduction

The set P of isomorphism types of finite posets, or as we say, finite order types,
is denumerable. This set becomes itself a poset under the order induced by the
substructure relation—we put p0 ≤ p1, where pi is the type of the finite poset Pi,
iff P0 is isomorphic to a sub-poset of P1. In this way we obtain a poset 〈P, ≤〉. In this
paper, we explore the scope of first-order definitions in the structure 〈P,≤〉. It is an
interesting topic because that scope is surprisingly wide: we shall see that in a quite
precise sense, first-order definability over this poset is equivalent to second-order
definability in the domain of finite posets.

The preceding remarks illustrate, by way of example, what we mean by the phrase
“definability in substructure orderings”. This paper is the second in a series of
four exploring definability in substructure orderings. The paper [3] dealt with finite
semilattices; [4] deals with finite distributive lattices; and [5] treats finite lattices. The
idea for these explorations arose during our study of some combinatorial properties
of these sub-structure orderings (see [1, 2]). We realized also that certain kinds of
results on definability in substructure orderings would yield definitive results on
definability in the lattice of universal classes of the structures.

The application of definability results for the substructure ordering to obtain
definability results for the lattice of universal classes works smoothly for semilattices,
for ordered sets and for distributive lattices, but breaks down for lattices because
lattices do not form a locally finite class of structures. The results we obtain for the
substructure ordering over finite structures are pretty much the same in all four cases,
but the proof details are sufficiently different for the different kinds of structures that
we did not think it wise to unify all our results in one paper.

By a universal class of posets we mean a class K defined by a set of first-order
universal sentences, equivalently, a class K closed under forming substructures and
ultraproducts. Since every poset is the union of its finite sub-posets, the lattice of
universal classes of posets is naturally isomorphic with the lattice of order-ideals of
the ordered set 〈P,≤〉, and within this lattice, the principal order-ideals are the same
as the strictly join-irreducible elements of the lattice, and they constitute a definable
subset of the lattice that is order-isomorphic with P . Thus every subset or relation
over the elements of P that can be shown to be definable in 〈P, ≤〉 gives rise to a
definable subset or relation in the lattice of universal classes.

A simple but important property of posets is that for every finite collection F of
finite posets, there is a finite poset A such that all members of F are embeddable into
A. From this fact, it is clear that a universal class of posets is finitely generated iff it
is contained in a strictly join-irreducible member of the lattice of universal classes.
Thus the set of finitely generated universal classes is a definable subset of the lattice.
It is easy to show that a universal class K of posets is finitely axiomatizable (in the
first-order language of posets) iff up to isomorphism, there are only a finite number
of minimal (in the sense of embedding) finite posets lying outside of K. Thus it is
easy to write a first-order definition in the language of lattice theory for the class of
finitely axiomatizable universal classes: A universal class K is finitely axiomatizable
iff there is a strictly join-irreducible universal class O such that for every universal
class M, M �≤ K ⇒ M ∩ O �≤ K.

We have just proved two of the principal results about universal classes of posets
announced in the abstract. The remaining result, that for any universal class K that
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is either finitely generated or finitely axiomatizable, the set {K, K∂} is definable in
the lattice of universal classes, is not so easy. Our approach is to exhibit two three-
element isomorphism types, p1 and p∂

1 , and show that {p1, p∂
1} is definable in 〈P, ≤〉,

and that when p1 is taken as a parameter, every member of P becomes definable.
This we accomplish in Section 2 of the paper. We then conclude Section 2 with a
derivation of our result that {K, K∂} is definable in the lattice of universal classes
whenever K is a finitely generated, or a finitely axiomatizable, universal class. All
these results about universal classes are collected in Theorem 2.35.

In Section 3, building on results obtained in Section 2, we develop a different
perspective on first order definability in 〈P, ≤〉. In both parts, our principal object
of investigation is actually the quasi-ordered set Qposet whose members are all the
posets 〈A, ≤A〉 with A a finite subset of the non-negative integers, quasi-ordered
by embeddability, so that 〈A, ≤A〉 ≤ 〈B, ≤B〉 means that there is a one-to-one map
f : A → B such that x ≤A y ↔ f (x) ≤B f (y) holds for all {x, y} ⊆ A. Members of
Qposet will usually be identified notationally with their universes, so that we write
A ∈ Qposet with a specific choice of a partial order ≤A on A understood. An
exception is that special posets that are to be held fixed throughout our study will
be denoted with boldface letters. Here is the first example of this practice: We define
E0 to be the poset with elements 0, 1, 2 and covers 0 ≺ 1 and 0 ≺ 2 (see Fig. 1). We
can say more precisely that both in Sections 2 and 3 of the paper, we shall be studying
first-order definability in the countable structure Qposet′ = 〈Qposet,≤, E0〉 with
one binary relation and one constant.

In Section 3, we introduce the category Cposet whose objects are the members
A ∈ Qposet with universe identical to [n] = {0, 1, . . . , n − 1} for some n ≥ 0, and
whose morphisms are the monotone maps between these posets. The set of mor-
phisms from A to B where A and B are two objects in Cposet will be denoted
CP(A, B).

Here we shall be considering first-order definability in the enriched category
Cposet′ obtained by adding to the category structure four fundamental constants.
The constants denote two objects, C0 = 〈{0},≤0〉 and C1 = 〈{0, 1},≤1〉 (where this
poset has one cover 0 ≺ 1) and the two members of CP(C0, C1), namely fi : C0 → C1

with fi(0) = i (for i ∈ {0, 1}).
Our goal in Section 3 will be to prove that the structures Qposet′ and Cposet′

are almost equivalent in terms of the expressibility of first-order language applied to
them.

But in fact, we shall show that this equivalence extends to expressibility in a very
strong second-order language L2 applied to the family of structures (posets) which
constitutes the set of objects of Cposet′. This language L2 is an expansion of the
first-order language of Cposet′, containing not only variables ranging over objects
and morphisms of Cposet but also quantifiable variables ranging over elements of
any object, over arbitrary subsets of objects, over arbitrary functions between two
objects, over arbitrary subsets of products of finitely many objects (heteregenous
relations), dependent variables giving the universe and the order relation of an

Fig. 1 E0
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object, and the apparatus to denote order relations between elements, application
of a function to an element, and membership of a tuple of elements in a relation.

Specifically, we shall prove (Theorem 3.8) that for any positive integer N, any N-
ary relation R over Qposet is first-order definable in Qposet′ iff there is an N-ary
relation S over the set of objects of Cposet such that S is definable in L2 and we have

R = {(A0, . . . , AN−1) ∈ QposetN : there are objects B0, . . . , BN−1

in Cposet with Bi
∼= Ai for i < N and (B0, . . . , BN−1) ∈ S} .

The above-described result is surely the central contribution of this paper. Here is
a reformulation of it. Let e0 denote the isomorphism type of the poset E0. An n-ary
relation S over Qposet (or over the object set of Cposet) will be called isomorphism-
invariant iff whenever A0

∼= B0, . . . , An−1
∼= Bn−1 then (A0, . . . , An−1) ∈ S iff

(B0, . . . , Bn−1) ∈ S. Then we have: The isomorphism-invariant relations over the
objects of Cposet that are L2-definable are the same as the isomorphism-invariant
relations first-order definable in Cposet′, and the same, after identifying isomor-
phic posets, as the relations first-order definable in the enriched ordered set P ′ =
〈P, ≤, e0〉.

An easy corollary of Theorem 3.8 is this.

Corollary For every sentence φ in the second-order language of posets, there is a
formula �(x) in the first-order language of the structure Qposet′ = 〈Qposet, ≤, E0〉
such that a poset A in Qposet models φ if and only if Qposet′ |= �(A).

Specializing the corollary, we find that the set Qlatt of members of Qposet
that are lattice-ordered sets, is first-order definable in Qposet′, as is the set Qslatt
of meet-semilattice-ordered members of Qposet and the subset Qdlatt of Qlatt
consisting of the lattice-ordered sets where the lattice is distributive. Moreover, the
relation A ≤l B that holds between A and B in Qlatt iff there is a lattice-embedding
of A into B is definable, as is the relation A ≤sl B of semilattice embeddability in
Qslatt. Each of the quasi-ordered sets 〈Qslatt,≤sl〉, 〈Qlatt,≤l〉 and 〈Qdlatt, ≤dl〉
is therefore definably present in Qposet′. The authors have studied the first-order
definability in these structures in the papers [3, 4] and [5], reaching conclusions
parallel to those obtained in this paper.

Birkhoff duality between finite distributive lattices and finite posets yields a
second way of definably recovering 〈Qdlatt, ≤dl〉 in Qposet′. (This application will
be discussed briefly near the end of Section 3.1.)

Finally, we wish to observe that every subset of P is the set of all isomorphism
types of all finite models of some set of first-order sentences in the language of posets:
Let S be a subset of P , and for every positive integer n, let An,1, . . . , An,pn be a list
of representatives of all the isomorphism types of n-element posets that belong to
S. Let φn be a sentence such that a poset A is a model of φn iff |A| = n ⇒ A ∼= Ai

for some 1 ≤ i ≤ pn. Clearly, a finite poset A represents an isomorphism type in
S iff A |= φn for all n ≥ 1. Consequently, our results imply that every subset of P
is defined by the simultaneous satisfaction in P ′ of some set of formulas {ψn(x) :
n ≥ 1} in the first-order language of the structure P ′. However, there are subsets of
P that can be defined by a single formula ψ(x) in the first-order language of P ′,
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but cannot be defined as all isomorphism types of finite models of a single sentence
in the language of posets. For example, the set of isomorphism types of finite
connected posets is such a set. (For the formula ψ(x) see Theorem 2.19 below. A
standard model-theoretic argument shows that no single first-order sentence defines
the property of connectedness among all finite posets.)

We show in Section 2 (Theorems 2.27 and 2.15) that the relations {(A, B, C) : A ∼=
B + C} (cardinal sum) and {(A, B, C) : A ∼= B ⊕ C} (ordinal sum) are definable
in Qposet′. Let us finally remark that it will become obvious in Section 3 that the
relation {(A, B, C) : A ∼= B × C} is definable in Qposet′ (since it is definable in the
category Cposet).

Let us remark that the results of this paper imply that the elementary theory of
〈P, ≤〉 is undecidable. Indeed, it is well known that where N0 is the set of nonnegative
integers, the structure 〈N0, +,×〉 has undecidable elementary theory; from this it
easily follows that also the elementary theory of 〈N,+, ×〉, where N is the set of
positive integers, is undecidable; an obvious mapping is a bijection of N onto the set
A of isomorphism types of finite chains; and we will see that A is a definable subset
and the images of both + and × are definable operations in 〈P, ≤〉.

