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Abstract In this paper, we study lattices that posess both the properties of being
extremal (in the sense of Markowsky) and of being left modular (in the sense
of Blass and Sagan). We call such lattices trim and show that they posess some
additional appealing properties, analogous to those of a distributive lattice. For
example, trimness is preserved under taking intervals and suitable sublattices. Trim
lattices satisfy a weakened form of modularity. The order complex of a trim lattice
is contractible or homotopic to a sphere; the latter holds exactly if the maximum
element of the lattice is a join of atoms. Any distributive lattice is trim, but trim
lattices need not be graded. The main example of ungraded trim lattices are the
Tamari lattices and generalizations of them. We show that the Cambrian lattices in
types A and B defined by Reading are trim; we conjecture that all Cambrian lattices
are trim.

Key words left modular lattice · extremal lattice · supersolvable lattice ·
Tamari lattice · Cambrian lattice

1 Introduction

Some of the first examples of lattices that anyone encounters are the finite distribu-
tive lattices. Supersolvable lattices are a generalization of them introduced by Stanley
[17] in 1972. Lattices of both these types are necessarily graded. Left modular lattices
were introduced by Blass and Sagan [7] as a further generalization of supersolvable
lattices. In [14], combining results from [13] and [10], McNamara and the author
showed that left modularity for lattices can be thought of as “supersolvability without
gradedness,” in the sense that supersolvable lattices are left modular (as was shown
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Figure 1 Different kinds of
finite lattices.
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in [17]), and all graded left modular lattices are supersolvable [14]. Thus, we have
the above diagram (Figure 1). This paper is an attempt to provide something to fit in
place of the ???.

We begin with some necessary definitions. All our lattices are assumed to be finite.
An element x of a lattice L is said to be left modular if for any y < z in L,

(y ∨ x) ∧ z = y ∨ (x ∧ z).

A set of pairwise comparable elements is called a chain. A maximal chain is one
which is maximal with respect to inclusion. A lattice is called graded if every maximal
chain in a given interval is of the same cardinality. A lattice is said to be left modular
if it has a maximal chain of elements all of which are left modular.

An element in a lattice is called join-irreducible if it cannot be written as the
join of two strictly smaller elements. (0̂, the minimum element of a lattice, does
not count as a join-irreducible.) Dually, an element is called meet-irreducible if it
cannot be written as the meet of two strictly larger elements. (Similarly, 1̂, the
maximum element of a lattice, does not count as a meet-irreducible.) If a lattice
has a chain of n + 1 elements, then it must have at least n join-irreducibles and n
meet-irreducibles. A lattice which has a chain of n + 1 elements and exactly n join-
irreducibles and n meet-irreducibles is called extremal. (In this case, the chain of n + 1
elements is necessarily maximal.) Extremal lattices were introduced by Markowsky
[12]. Distributive lattices are extremal, and Markowsky also showed that graded
extremal lattices are necessarily distributive. So extremal lattices are one natural
ungraded analogue of distributive lattices. In this paper, we will be interested in a
different and more restricted analogue:

Definition We say that a lattice is trim if it is both left modular and extremal.

Distributive lattices are trim, and, since trim lattices are extremal, by the above
result of Markowsky, a graded trim lattice is necessarily distributive.

In this paper, we investigate some of the properties of trim lattices, and show that
they posess analogues of many properties of distributive lattices. We show that if
L is trim, then so are its intervals (Theorem 1). This is one of the ways in which
trim lattices are closer to distributive lattices than extremal lattices are: intervals
in a distributive lattice are distributive, while Markowsky shows in [12] that, given
any finite lattice L, it is possible to construct an extremal lattice containing L as an
interval, so in particular, intervals in an extremal lattice need not be extremal.

We show that if L is trim then so are its sublattices which contain