2 Part I

2.1 Notation and First Results

The elements of Qposet are the finite posets whose elements are non-negative
integers. For A, B ∈ Qposet we put A ≤ B iff A is isomorphic with the poset induced
by B on a subset of B. We put A ⊆ B iff A is contained in B as a set, and the order
in A is the restriction to this set of the order in B—in other words, A is a poset
induced by B on a subset of B. Note that A and B are isomorphic, written A ∼= B, iff
A ≤ B and B ≤ A. We denote by E0 the poset with elements 0, 1, 2 and covers 0 ≺ 1
and 0 ≺ 2, and by E1 its dual. We set Qposet′ equal to the pointed quasi-ordered set
〈Qposet,≤, E0〉.

When we say that a subset of Qposet or a relation over Qposet is first-order
definable in Qposet′, we shall mean definable by a formula in the first-order language
with two non-logical symbols, ≤ and E0, and without the equality symbol. As noted
above, {(A, B) : A ∼= B} is definable in Qposet′, and it is easily proved (say by
induction on the complexity of formulas) that for every formula ϕ(x0, . . . , xn−1) in
this language and for A0, B0, . . . , An−1, Bn−1 ∈ Qposet with Ai

∼= Bi for i < n we
have Qposet′ |= ϕ(A0, . . . , An−1) if and only if Qposet′ |= ϕ(B0, . . . , Bn−1). Thus
with our convention about the language (omitting equality) first-order definability in
Qposet′ is only “up to isomorphism”. In particular, {E0} is not definable, although
{A : A ∼= E0} is definable. However, we write that “E0 is a definable member of
Qposet′”, meaning that it is definable up to isomorphism; and we shall generally use
this language with respect to all definable elements, definable subsets and definable
relations over Qposet′.

The relation of isomorphism, definable in Qposet′, is an equivalence relation over
Qposet that gives rise to the pointed ordered set of isomorphism types, P ′ = 〈P, ≤,

e0〉. Via the map sending A ∈ Qposet to A/∼= ∈ P , definable relations over Qposet′

become definable relations over P ′, and conversely. Thus working over Qposet′ is
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simply a convenient means to give a more concrete feel to the study of definability
over P ′.

For every n ≥ 0 we denote by Cn the chain of height n,

Cn = 〈{0, 1, . . . , n},≤〉
in which ≤ is the usual order. For every n ≥ 0 we denote by An the n + 1-element
antichain, An = 〈{0, 1, . . . , n},≤〉, in which ≤ is the discrete order—x ≤ y iff x = y
for any elements x, y in An. Note that C0

∼= A0.
The height, ht(P), of a finite poset P, is the largest n such that Cn ≤ P (i.e., such

that P has an n + 1-element chain).
The cardinal sum, A + B, and ordinal sum, A ⊕ B, of two posets are defined only

up to isomorphism. Thus C ∼= A + B if and only if C is the disjoint union of ordered
subsets isomorphic respectively to A and to B, such that there are no order relations
in C between elements of the two subsets; and C ∼= A ⊕ B if and only if C is the
disjoint union of sub-posets isomorphic respectively to A and to B, such that for
every element x of the copy of A in C and for every element y of the copy of B, we
have x < y in C.

If A, B ∈ Qposet we write A < B to indicate that A ≤ B and not B ≤ A, and we
say that A is covered by B if A < B and there is no C ∈ Qposet with A < C < B.
We write A ≺ B, or Qposet′ |= A ≺ B, to denote that B covers A in Qposet′.

The cardinality of A is the number of elements of A, written |A|.
For an element e of a poset, e↓ denotes the principal ideal of the poset generated

by e.

Proposition 2.1 Let a and b be members of Qposet. Then A ≺ B if f A ≤ B and |B| =
|A| + 1.

This fact is obvious.

Theorem 2.2 {Cn/ ∼= : n ≥ 0} and {An/ ∼= : n ≥ 0} are the only inf inite order-ideals in
P that are chains. The set of f inite chains is a def inable subset of Qposet′ and each
f inite chain is a def inable member of Qposet′. The set of f inite antichains is a def inable
subset of Qposet′ and each f inite antichain is a def inable member of Qposet′.

Proof If a finite poset A is neither a chain nor an antichain then A1 ≤ A and C1 ≤ A,
so that (A/ ∼= )↓ is not a chain in P . In Fig. 2 below, we diagram the lowest four
levels of P . The top row consists of the following posets (from left to right): C3,
C0 ⊕ E0, C2,0,− (introduced later), E0 ⊕ C0, C0 ⊕ A2, C2 + C0, C2,−,2 (introduced
later), E1 ⊕ C0, E0 + C0, the four-element fence, A1 ⊕ A1, C1 + C1, C1 + A1, E1 +
C0, A2 ⊕ C0, A3. The next row consists of C2, E0, C1 + C0, E1, A2; the atoms are C1

and A1. We see that A2/ ∼= has six covers in P while C2/ ∼= has seven covers. Thus
P ∈ Qposet is a chain iff for every A, B ∈ Qposet with A ≤ P and B ≤ P we have
either A ≤ B or B ≤ A, and there is Q ∈ Qposet with either Q ≤ P or P ≤ Q such
that {R ∈ Qposet : R ≤ Q} has precisely three non-isomorphic members, all of them
pairwise comparable, and up to isomorphism Q has precisely seven covers in Qposet.
From this, it readily follows that the set of chains is definable, the set of antichains is
definable, and each individual chain or antichain is a definable member of Qposet′

(meaning, “up to isomorphism”, of course). ��
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Fig. 2 The lowest four levels of P

Proposition 2.3 Every f inite poset of at most f ive elements is a def inable member of
Qposet′.

Proof With a little ingenuity, the reader can extract from Fig. 2 the fact that {E0, E∂
0}

is definable in 〈Qposet, ≤〉, and thus that each poset of at most three elements is
definable in Qposet′. Then it can be shown that each poset of four or five elements
is determined up to isomorphism by the posets that properly embed into it. (The
verification that this is so will be left to the reader.) ��

Proposition 2.4 For every positive integer n, the set of f inite posets of cardinality n is
a def inable subset of Qposet′.

This is obvious, from Proposition 2.1.

Remark 2.1 We remarked above that each poset of four or five elements is deter-
mined up to isomorphism by the isomorphism types of its proper sub-posets This is
not true for smaller posets; as witnessed by E0 and E1. It may be that every poset of no
fewer than four elements is determined up to isomorphism by the set of isomorphism
types of its proper sub-posets. If this were true, it would yield a direct proof of one
of the principal results of this paper, that every finite poset is definable in Qposet′.
(See J. X. Rampon [6].)

2.2 Covers of Chains, and Cutpoints

We have Cn ≺ Cn+1 of course. We introduce notation for all the remaining covers
of Cn.

For 1 ≤ � ≤ n, Cn,−,� is the poset with elements a0, . . . , an+1 and covers ai < ai+1

for 0 ≤ i < n and an+1 < a�.
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For 0 ≤ k < n, Cn,k,− is the poset with elements a0, . . . , an+1 and covers ai < ai+1

for 0 ≤ i < n and ak < an+1.
For 0 ≤ k < � ≤ n with k + 1 < �, Cn,k,� is the poset with elements a0, . . . , an+1 and

covers ai < ai+1 for 0 ≤ i < n and ak < an+1 and an+1 < a�.

Proposition 2.5 The covers of Cn are Cn+1, Cn + C0, and the posets Cn,−,�, Cn,k,−, and
Cn,k,� def ined above.

The proof is very easy, using Proposition 2.1.

Proposition 2.6 For each integer n ≥ 0, every cover of Cn is a def inable member of
Qposet′. Each of the sets {Cn,−,1 : n ≥ 1}, {Cn,−,n : n ≥ 1}, {Cn,n−1,− : n ≥ 1}, {Cn,0,− :
n ≥ 1}, {Cn,k,k+2 : n − 2 ≥ k ≥ 0} is def inable in Qposet′.

Proof For n ≥ 1, we have that Cn,−,1 is the only cover of Cn of height n that does
not embed E0, does embed E1, and does not embed C2,−,2. (The posets E1 and C2,−,2

have fewer than five elements and so are definable, by Proposition 2.3.)
It is easy to verify that for n ≥ 1, Cn,−,n is the only cover of Cn of height n that

does not embed E0, does embed E1 and does not embed E1 ⊕ C1. (The posets E1

and E1 ⊕ C1 are definable, by Proposition 2.3.)
When 0 ≤ k and k + 2 ≤ � ≤ n, we have that Cn,k,� is the only cover of Cn which

has height n; embeds E0 and E1; embeds Cn−�+1,−,1 and does not embed Cn−�+2,−,1;
embeds Ck+1,k,− and does not embed Ck+2,k+1,−.

For n ≥ 2 we have that A ∼= Cn,k,k+2 for some k ≥ 0 with k + 2 ≤ n iff A ∼= Cn,k,�

for some k, � and A does not embed N5 (the five-element non-modular lattice).
Finally, we observe that Cn + C0 is the only cover of Cn of height n that embeds

neither E0 nor E1. ��

By a cutpoint of a poset A we mean an element x ∈ A that is comparable to all
members of A. Note that if A is a finite poset, say of height n, and A has a cutpoint
c of height m, then c is the unique element of A of height m, the co-height of c is
n − m, and c belongs to every maximal chain in A.

Theorem 2.7 The relation {(Cn, Ck, C�) : n = k + �} is def inable in Qposet′.

Proof For chains Cn, Ck, C� we have that n = k + � iff either � = 0 and n = k, or
� = 1 and Ck ≺ Cn, or � ≥ 2 and Cn+1 has a cover A (= Cn+1,k,k+2) of height n + 1
that embeds Ck+1,k,− and does not embed Ck+2,k+1,−, and does embed C�,−,1 and
does not embed C�+1,−,1. ��

Theorem 2.8 The relation {(A, Cm) : A has a cutpoint of height m} is def inable in
Qposet′. The set of topped f inite posets (those with the largest element) and the set of
bottomed f inite posets (those with the least element) are def inable subsets of Qposet′.

Proof A has a cutpoint of height m iff where n = ht(A), Cm ≤ Cn and if Q is any
cover of Cn with Q ≤ A, then Q is not isomorphic to Cn + C0 or to Cn,k,− for a
k < m, or to Cn,−,� for a � > m, or to Cn,k,� for a k, � satisfying k < m < �.
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Indeed, if c is a cutpoint of height m in A, and Cn ≺ Q ≤ A, then we have a sub-
poset C of A isomorphic to Cn and a point q ∈ A \ C with C ∪ {q} (the induced poset)
isomorphic to Q. The cutpoint c must be the element of height m in the chain C, and
it must be comparable to q. This forces the claimed restrictions on the possibilities
for Q. On the other hand, suppose that 0 ≤ m ≤ n = ht(A) and A has no cutpoint of
height m. Choose a sub-poset C of A order-isomorphic to Cn. Let am be the element
of height m in the induced order on C. Then the height of am in A is also m. Since
am is not a cutpoint of A, there is an element q ∈ A that is incomparable to am.
Clearly, q �∈ C. Where Q = C ∪ {q}, the induced poset on Q is a cover of Cn. The
incomparability of q and am yields that Q is isomorphic to one of the posets listed in
the previous paragraph.

Now, A is topped iff where n = ht(A), A has a cutpoint of height n. A is bottomed
iff A has a cutpoint of height 0. ��

2.3 Definability of Some Cardinality Properties

For n > m ≥ 0 denote by Yn,m the poset with elements

a0, . . . , an+1, an+2

and covers a0 < · · · < an and am < an+1 and am < an+2.

Lemma 2.9 The binary relation

{(A, B) : A ∼= Cn and B ∼= Yn,m for some n > m ≥ 0}
is def inable in Qposet′.

Proof Suppose that A ∼= Cn. Then B ∼= Yn,m for some n > m ≥ 0 iff: A is a
≤-maximal subchain of B; there is Q with A ≺ Q ≺ B; C0 ⊕ A2 ≤ B; E1 �≤ B; and
C0 ⊕ (C0 + E0) �≤ B. ��

Theorem 2.10 The following relation is def inable in Qposet′:

{(A, B) : for some n ≥ 0, A ∼= An and B ∼= Cn} .

Proof This will be a consequence of the following claim.
Suppose that A ∼= Am and B ∼= Cn. Then m ≤ n iff there is a finite poset P with

these properties:

1) ht(P) = n, i.e., B ≤ P and if C is a chain and B < C then C �≤ P.
2) P is a rooted tree, i.e., P is bottomed and E1 �≤ P.
3) Yn,m �≤ P whenever n > m ≥ 0.
4) C0 ⊕ (C1 + C1) �≤ P.
5) A ≤ P.

We remark that there is a largest poset with properties 1)–4), namely the tree Tn

pictured in Fig. 3 for n = 4.
To prove the claim, we observe that clearly Tn satisfies 1), 2), 3) and 4) and embeds

An and does not embed An+1. Thus it suffices to show that if S satisfies 1), 2), 3) and



124 Order (2010) 27:115–145

Fig. 3 T4

4) then S is obtained from Tn by removing some subset (possibly the empty set) of
the set of points {b 0, . . . , b n−1}.

Thus suppose that S satisfies 1), 2), 3) and 4). Let C be an n + 1-element chain
in S, say C = {a0, . . . , an} with a0 < · · · < an. Now S is a tree with root a0, by 1) and
2). By 3), for i < n, ai has at most one successor other than ai+1. If i < n − 1 and ai

has two successors, ai+1 and bi, then by 4) it follows that bi is a maximal element of
S. If i = n − 1 and ai has two successors, an and b n−1, then since ht(S) = n it follows
again that b n−1 is a maximal element. These considerations imply that S consists of
the elements a0, . . . , an and, for possibly some or all of i = 0, i = 1, . . ., i = n − 1,
a maximal element bi �= ai+1 that has ai as its unique subcover. This completes our
proof. ��

Lemma 2.11 The relation {(A, E, F) : A ∼= E ⊕ F and E is a chain} is def inable in
Qposet′.

Proof (A, E, F) belongs to this relation iff there are n, m, � with ht(A) = n, E ∼= Cm,
ht(F) = � and n = m + �; and either F ∼= C� and A ∼= Cn, or else: there is 0 ≤ k ≤ �

such that F has a cutpoint of height i for every 0 ≤ i < k and F has no cutpoint of
height k, and A has a cutpoint of height j for every 0 ≤ j < m + k and A has no
cutpoint of height m + k, and there is a finite un-bottomed poset Q such that Q ≤ A
and Q ≤ F and whenever R is a finite un-bottomed poset and R ≤ A or R ≤ F, then
R ≤ Q. ��

Theorem 2.12 The following relation is def inable in Qposet′:

{(A, B) : for some n ≥ 1, B ∼= Cn and |A| = n} .

Proof Let n ≥ 1. To prove this theorem, it will suffice to show that for any finite
poset A, we have |A| ≥ n iff either A1 �≤ A (i.e., A is a chain) and Cn−1 ≤ A, or else:
A1 ≤ A (i.e., A is not a chain) and for some m ≥ 0, ht(A) = m and every finite poset
P with the following properties embeds Cn. The properties are:

(1) C0 ⊕ A ≤ P.
(2) For every chain C and finite poset Q with Cm < Q ≤ A and C ⊕ Q ≤ P there

is Q′ with Cm ≤ Q′ ≺ Q and there is a chain D with C ≺ D and D ⊕ Q′ ≤ P.
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To prove that this characterizes the relation |A| ≥ n, we assume first that A is not
a chain and |A| ≥ n, and say ht(A) = m. We need to show that every P ∈ Qposet that
satisfies (1) and (2) embeds Cn. So assume that P satisfies (1) and (2). By induction
on k = |A| − |Q|, using (1) for the base step k = 0, and using (2) in the induction
step, we can obviously show that for 0 ≤ k ≤ |A| − m − 1, we have Ck ⊕ Q ≤ P for
some Q ∈ Qposet satisfying Cm ≤ Q ≤ A and |A| − |Q| = k. At k = |A| − m − 1, it
follows that |Q| = m + 1 and since Cm ≤ Q then Q ∼= Cm: for this k we have Ck ⊕
Cm ≤ P. Thus

P ≥ Ck ⊕ Cm
∼= Cm+k+1

∼= C|A| ≥ Cn .

Next, we assume that A is not a chain, |A| < n, and ht(A) = m. We need to find a
poset P ∈ Qposet that satisfies (1) and (2) and does not embed Cn. Let Q0, . . . , Qp−1

be a list that contains exactly one isomorphic copy of each poset Q ∈ Qposet such
that Cm ≤ Q ≤ A. Then we put

P =
∑

0≤i<p

Cki ⊕ Qi

where ki = |A| − |Qi| for i < p. Clearly, ht(Qi) = m and ht(Cki ⊕ Qi) = ki + m + 1
so the component Cki ⊕ Qi of largest height is the one with the largest value of ki,
that is, when Qi

∼= Cm. For this Qi we have

Cki ⊕ Qi
∼= Cki ⊕ Cm

∼= Cki+m+1
∼= C|A| .

It follows that we have ht(P) = |A| < n and so Cn �≤ P.
It remains for us to show that P satisfies (1) and (2). The truth of (1) for P is trivial.

To prove (2), let C, Q ∈ Qposet with C ∼= C� and Cm < Q ≤ A and C ⊕ Q ≤ P. Now
C ⊕ Q ∼= C� ⊕ Q is connected, because it has a bottom element. Thus we have that

C� ⊕ Q ≤ Cki0
⊕ Qi0

for some i0. This implies that

� + m + 1 = ht(C� ⊕ Q) ≤ ht(Cki0
⊕ Qi0) = ki0 + m + 1 .

Thus � ≤ ki0 . We can assume that C ⊕ Q ⊆ Cki0
⊕ Qi0 (sub-poset).

Since Cm < Q ≤ A then Q is not a chain. Choose a chain U ⊆ Q, U ∼= Cm,
and incomparable elements q0, q1 in Q. One of these elements, say q0, must lie
outside U . Both elements q0, q1 belong to Qi0 , since elements of Cki0

are cutpoints in
Cmi0

⊕ Qi0 . Thus there is i1 so that Qi1
∼= Qi0 \ {q0}; and if we put Q′ = Q \ {q0} then

Cm ≤ Q′ ≺ Q. Moreover, C ⊕ Q′ ⊆ Cki0
⊕ Qi0 \ {q0} ∼= Cki0

⊕ Qi1 . Clearly, Cki1
∼=

C0 ⊕ Cki0
. Thus where D = C0 ⊕ C, we have C ≺ D, D is a chain, and D ⊕ Q′ ≤

Cki1
⊕ Qi1 , as required. This completes our proof that P satisfies (2). ��

2.4 Definability of the Relation A ∼= E ⊕ F

Lemma 2.13 The relation {(A, E, F) : A ∼= E ⊕ F and F is a chain} is def inable in
Qposet′.

Proof The proof follows the same pattern as our proof of Lemma 2.11. ��



126 Order (2010) 27:115–145

Lemma 2.14 The relation {(A, E, F) : A ∼= E ⊕ C0 ⊕ F} is def inable in Qposet′.

Proof We have that (A, E, F) lies in this relation if and only if ht(E) = m, say, and
ht(F) = n, and ht(A) = m + n + 2 (see Theorem 2.7), and A has a cutpoint of height
m + 1 (see Theorem 2.8) and for every finite poset R, Cm+1 ⊕ R ≤ A iff R ≤ F, and
R ⊕ Cn+1 ≤ A iff R ≤ E (see Lemmas 2.11 and 2.13). ��

Theorem 2.15 The relation

{(A, E, F) : A ∼= E ⊕ F}
is def inable in Qposet′.

Proof We have that (A, E, F) lies in this relation iff ht(E) = m, say, and ht(F) = n,
and ht(A) = m + n + 1, and Cm ⊕ F ≤ A and E ⊕ Cn ≤ A, and either E is topped
and there is a unique R with E ∼= R ⊕ C0 and for this R we have A ∼= R ⊕ C0 ⊕ F, or
F is bottomed and there is a unique R with R ∼= C0 ⊕ R and for this R we have A ∼=
E ⊕ C0 ⊕ R, or finally: E is not topped and F is not bottomed and there is a finite
poset A′ such that A′ ∼= E ⊕ C0 ⊕ F and we have A ≺ A′ and A has no cutpoint of
height m + 1 or of depth n + 1. ��

2.5 Definability of the Relation A ∼= E + F

Lemma 2.16 The relation

{(A, E, F) : E and F are chains and A ∼= E + F}
is def inable in Qposet′.

Proof First, a finite poset A is the cardinal sum of two (nonvoid) chains iff A is not
a chain, A2 �≤ A, E0 �≤ A, and E1 �≤ A.

Next, a finite poset A satisfies A ∼= Cm + Cn with m ≤ n iff A is the cardinal sum
of two nonvoid chains, ht(A) = n ≥ m, and |A| = (m + 1) + (n + 1). ��

Lemma 2.17 The relation

{(A, E, F) : E is topped, F is a chain, and A ∼= E + F}
is def inable in Qposet′.

Proof Suppose that E is topped and F is a chain. To begin, assume for the moment
that also ht(F) > ht(E) and E is not a chain. Then E �≤ F �≤ E. Under all these
assumptions, we claim that A ∼= E + F iff E ≤ A, F ≤ A, |A| = |E| + |F|, whenever
R ≤ A and E ≤ R and F ≤ R then R ∼= A, and finally, if F ≺ Q ≤ A then Q ∼=
C0 + F.

Now drop the assumptions that ht(F) > ht(E) and E is not a chain. We claim
that A ∼= E + F iff: either E is a chain and A ∼= E + F; or else E is not a chain,
and there is a chain C > F such that ht(C) > ht(E) and where A′ = E + C then E ≤
A ≤ A′ and |E| + |F| = |A|. (Use Theorem 2.7 and Theorem 2.12 to see that this
characterization is first-order expressible.) ��



Order (2010) 27:115–145 127

Lemma 2.18 The relation

{(A, E, F) : E and F are incomparable and topped, and A ∼= E + F}
is def inable in Qposet′.

Proof We have that (A, E, F) belongs to this relation iff |A| = |E| + |F|; E and F
are topped; E �≤ F �≤ E; E ≤ A; F ≤ A; for all A′ ≤ A, if E ≤ A′ and F ≤ A′, then
A′ ∼= A; whenever E ≺ Q ≤ A then Q ∼= E + C0; and whenever F ≺ Q ≤ A then
Q ∼= F + C0. ��

Theorem 2.19 The property of A that it is a connected f inite poset is def inable in
Qposet′.

Proof We claim that a finite poset A is disconnected iff A is neither topped nor
bottomed; and either A is the cardinal sum of two nonvoid chains, or else A is not
the cardinal sum of any two nonvoid chains, and there are B < A and C < A and
(nonvoid) chains D1, D2, D3, D4 such that where E′ = D1 ⊕ B ⊕ D2 and F ′ = D3 ⊕
C ⊕ D4 then E′ �≤ F ′ �≤ E′ and A ≤ E′ + F ′.

Proof of the claim: (⇐) If A is connected, then clearly the condition fails.
(⇒) Assume that A is disconnected and is not the cardinal sum of two chains. We

can write A ∼= B + C where B is not a chain. Let h be the maximum of ht(B), ht(C).
Put D1 = Ch+1, D2 = C0 = D3, and D4 = C2h+3, and define E′ = D1 ⊕ B ⊕ D2 and
F ′ = D3 ⊕ C ⊕ D4. Now clearly A ≤ E′ + F ′. We have that E′ �≤ F ′ because E′ has
a non-cutpoint b (belonging to the copy of B in E′) of height at least h + 2 and F ′ has
no such element. Also, F ′ �≤ E′ because ht(E′) ≤ 2h + 3 while ht(F ′) ≥ 2h + 4. ��

Lemma 2.20 The relation

{(A, E, F) : E and F are incomparable and connected, and A ∼= E + F}
is def inable in Qposet′.

Proof A triple (A, E, F) belongs to this relation iff E and F are connected and
E �≤ F �≤ E, E ≤ A, F ≤ A, |A| = |E| + |F|, whenever R ≤ A and E ≤ R and F ≤
R then R ∼= A, whenever E ≺ Q ≤ A then Q ∼= E + C0, and whenever F ≺ Q ≤ A
then Q ∼= F + C0. ��

Lemma 2.21 The relation

{(A, E, F) : E is a chain, F is connected and A ∼= E + F}
is def inable in Qposet′.

Proof The proof is the same as the proof of Lemma 2.17, using now that the property
of being connected is definable. ��

By a maximal connected component of a finite poset P we shall mean a connected
poset Q such that Q ≤ P and for every R with Q < R ≤ P, R is disconnected.
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Lemma 2.22 The relation

{(A, E) : E is connected and A ∼= E + E}
is def inable in Qposet′.

Proof Suppose that E is connected. If E is a chain, then E + E is definable
relative to E as in Lemma 2.16. If E is not a chain, then A0 ⊕ E and E ⊕ A0 are
incomparable and connected. Then B = (A0 ⊕ E) + (E ⊕ A0) is definable relative to
E via Theorem 2.15 and Lemma 2.20. Now E + E is, up to isomorphism, the unique
finite poset A such that for some Q, A ≺ Q ≺ B, A is not connected and E is the
only maximal component of A. ��

Lemma 2.23 The relation

{(A, E, F) : E and F are connected and A ∼= E + F}
is def inable in Qposet′.

Proof Let E, F be connected. If E and F are incomparable, or isomorphic, we can
define E + F via the formula of Lemmas 2.20 or 2.22 respectively. Assume otherwise,
and say, E < F. We claim that A ∼= E + F iff the following is true.

A is disconnected, F is a maximal connected component of A, and for every finite
poset P that satisfies the conditions below, we have that

[C0 + (A ⊕ A0)] ⊕ A0

is a maximal connected component of P.
Let n = |F| − |E|. The conditions for P are:

(i) [Cn + ((E + E) ⊕ A0)] ⊕ A0 is a maximal connected component of P.
(ii) Every maximal connected component Q of P is of cardinality 3 + |E| + |F|

and has the form Q = [C + (S ⊕ A0)] ⊕ A0 where C is a chain and S is discon-
nected. S has a unique (up to isomorphism) maximal connected component R,
and |C| + |R| = |F| + 1.

(iii) Let Q ∼= [C + (S ⊕ A0)] ⊕ A0 be a maximal connected component of P with
|C| > 1. There is a maximal connected component Q′ of P such that:

(1) Q′ ∼= [C′ + (S′ ⊕ A0)] ⊕ A0 where S ≺ S′ and C′ ≺ C.
(2) S′ is disconnected (of course), and where R and R′ are the unique max-

imal connected components of S and S′ respectively, then R ≺ R′ ≤ F.

To prove the claim, we first tackle the necessity. Suppose that in fact, A ∼=
E + F. Let P be any member of Qposet that satisfies (i), (ii) and (iii). Using the
conditions recursively, we get a sequence of maximal connected components of P,
of the form Q0, Q1, . . . , Qn where Qi

∼= [Cn−i + (Si ⊕ A0)] ⊕ A0; S0 = E + E; Si

is disconnected and Si ≺ Si+1 for 0 ≤ i < n; and where Ri is the unique maximal
connected component of Si, we have

E ∼= R0 ≺ R1 ≺ · · · ≺ Rn .

Since Rn ≤ F and |Rn| = |F| then Rn
∼= F.
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We claim that Si
∼= E + Ri for all 0 ≤ i ≤ n. This is true for i = 0. We prove it for

i = 1 and then inductively for 1 ≤ i ≤ n.
For i = 1, S1 has a sub-poset U ∪ V where U ∩ V = ∅, each of U and V is

isomorphic to E, and there are no order relations between elements of U and
elements of V. We have S1 \ (U ∪ V) = {x1}, say. Since S1 is disconnected, the
element x1 cannot be related both to some element of U and to some element of
V, in S1. If x1 were related to no element of U ∪ V then U ∼= E would be a maximal
connected component of S1, which is false. Thus the connected components of S1 are
U and V ∪ {x1}, say (or V and U ∪ {x1}). Clearly, R1 must be isomorphic to V ∪ {x1},
and we have S1

∼= E + R1.
Now suppose that n > i ≥ 1 and that Si

∼= E + Ri. We have that Si = U ∪ W
where U ∼= E and W ∼= Ri. Since Si ≺ Si+1, we can assume that Si+1 = Si ∪ {xi+1}.
Again, we have that the connected components of Si+1 must be, either U ∪ {xi+1}
and W, or U and W ∪ {xi+1}. If the first case were to hold, W could not be properly
embedded into U ∪ {xi+1} because |W| > |U |, so Ri

∼= W would be a maximal con-
nected component of Si+1, giving Ri

∼= Ri+1; but this is false. Thus Ri+1
∼= W ∪ {xi+1}

and Si+1
∼= E + Ri+1.

This completes our proof that Si
∼= E + Ri for 0 ≤ i ≤ n. Since E + Rn

∼= E + F ∼=
A, we now have that [C0 + (A ⊕ A0) ⊕ A0 is a maximal connected component of P,
as required.

Next, we tackle the proof of sufficiency of our proposed condition to characterize
the relation A ∼= E + F when E and F are connected and E < F. Since E and F
are connected, and we are assuming that E < F, it is easy to construct a sequence
of connected posets Ri ∈ Qposet (0 ≤ i ≤ n) such that E = R0 ≺ R1 ≺ · · · ≺ Rn−1 ≺
Rn = F. Define P to be the cardinal sum of the posets [Cn−i + ((E + Ri) ⊕ A0)] ⊕ A0

(0 ≤ i ≤ n) (the cardinal sum of n + 1 connected posets). Since all of the cardinal
summands of P are connected, pairwise non-isomorphic, and have the same cardi-
nality, then each connected component of P is a maximal connected component of
P. It is obvious that Ri is the unique maximal connected component of E + Ri for
each i. In fact, it is obvious that P satisfies (i), (ii) and (iii). Clearly, [C0 + ((E + F) ⊕
A0)] ⊕ A0 is the only maximal connected component of P of the form [C0 + T] ⊕ A0

with T connected. Thus if [C0 + (A ⊕ A0)] ⊕ A0 is a maximal connected component
of P, then A ∼= E + F. ��

Lemma 2.24 The relation

{(A, U, V) : A ∼= U + V, U is a maximal connected component of A,

and V is disconnected}

is def inable in Qposet′.

Proof (A, U, V) belongs to this relation iff U is a maximal connected component
of A; V ≤ A and every maximal connected component M of A satisfies M ∼= U or
M ≤ V; A and V are disconnected; A ≺ U + (V ⊕ A0); and A is not isomorphic to
any Z + W with Z , W connected.

The necessity of these conditions is obvious. For sufficiency, suppose that they are
satisfied. We have a poset W ∈ Qposet, isomorphic with U + (V ⊕ A0), such that
W = A ∪ {x}, x �∈ A, and A is a sub-poset of W. We can write W = U ′ ∪ (V ′ ∪ {a})
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where U ′ ∼= U , V ′ ∼= V, U ′ ∩ V ′ = ∅, there are no order relations between elements
of U ′ and V ′, and a > y for all y ∈ V ′ while a is incomparable to all elements of U ′.

If x = a then A = U ′ ∪ V ′ ∼= U + V. It is impossible to have x ∈ V ′ because then
A is the union of its two connected sub-posets U ′ and (V ′ ∪ {a}) \ {x}, contradicting
that A is not isomorphic to the cardinal sum of two connected posets.

It remains to consider the case where x ∈ U ′. In this case, Q = V ′ ∪ {a} is a
connected subset of A, and we must have Q ≤ M for some maximal connected
component M of A. Since Q is bigger than V, then Q ≤ M ≤ U . But also,

A = (U ′ \ {x}) ∪ Q ∼= (U ′ \ {x}) + Q

in this case, so the connected poset U satisfies U ≤ Q as U �≤ U ′ \ {x}. Thus Q ∼= U .
Hence U ′ ∼= U has a top element b , and U ′ \ {b} ∼= V. If b �= x then U ′ \ {x} has a
top element and is connected. But then, the displayed formula above shows that A is
isomorphic to the cardinal sum of two connected posets, a contradiction. We are left
with the conclusion that x = b . But now U ′ \ {x} ∼= V. Combining this with the fact
that Q ∼= U , the displayed formula now becomes A ∼= V + U . ��

Lemma 2.25 The relation

{(A, U, V) : A ∼= U + V and U is a maximal connected component of A}
is def inable in Qposet′.

Proof (A, U, V) belongs to this relation iff either (1) it belongs to the relation of
Lemma 2.24; or (2) U , V are connected, A ∼= U + V and either U ∼= V or U �≤ V. In
case (2), Lemma 2.23 shows that the conditions are first-order expressible. ��

Lemma 2.26 The relation

{(A, E, C) : A ∼= E + C and C is a chain}
is def inable in Qposet′.

Proof If E is connected, we can use the formula of Lemma 2.21.
Suppose that E is disconnected. Then (A, E, C) belongs to this relation iff (1)

there are U, V such that E ∼= U + V and U is a maximal connected component of
E of largest cardinality among all maximal connected components of E; (2) C is a
chain; (3) there is B � A such that B ∼= V + [(U + C) ⊕ A0]; and (4) every maximal
connected component of A (other than possibly C) has cardinality no greater than
|U |.

Note that B is first-order definable relative to U , V by Lemma 2.21, Theorem 2.15,
and Lemma 2.25.

The necessity of these conditions being obvious, we focus on their sufficiency.
Suppose that E is disconnected and the conditions hold. We can assume that B =
{x} ∪ A and A is a sub-poset of B. We can write B = V ′ ∪ W ′ where there are no
order relations linking an element of V ′ to an element of W ′, and V ′ ∼= V and W ′ ∼=
(U + C) ⊕ A0. Thus W ′ has a top element. If x is not that top element of W ′ then
either W ′ or W ′ \ {x} is a connected component of A; but this set is bigger than U
and bigger than C, contradicting (4). So we must have A = V ′ ∪ (W ′ \ {x}) where
W ′ \ {x} ∼= U + C. This gives A ∼= V + (U + C) ∼= E + C. ��
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Theorem 2.27 The relation

{(A, E, F) : A ∼= E + F}
is def inable in Qposet′.

Proof Let C be the chain of cardinality max{|E|, |F|} + 3 = k + 3. Define E′ =
E + C and F ′ = F + C. Then put B = (E′ ⊕ A0) + (F ′ ⊕ A0). We know that B is
definable relative to E, F. It is the case that E′ + F ′ is up to isomorphism the
unique finite poset A′ of height k + 2 such that for some Q, A′ ≺ Q ≺ B, and
every connected subset of A′ that is not a chain has at most k elements. We have
that E + F is, up to isomorphism, the unique poset A of height k − 1 such that
A + C + C ∼= A′. The proofs of our assertions are straightforward, and we urge the
reader to reconstruct them. ��

A poset Q ∈ Qposet will be called a connected component of A ∈ Qposet iff A ∼=
Q + R for some R ∈ Qposet, and Q is connected.

Corollary 2.28 The relation {(Q, A) : Q is a connected component of A} is def inable
in Qposet′.

Proof This follows from Theorems 2.19 and 2.27. ��

2.6 Individual Definability of the Members of Qposet

We can now prove a key result of this paper:

Theorem 2.29 Every member of Qposet is a def inable member of Qposet′.

The proof will be finished at the end of this section. Let us start with some
definitions and lemmas.

Definition 2.30 Let 0 ≤ i < k be integers. ηk(i) is defined up to isomorphism, as a
certain member of Qposet that encodes the pair (k, i). Namely,

ηk(i) ∼= Ci+2 ⊕ A1 ⊕ Ck−i .

Also, we define

ηk
∼=

∑

0≤i<k

ηk(i) ,

the cardinal sum of the posets ηk(i). The posets ηk(i) will be called o-numbers. The
poset ηk will be called the k-list of o-numbers (Fig. 4).

Lemma 2.31 The relation

{(Ci, Ck, ηk(i)) : 0 ≤ i < k}
and the relation

{(Ck, ηk) : 0 < k}
are def inable in Qposet′.
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Fig. 4 η5(2) and η′
5(2)

Proof The definability of the first relation is obvious, from Theorems 2.2 and
2.15. Note that ht(ηk(i)) = k + 4. For the second relation, observe that ηk is, up
to isomorphism, the ≤-least member of Qposet of height k + 4 whose connected
components are precisely ηk(0), . . . , ηk(k − 1). (See Corollary 2.28.) ��

Definition 2.32 Let 0 ≤ i < k be integers. We define η′
k(i) ∈ Qposet up to isomor-

phism by the formula

η′
k(i) ∼= {C0 + (Ci+2 ⊕ A1 ⊕ Ck−i−1)} ⊕ C0 .

See Fig. 5.

Definition 2.33 Suppose that A ∈ Qposet, |A| = k. Let B be any member of Qposet
such that the set of elements of B is [k] = {0, 1, . . . , k − 1} and B is isomorphic to A.
We define, up to isomorphism, a member of Qposet that we denote by Pk(A, B).

First, make a poset B+ isomorphic to B ⊕ A2 ⊕ C0 by adjoining k, k + 1, k +
2, k + 3 to B and defining the order so that B ⊆ B+ as posets, the new elements
are above all elements of B, and k, k + 1, k + 2 are incomparable and below k + 3.
Next, find an isomorphic copy of ηk, say ηk

∼= Nk ∈ Qposet with Nk disjoint from
{0, 1, . . . , k + 3}. The set of elements of Pk(A, B) is the disjoint union of Nk and
{0, 1, . . . , k + 3}. For 0 ≤ i < k let pi be the top element of the unique copy of ηk(i)
in Nk. The order on Pk(A, B) is defined so that its covers are those of Nk together
with those of B+ and, for each 0 ≤ i < k the cover i < pi.

Thus Pk(A, B) is the union of its disjoint sub-posets Nk and B+ and the only
order relations in Pk(A, B) besides those in Nk or in B+ are x < pi when x ∈ B and
B |= x ≤ i. Every poset Pk(A, B) will be called an o-presentation of A.

For example, see Fig. 5 where Pk(A, B) is pictured for k = 5, A is the (isomor-
phism type of) pentagon, and B is the pentagon labeled as shown in the picture.

Lemma 2.34 Let A, B, k be as above.

(1) The isomorphism type of the o-presentation of A, Pk(A, B), encodes the poset
B exactly. That is to say, let B be a poset with universe {0, . . . , k − 1} and
B′ be a poset with universe {0, . . . , � − 1} and let B ∼= A ∈ Qposet and B′ ∼=
A′ ∈ Qposet. Then Pk(A, B) ∼= P�(A′, B′) if f k = � and B = B′ (implying that
A ∼= A′).
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Fig. 5 P5(A, B) for a
pentagon

(2) Each o-presentation Pk(A, B) is a def inable member of Qposet′ (only up to
isomorphism, of course).

(3) The relation {(A, P) : where |A| = k, P ∼= Pk(A, B) for some B} is def inable in
Qposet′.

Proof To prove (1), we begin with the assertion that it should be obvious that
if k = � and B = B′ then Pk(A, B) ∼= P�(A′, B′). Conversely, suppose that
Pk(A, B) ∼= P�(A′, B′). The height of Pk(A, B) is k + 4 and of P�(A′, B′) is � + 4,
thus k = �. The posets B and B′ thus have the same universe. We need to show that
they have the same order. This follows from

Claim: Let 0 ≤ i, i′ < k with i �= i′. Then B |= i < i′ iff η′
k(i) + ηk(i′) �≤ Pk(A, B)

(and of course B′ |= i < i′ iff η′
k(i) + ηk(i′) �≤ Pk(A′, B′)).

To prove the claim, suppose first that i �≤ i′ in B. We have that the unique copy
of ηk(i) in Pk(A, B) together with the element i constitutes a sub-poset of Pk(A, B)

isomorphic to η′
k(i). The unique copy of ηk(i′) in Pk(A, B) is disjoint from this copy

of η′
k(i); and the only possible relation involving elements of the two sets is that the

top element of the ηk(i′) might be above i. Since i �≤ i′, then this does not happen.
Thus η′

k(i) + ηk(i′) ≤ Pk(A, B).
For the converse, assuming that η′

k(i) + ηk(i′) ≤ Pk(A, B), then there must be an
element x ∈ Pk(A, B) that is below the top element of the ηk(i) and incomparable to
all other elements of the ηk(i) + ηk(i′). This element x can only be an element of B,
and in fact, where pi and pi′ are the top elements of the ηk(i) and ηk(i′), then we must
have pi > i ≥ x and pi′ �≥ x in Pk(A, B). Since pi′ > i′ and B |= i ≥ x then B |= i′ �≥ i.

To prove (2), we write first-order properties of the element Pk(A, B) ∈ Qposet′

that determine it up to isomorphism. In fact, Pk(A, B) is, up to isomorphism, the
unique member P of Qposet′ satisfying: there is a k-element poset B ∈ Qposet such
that where B

+ ∼= B ⊕ A2 ⊕ C0 we have

(a) ht(P) = k + 4.
(b) ηk ≤ P, B

+ ≤ P, and |P| = |ηk| + k + 4.
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(c) If T ∈ Qposet′, T ≤ P, ηk ≤ T and B
+ ≤ T then T ∼= P.

(d) The ≤-maximal topped posets embedded in P are, up to isomorphism, B
+

and, for each 0 ≤ i < k, a poset isomorphic to

{R + (Ci+2 ⊕ A1 ⊕ Ck−i−1)} ⊕ C0

for some topped R ≤ B.
(ei,i′ ) (Here 0 ≤ i, i′ < k, i �= i′.) η′

k(i) + ηk(i′) �≤ P iff B |= i < i′.

That Pk(A, B) satisfies all of the above properties is easily obtained from the
proof of (1) provided that we can show that Pk(A, B) has a unique subset isomorphic
to ηk and a unique subset isomorphic to B+. In order to prove this, recall that
Pk(A, B) is the disjoint union of Nk and B+, and that Nk

∼= ηk. Suppose now that
T ⊆ Pk(A, B), T ∼= B+. Let � denote the top element of T. Below � we have three
incomparable elements a1, a2, a3 with a copy of B below all three of the ai. If � ∈ Nk

then � can only be the top element pi of the copy of a ηk(i) inside Nk, and one of
a1, a2, a3 must be below i in B (since ηk(i) has no three-element antichain). But then
the copy of B below a1, a2 and a3 must lie properly below i and actually be a proper
subset of B, which is impossible by cardinality considerations. It follows then that
� ∈ B+. This forces T ⊆ B+ since B+ is an order-ideal in Pk(A, B). Since T ∼= B+,
then T = B+. Thus there is only one copy of B+ in Pk(A, B).

Now let S be a copy of ηk in Pk(A, B). We need to prove that S = Nk. Take any
i ∈ [k] and let S(i) be the unique copy of ηk(i) inside S, and let �i be the top element
of S(i). Then the height of �i in Pk(A, B) is at least k + 4. The only elements of
Pk(A, B) having height not less than k + 3 in Pk(A, B) lie inside Nk; thus �i ∈ Nk.
In fact, �i must be the top element of the unique copy of ηk( j) inside Nk, for a
certain j ∈ [k]. Let r be the unique element of height k + 3 in S(i). Then likewise,
r ∈ Nk, and then r must in fact be the element of height k + 3 in the copy of ηk( j) in
Nk. Now �i together with r and the elements below r in Pk(A, B) just constitute this
copy of ηk( j). Then by cardinality considerations, S(i) is identical with this copy of
ηk( j). This implies that j = i. Our reasoning gives the conclusion that for each i ∈ [k],
the copy of ηk(i) in Nk is included in S. By cardinality, we conclude that S = Nk, as
desired.

This completes our proof that Pk(A, B) satisfies the properties. Now assume that
P satisfies these properties. The first three, (a), (b), (c), imply that P is the disjoint
union of a subset N′

k isomorphic to ηk and a subset isomorphic to B
+

and that P

contains just one subset isomorphic to ηk and just one subset isomorphic to B
+

. To
simplify notation, we can assume that the copy of B

+
in P is

B
+ = B ∪ {a1, a2, a3} ∪ {t}

where a1, a2, a3 are incomparable, above all elements of B, and below t.
Now if t were above some element of N′

k then t↓ in P would be a proper extension

of B
+

, and so by (d), B ∪ {a1, a2, a3} would be order-embeddable into

R + (Ci+2 ⊕ A1 ⊕ Ck−i−1)

for some i ∈ [k] and R a topped subset of B. This is clearly impossible, since it would
force B to be properly embeddable into itself. Hence the only comparabilities in P
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between an element of N′
k and an element of B

+
must be of the form x > y with

x ∈ N′
k and y ∈ B

+
.

For i ∈ [k] let pi and ri be the elements of height k + 4 and k + 3 in the copy of
ηk(i) inside N′

k. We claim that the only elements of N′
k that can possibly be above an

element of B
+

are the pi. If this fails to be the case, then for some i we have ri > y
with y ∈ B

+
. By (d), every ≤-maximal topped subset of P has height at most k + 4.

(Note that ht(B) < k.) Thus pi↓ in P is clearly a ≤-maximal topped subset of P and
by (d), ri↓≤ B or

ri↓∼= Ci+2 ⊕ A1 ⊕ Ck−i−1 .

Since the height of ri in P is at least k + 3 and the height of the order-ideal B is
less than k, then the second alternative must prevail. But this implies that ri↓ in P is
contained in N′

k and so we have a contradiction (to the assumption that ri > y ∈ B
+

).

Thus the only relations between N′
k and B

+
are of the form pi > y, y ∈ B

+
.

Actually, (d), with height considerations, now implies that for each i ∈ [k], pi↓ ∩B
+

is nonvoid and this set has a largest element, yi, and this element yi belongs to B.
From what we have shown up to here, it is easily established that P has a unique

copy of ηk(i) for each i ∈ [k]. Then the conditions (ei,i′ ) yield that the map i �→ yi is
one-to-one. Since |B| = k, then this map is also onto B. Finally, conditions (e) show
that B |= i < i′ iff B |= yi < yi′ , so we have B ∼= B. This ends our proof of (2).

To prove (3), suppose that A ∈ Qposet and |A| = k, and that P ∈ Qposet. Then
we claim that P ∼= Pk(A, B) for some B if and only if the following hold:

(α) ht(P) = k + 4.
(β) ηk ≤ P, A+ ≤ P, and |P| = |ηk| + k + 4.
(γ ) If T ∈ Qposet′, T ≤ P, ηk ≤ T and A+ ≤ T then T ∼= P.
(δ) The ≤-maximal topped posets embedded in P are, up to isomorphism, A+

and, for each 0 ≤ i < k, a poset isomorphic to {R + (Ci+2 ⊕ A1 ⊕ Ck−i−1)} ⊕
C0 for some topped R ≤ A.

(εi,i′ ) (Here 0 ≤ i, i′ < k, i �= i′, and otherwise i, i′ are arbitrary.) Either η′
k(i) +

ηk(i′) ≤ P or η′
k(i

′) + ηk(i) ≤ P.

The proof of this claim parallels our proof of (2), and is left for the reader to
supply. ��

Let us finish the proof of Theorem 2.29. Let A ∈ Qposet. Say |A| = k. Choose
B ∼= A with the universe of B identical to {0, 1, . . . , k − 1}. By Lemma 2.34(2),
Pk(A, B) is a definable member of Qposet′. Now A is, up to isomorphism, the unique
R ∈ Qposet such that R ⊕ A2 ⊕ C1 is a ≤-maximal topped sub-poset of Pk(A, B).

2.7 Universal Classes of Posets

For a class K of posets, denote by K∂ the class of the posets dual to the posets of K.
The mapping K �→ K∂ is clearly an automorphism of the lattice of universal classes
of posets.

Theorem 2.35 The lattice of universal classes of posets has only two automorphisms:
the identity and the map K �→ K∂ . The set of all f initely axiomatizable and also the set
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of all f initely generated universal classes of posets are def inable subsets of this lattice,
and each member of either of these two def inable subsets is an element def inable up
to the two automorphisms of this lattice.

Proof As we mentioned in the introduction, the lattice of universal classes of posets
is isomorphic to the lattice of order-ideals of the poset 〈P, ≤〉, and also isomorphic
to the lattice L of order-ideals of the quasi-ordered set 〈Qposet, ≤〉. The members
of L are the subsets K ⊆ Qposet such that A ≤ B ∈ K implies A ∈ K. Under the
isomorphism between these lattices, the finitely generated order-ideals are carried
onto the finitely generated universal classes, and the set-complements of the finitely
generated order-filters are carried onto the finitely axiomatizable universal classes.
We proved in the introduction that the set of finitely generated universal classes is a
definable subset of the lattice, and the set of finitely axiomatizable universal classes
is definable.

Thus let I be an order-ideal in Qposet that is either finitely generated or the
complement of a finitely generated order-filter. We need to show that {I, I∂} is first-
order definable in the lattice L. There are finitely many finite posets A1, . . . , An so
that either we have

I = {B ∈ Qposet : B ≤ Ai for some 1 ≤ i ≤ n}
or we have

I = {B ∈ Qposet : for all i with 1 ≤ i ≤ n B �≥ Ai} .

For A ∈ Qposet put A↓= {B ∈ Qposet : B ≤ A}. The set of strictly join-
irreducible members of L, definable in L, is precisely the set of order-ideals of
Qposet of the form A↓ (for A ∈ Qposet). Thus Theorem 2.29 implies that each
of A1↓, . . . , An↓ is a definable member of the pointed lattice (L, E0↓). Thus for
1 ≤ i ≤ n there is a first-order lattice-theoretic formula ϕi(x, y) so that Ai↓ is the
unique member x of L such that L |= ϕi(x, E0↓). Also, there is a formula ε(x) so that
E0↓, E∂

0↓ are the only elements of L that satisfy ε(x). (Because the set {E0, E∂
0} is

definable in Qposet′; see the proof of Proposition 2.3.)
Define �(x) to be the formula

(∃y)(∃x1, . . . , xn)

[
ε(y) ∧

∧

1≤i≤n

ϕi(xi, y) ∧ x = x1 + · · · + xn

]
;

and �(x) to be the formula

(∃y)(∃x1, . . . , xn)[ε(y) ∧
∧

1≤i≤n

ϕi(xi, y)

∧ (∀z)

[
z ≤ x ↔

∧

1≤i≤n

xi �≤ z
]

.

In the first formula, + is the symbol for the lattice join operation in L.
We claim that for x ∈ L, L |= �(x) iff x = I or x = I∂ where I is the order-ideal

generated by A1, . . . , An; and L |= �(x) iff x = J or x = J∂ where J is the largest
order-ideal containing none of A1, . . . , An.

We shall prove just the claim for �(x) and J. Suppose first that U ∈ L and
L |= �(U). Let Y and X1, . . . , Xn be the elements of L that witness the satisfaction of
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�(U). Then L |= ε(Y) and L |= ϕi(Xi, Y) for i = 1, . . . , n. It follows that Y = E0↓ or
Y = E∂

0↓. If Y = E0↓ then it follows that Xi = Ai↓ for i = 1, . . . , n. In this case, the
fact that L |= �(U) tells us that U is the largest member of L that fails to intersect
{A1, . . . , An}, i.e., U = J. In the case that Y = E∂

0 , consider U∂ (= {A∂ : A ∈ U}).
Since ∂ is an automorphism of 〈Qposet,≤〉, it induces an automorphism of L. It
follows that L |= �(U∂ ) with witnesses Y∂ = E0↓ and X∂

i . This puts us in the first
case, and we can conclude that U∂ = J. So it follows that U = J∂ in this case. Since
it is more or less obvious that L |= �(J) and L |= �(J∂ ), we regard the proof of
Theorem 2.35, as regards definability, to be finished.

It remains to show that U �→ U∂ is the only non-identity automorphism of L. Here
is a proof. Let σ be any automorphism of L. Since {E0↓, E∂

0↓} is a definable subset of
L then σ(E0↓) belongs to this set. Thus if σ(E0↓) �= E0↓ then τ(E0↓) = E0↓ where τ

is the automorphism U �→ σ(U)∂ . We now show that any automorphism which fixes
the element E0↓ must be the identity. It will follow that σ is the identity, or σ followed
by the map ‘dual’ is the identity; so that σ is the identity or the map U �→ U∂ .

So finally, suppose that σ is an automorphism of L and that σ(E0↓) = E0↓. For
every A ∈ Qposet there is, as we noted above, a lattice-theoretic formula ϕ(x, y) such
that A↓ is the unique element U ∈ L for which L |= ϕ(A↓, E0↓). Since L |= ϕ(A↓,

E0↓) then L |= ϕ(σ(A↓), σ (E0↓)); but since σ fixes E0↓ then L |= ϕ(σ(A↓), E0↓),
and σ(A↓) = A↓ is forced. Thus the fixed points of σ include all the A↓ and,
consequently, every point of L is fixed by σ , as every member of L is the join in
L of some subset of the family of members of the form A↓. ��

3 Part II

3.1 Introduction to Definability in Cposet and Cposet′

The category Cposet has for its set Obj of objects the members of Qposet of the
form A = 〈[n], ≤A〉 where [n] = {0, . . . , n − 1}, n > 0. For every A, B ∈ Obj the set
CP(A, B) of morphisms in Cposet is the set of triples f = (A, α, B) where α is a
monotone map from A to B, i.e., a map from the universe of A to the universe of
B such that whenever x ≤ y in A then α(x) ≤ α(y) in B. The identity morphism in
CP(A, A) is denoted as 1A. Thus 1A = (A, idA, A) where idA is the identity function
on A. Composition of morphisms in Cposet is, for every triple of objects A, B, C a
mapping CP(A, B) × CP(B, C) → CP(A, C). If f = (A, α, B) ∈ CP(A, B) and g =
(B, β, C) ∈ CP(B, C), the composition f ◦ g (written also as fg) is

f ◦ g = (A, β ◦ α, C)

where for x ∈ A, {β ◦ α}(x) = β(α(x)) ∈ C. When f ∈ CP(A, B), the domain of f
is A and the co-domain of f is B. Note that since a morphism f is actually of the
form f = (A, α, B), the domain and the co-domain of f are unique. That is to say,
for objects A, B, C, D ∈ Obj, we have CP(A, B) ∩ CP(C, D) = ∅ unless A = C and
B = D.

It happens to be true that a morphism f ∈ CP(A, B) is one-to-one on elements
iff whenever g, h ∈ CP(U, A) for some object U then gf = hf ↔ g = h. Also, f is
onto the set of elements of B iff whenever g, h ∈ CP(B, V) for some object V then
fg = f h ↔ g = h. Thus the properties of a morphism that it is injective, or surjective,
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are (first-order) definable in Cposet. We have that f ∈ CP(A, B) is an isomorphism
iff there is g ∈ CP(B, A) with fg = 1A and gf = 1B.

A morphism f = (A, α, B) (or the monotone map α) is called an embedding iff
for all x, y ∈ A it is the case that x ≤ y in A iff α(x) ≤ α(y) in B. The property of
being an embedding is definable in Cposet as well, but this requires a little care.

To see it, note that C0 is the unique terminal object in Cposet; i.e., for every object
A there is a unique morphism A → C0. Thus C0 is definable. There are two objects
C with the property that |CP(C, C)| = 3, namely 〈[2], ≤〉, with ≤ the usual order,
and its dual, 〈[2], ≥〉. These two objects are isomorphic, and in that sense, either one
deserves to be labeled as C1. Now one can verify that a morphism f ∈ CP(A, B) is an
embedding iff whenever C ∈ Obj and |CP(C, C)| = 3 and CP(C0, C) = {ε0, ε1}, and
u, v ∈ CP(C0, A) and there is q ∈ CP(C, B) with ε0q = uf and ε1q = v f , then there
is p ∈ CP(C, A) with ε0 p = u and ε1 p = v.

Thus not only the properties of a morphism that it be injective, or surjective, or
an isomorphism, but also the property that it be an embedding, are all first-order
definable in Cposet. It follows that the quasi-order relation ≤ of Qposet, restricted
to Cposet, is definable in Cposet. Since every member of Qposet is isomorphic to a
member of Cposet, then every subset or relation first-order definable in Qposet is
first-order definable in Cposet (or rather its restriction to Cposet is so).

Our goal in the remainder of this paper is to obtain a converse to the result of
the last paragraph. Namely, we shall show that every isomorphism-invariant relation
on objects in Cposet that is definable in the first-order language of Cposet′ (or even
definable in the second-order language L2 described in the introduction) is actually
first-order definable in the much more modest structure Qposet′. We hope that the
following observations will render the more technical work in the next section more
readable.

In Qposet, we have only the posets as objects, and the relation of embeddability
between objects, to work with. The internal structure of an object (the elements, and
the order relation) are officially unavailable. In Cposet, we have only the objects
and the morphisms and their compositions. The internal structure of the objects is
officially unavailable in Cposet. Nevertheless, we have a way of reading the elements
of an object in Cposet: Clearly, [n], the set of elements of A = 〈[n], ≤A〉 is naturally
bijective with CP(C0, A). In Cposet′, we can name C1 = 〈{0, 1},≤〉 and also name
the maps f0 = {(0, 0)} and f1 = {(0, 1)}, and with this help we can also read the order
≤A in the object A. In fact, where f, g ∈ CP(C0, A) and say f = (C0, α, A) and g =
(C0, β, A) and α(0) = x and β(0) = y then x ≤A y iff there is h ∈ CP(C1, A) such that
f0h = f and f1h = g. In fact,

A = 〈[n], ≤A〉 ∼= 〈CP(C0, A),≤d〉 = Ã

where the order ≤d on CP(C0, A) is defined by the formula expressed in the last
sentence. The isomorphism is via the map i �→ (C0, {(0, i)}, A) for 0 ≤ i < n. Here,
both the set of elements and the order of the second poset Ã have first-order
definitions in the language of Cposet′. This means that first-order language applied
to the structure Cposet′ is equivalent in expressive power to a certain second-order
language L′ applied to another structure that exists inside Cposet′. This second-order
language L′ has variables ranging over the collection {Ã : A ∈ Obj}, has for each
A ∈ Obj variables ranging over the elements of Ã, and has for every A, B ∈ Obj
variables ranging over the set of monotone maps from Ã to B̃. All these variables can
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be quantified. In this language L′ we can express equality of elements, of structures,
of monotone maps, the application of a map to an element, order-inclusions between
elements.

To illustrate the power of these ideas, note that the property that the range of
a monotone map f : Ã → B̃ is a convex subset of B̃ can be easily expressed by a
formula in L′. This formula can be converted to a formula φ(x, Y, Z ) in the first-order
language of Cposet′ so that Cposet′ |= φ( f, A, B) iff A, B ∈ Obj, f ∈ CP(A, B) and
the range of the underlying function of the morphism f is a convex subset of the
poset B. In this way, the relation between A, B ∈ Obj that holds iff A is a surjective
monotone image of a convex subset of B, is first-order definable in Cposet′. Via the
results proved in the next section, this relation is definable in Qposet′.

According to Birkhoff duality, there is an order � on P under which it becomes
isomorphic to the set of isomorphism types of finite distributive lattices ordered by
embeddability. The observation in the previous paragraph establishes that this order
is first-order definable in P ′.

We can go further. The language L′ can be enriched to full second-order language
L2 without changing the situation. To show that L2-expressibility is no stronger
than first-order expressibility over Cposet′ requires only one additional simple
observation. Let A1, . . . , An be any objects of Cposet and R be any nonvoid subset
of the Cartesian product A1 × · · · × An. Setting k = |R|, there is a bijective map
β : [k] → R. Via projections, this gives maps βi : [k] → U(Ai) (where U(Ai) is the
set of elements of Ai) such that (x1, . . . , xn) ∈ R (where xi ∈ U(Ai)) iff for some
y ∈ [k], βi(y) = xi for i ∈ {1, . . . , n}. Now where A = Ak = 〈[k], ≤〉 is the k-element
antichain, we have that A is an object of Cposet and the maps βi are actually
monotone, A → Ai. Thus we have morphisms pi = (A, βi, Ai), i ∈ {1, . . . , n}. In
particular, choosing n = 2 for illustration, we find that arbitrary (non-void) relations
R̃ ⊆ U(Ã1) × U(Ã2) can be parameterized by triples (B, p1, p2) where B ranges
over all objects of Cposet′ while pi ranges over CP(B, Ai). Here with the proper
choice of (B, p1, p2) we have

R̃ = {(q1, q2) ∈ CP(C0, A1) × CP(C0, A2) : for some q ∈ CP(C0, B)

qi = qpi for i = 1, 2} .

3.2 Interpreting Cposet′ in Qposet′

We wish to build a copy of the structure Cposet′ inside Qposet′, in such a way that
the fundamental relations of Cposet′—“A ∈ Obj”; “ f ∈ CP(A, B)”; “g ∈ CP(A, B)

and f ∈ CP(B, C) and h = gf ∈ CP(A, C)”—are translated to relations in Qposet′

that are first-order definable in that structure. The relation that links a member
A of Qposet′ to a member P of Qposet′ that plays the role (in the copy) of some
B ∈ Cposet that is isomorphic to A, should be first-order definable in Qposet′

as well. In this way, we shall be enabled to construct a translation (or mapping)
sending any first-order formula �(X1, . . . , XM) over Cposet′ whose free variables
X1, . . . , Xn range over Obj to a first-order formula �̂(x1, . . . , xn) over Qposet′ so
that Qposet′ |= �̂(A1, . . . , An) (for elements Ai ∈ Qposet) iff for some Bi

∼= Ai,
Bi ∈ Obj we have Cposet′ |= �(B1, . . . , Bn). From the observations with which we
concluded Section 3.1, it will follow also that such a translation can be extended to
all formulas �(X1, . . . , Xn) of L2.



140 Order (2010) 27:115–145

Most of the technical work involved in building this copy of Cposet′ inside Qposet′

has already been accomplished in Section 2. Given A ∈ Qposet, k = |A|, and B ∈
Obj with A ∼= B, we have the poset Pk(A, B) ∈ Qposet (Definition 2.33). In a sense,
this poset has both an existence in the quasi-ordered set Qposet, and a parallel
existence in the category Cposet: A is encoded in Pk(A, B) in terms definable in
Qposet′, as the up-to-isomorphism unique Q ∈ Qposet such that Q+ is isomorphic
to a ≤-maximal topped subset of Pk(A, B). A presentation of B ∈ Obj is encoded in
Pk(A, B) also, by a first-order formula over Qposet′.

Much as the elements of B are encoded in Cposet′ by the members of CP(C0, B),
and the relation over CP(C0, B) encoding the order relation in B is defined by a first-
order formula over Cposet′, we have that the elements of B are encoded in Qposet′

by the posets ηk(i) (0 ≤ i < k), taken up to isomorphism, and the relation between
the ηk(i) that corresponds to the order in B (again taken up to isomorphism between
posets) is first-order definable in Qposet′. This is the content of Definition 2.33 and
Lemma 2.34.

Thus in our model of Cposet′ built inside Qposet′, the role of members of Obj will
be played by the posets P ∼= Pk(B, B) (corresponding to B ∈ Obj with k = |B|). We
have seen in Lemma 2.34(3) that the set of all such P is definable in Qposet′ (and this
will be critical in ensuring that our translation of formulas works as advertised). The
role of equality in Cposet′ (between objects, or between morphisms) will be played
by the relation of isomorphism in Qposet′.

It is now time to reveal how we propose to encode the morphisms of Cposet′ by
members of Qposet′.

Definition 3.1 Suppose that 0 ≤ i < k are integers. Recall the definition of ηk(i) and
ηk in Definition 2.30. We now put

λk(i) ∼= C0 ⊕ A2 ⊕ ηk(i) ;
λk

∼=
∑

0≤i<k

λk(i) .

For example, λ3 can be easily recognized in the right-hand part of Fig. 6 (without
the bottom element).

Observe that all of the posets λk(i) and λk have height k + 6.

Lemma 3.2 The relation

{(Ci, Ck, λk(i)) : k > 0 and 0 ≤ i < k}
and the relation

{(Ck, λk) : k > 0}
are def inable in Qposet′.

The proof is similar to that of Lemma 2.31

Definition 3.3 Suppose that m and n are positive integers and α is a function [m] →
[n]. We define F(m, α, n), up to isomorphism, as a member of Qposet. The poset
F(m, α, n) will be called the f -presentation of α.
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Fig. 6 F(3, α, 2) with
α(0) = α(1) = 0 and α(2) = 1

The universe of this poset is the disjoint union of subsets isomorphic to C0 ⊕ λm

and to λn ⊕ A2 ⊕ C0. The order in F(m, α, n) is defined so that the covers are those
in the copy of C0 ⊕ λm, together with those in the copy of λn ⊕ A2 ⊕ C0, and where pi

is the maximal element in the copy of C0 ⊕ λm which is the top element of a copy of
C0 ⊕ λm(i) in C0 ⊕ λm (for 0 ≤ i < m), and q j is the unique element x in the copy of
λn ⊕ A2 ⊕ C0 such that x↓ is isomorphic to λn( j) (for 0 ≤ j < n), an additional cover
qα(i) < pi for each 0 ≤ i < m. (See Fig. 6.)

Definition 3.4 Suppose that m and n are positive integers, 0 ≤ i < m and 0 ≤ j < n.
We define a poset λm,n(i, j) up to isomorphism by the formula

λm,n(i, j) ∼= [{C1 ⊕ A2 ⊕ Ci+2 ⊕ A1 ⊕ Cm−i−1} + λn( j)] ⊕ C0 .

Lemma 3.5

(1) F(m, α, n) ∼= F(m′, α′, n′) if f m = m′, n = n′ and α = α′.
(2) The relation

{(Cm, Cn, Ci, C j, L) : 0 ≤ i < m, 0 ≤ j < n and L ∼= λm,n(i, j)}
is def inable in Qposet′.

(3) The relation

{(Cm, Cn, F) : m > 0, n > 0 and
F ∼= F(m, α, n) for some α : [m] → [n]}

is def inable in Qposet′.

Proof The proof of (2) is straightforward.
For the proof of (1) and (3), it is necessary to show that F = F(m, α, n) con-

tains a unique copy of C0 ⊕ λm and a unique copy of λn ⊕ A2 ⊕ C0. This task is
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straightforward, if tedious, and is left to the reader. F(m, α, n), then, can be char-
acterized up to isomorphism as the member Q ∈ Qposet such that C0 ⊕ λm ≤ Q,
λn ⊕ A2 ⊕ C0 ≤ Q,

|Q| = |λm| + |λn| + 5 ,

every P ≤ Q such that C0 ⊕ λm ≤ P and λn ⊕ A2 ⊕ C0 ≤ P satisfies P ∼= Q, and the
≤-maximal topped posets R ≤ Q are λn ⊕ A2 ⊕ C0 and for every 0 ≤ i < m, the
poset λm,n(i, α(i)).

This characterization easily yields both (1) and (3). ��

Now suppose that B1, B2 ∈ Obj and

f = (B1, α, B2) ∈ CP(B1, B2) .

Say Bi = 〈[mi], ≤i〉, i ∈ {1, 2} so that α : [m1] → [m2]. We are encoding Bi as (any
member of Qposet isomorphic to) Pi = Pmi(Bi, Bi). We encode f as (any triple
coordinatewise isomorphic to) M( f ) = (P1, F(m1, α, m2), P2).

Proposition 3.6 Let B1, B2 ∈ Obj and U, V, W ∈ Qposet.

(1) If (U, V, W) ∼= M( f ), f = (B1, α, B2) ∈ CP(B1, B2), then f (and α) are
uniquely determined and for all i ∈ [m1] and j ∈ [m2], we have that α(i) = j is
equivalent to λm1,m2(i, j) ≤ V.

(2) (U, V, W) ∼= M( f ) for some f = (B1, α, B2) ∈ CP(B1, B2) if f: where mi = |Bi|,
we have U ∼= Pm1(B1, B1), W ∼= Pm2(B2, B2), and V ∼= F(m1, α, m2) for some
α : [m1] → [m2]; and whenever we have 0 ≤ i, i′ < m1 and 0 ≤ j, j′ < m2, j �= j′,
and λm1,m2(i, j) ≤ V and λm1,m2(i

′, j′) ≤ V, then η′
m2

( j) + ηm2( j′) ≤ W implies
η′

m1
(i) + ηm1(i

′) ≤ U.

The proof is straightforward.

Proposition 3.7 Let B1, B2, B3 ∈ Obj, f ∈ CP(B1, B2), g ∈ CP(B2, B3) and, say
|Bi| = mi and f = (B1, α, B2) and g = (B2, β, B3). Let M( f ) ∼= (P1, F, P2) and
M(g) ∼= (P2, G, P3). Then M( fg) ∼= (P1, H, P3), where H is, up to isomorphism, the
unique member of Qposet of the form F(m1, γ, m3) that satisf ies: for all i ∈ [m1],
j ∈ [m2], k ∈ [m3] we have that λm1,m2(i, j) ≤ F and λm2,m3( j, k) ≤ G imply that
λm1,m3(i, k) ≤ H.

The proof is straightforward.

Theorem 3.8 Let N be a positive integer and R be an isomorphism-invariant N-ary
relation over Qposet. Then R is f irst-order def inable over Qposet′ if f the restriction
of R to Obj is f irst-order def inable over the category Cposet′ (or equivalently, is
L2-def inable over Cposet′).

Proof Since the property that a morphism is an embedding is definable in Cposet′,
the non-obvious direction in this theorem is the passage from Cposet′ definability to
Qposet′ definability.
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So let R ⊆ QposetN be isomorphism-invariant and let S = R ∩ ObjN , and assume
that

S = {(B0, . . . , BN−1) ∈ ObjN : Cposet′ |= �(B0, . . . , BN−1} ,

where �(X0, . . . , XN−1) is a formula of the first-order language of Cposet′ whose
free variables are the object variables X0, . . . , XN−1. We need to build a formula
�̃(x0, . . . , xN−1) in the first-order language of Qposet′ so that for any A0, . . . , AN−1 ∈
Qposet and where Ai

∼= Bi ∈ Obj and ki = |Ai| for 0 ≤ i < N we have

Cposet′ |= �(B0, . . . , BN−1)

iff
Qposet′ |= �̃(Pk0(A0, B0), . . . , PkN−1(AN−1, BN−1)).

We can then take �(x0, . . . , xN−1) to be:

there exist ui (0 ≤ i < N) so that �̃(u0, . . . , uN−1) and
“ui

∼= Pki(xi, yi) for some yi where ki = |xi|, for 0 ≤ i < N”

and it will follow that

R = {(A0, . . . , AN−1) ∈ QposetN : Qposet′ |= �(A0, . . . , AN−1)} .

To construct �̃, we extend the list of free variables in � to a list of all the object
variables that have an occurrence, free or bound, in �; say this list is X0, . . . , XM−1

(M ≥ N). We make a list f0, . . . , fK−1 of all the morphism variables that occur in �.
We introduce variables x0, . . . , xM−1 and y0, . . . , yK−1 from the first-order language
of Qposet′ to correspond to the Xi and f j. Now by induction on length of a formula,
we define a mapping that sends all the sub-formulas φ of � to corresponding formulas
φ̃ in the first-order language of Qposet′.

(1) If φ is Xi = X j then φ̃ is xi ≤ x j ∧ x j ≤ xi.
(2) If φ is fs = ft then φ̃ is ys ≤ yt ∧ yt ≤ ys.
(3) If φ is fs ∈ CP(Xi, X j ) then φ̃ is

(∃ui, u j )(“there are vi, v j so that where ki = |ui|, k j = |u j| we have
xi = Pki(ui, vi) and x j = Pk j(u j, v j ) and

(xi, ys, x j ) = M( f ) for some f ∈ CP(vi, v j )”)

(4) If φ is

fr0 ∈ CP(Xs0 , Xs1) ∧ fr1 ∈ CP(Xs1 , Xs2)∧
∧ fr2 = fr0 ◦ fr1

then φ̃ is

(∃us0 , us1 , us2)(“there are vs0 , vs1 , vs2 so that
where ki = |usi | we have xsi = Pki(usi , vsi) for i ∈ {0, 1, 2}

and (xs0 , yr0 , xs1) = M( f ) for some f ∈ CP(vs0 , vs1)

and (xs1 , yr1 , xs2) = M(g) for some g ∈ CP(vs1 , vs2)

and (xs0 , yr2 , xs2) = M( fg)”).

(5) If φ is ¬ψ , or ψ ∧ χ then φ̃ is ¬ψ̃ , or ψ̃ ∧ χ̃ .
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(6) If φ is (∃Xi)ψ then φ̃ is

(∃xi)([(∃ui)(“there is vi so that where ki = |ui|, xi = Pki(ui, vi)”)] ∧ ψ̃) .

(7) If φ is (∀Xi)ψ then φ̃ is

(∀xi)([(∃ui)(“there is vi so that where ki = |ui|, xi = Pki(ui, vi)”)] → ψ̃) .

(8) If φ is (∃ fs ∈ CP(Xi, X j ))ψ then φ̃ is

(∃ys)[(∃ui, u j )(“there are vi, v j so that
where ki = |ui|, k j = |u j| we have xi = Pki(ui, vi)

and x j = Pk j(u j, v j ) and (xi, ys, x j ) = M( f )
for some f ∈ CP(vi, v j )”)∧ψ̃].

(9) If φ is (∀ fs ∈ CP(Xi, X j ))ψ then φ̃ is

(∀ys)[(∃ui, u j )(“there are vi, v j so that
where ki = |ui| and k j = |u j| we have xi = Pki(ui, vi)

and x j = Pk j(u j, v j ) and (xi, ys, x j ) = M( f )
for some f ∈ CP(vi, v j )”)→ ψ̃].

One can prove by induction on the length of φ that for all sub-formulas φ(X̄, f̄ )
of �, and for all Bi ∈ Obj, 0 ≤ i < M and f j = (U j, α j, V j ) ∈ CP(U j, V j ), 0 ≤ j < K,
and where |Bi| = bi, |U j| = u j and |V j| = v j we have

Cposet′ |= φ(B0, . . . , BM−1; f0, . . . , fK−1) iff Qposet′ |=
φ̃(Pα0(B0, B0), . . . , PαM−1(BM−1, BM−1); F(u0, α0, v0), . . . ,

F(uK−1, αK−1, vK−1)).

Taking φ = � we then have the desired result. ��

Remark 3.1 We have organized and written the material of Section 3 in a way that we
hope makes it readable for most algebraists and order-theorists. It is quite possible
that there is a more elegant way to express the essential fact of Theorem 3.8 within
set theory. Specifically, we believe that if one deals directly with the quasi-ordered
set 〈HF ,≤〉 whose members are the posets 〈A, ≤〉 such that A belongs to the set
HF of all hereditarily finite sets, quasi-ordered by embeddability ≤, then it should
be possible to prove that every isomorphism-invariant finitary relation over HF that
is first-order definable in the model 〈HF, ε〉 (where ε is the membership relation in
the domain HF), is also first-order definable in the quasi-ordered set 〈HF ,≤〉. (HF
is the smallest set containing the empty set and closed under the binary operation
x ∪ {y}; with the restricted membership relation it is a model of finite set theory.)
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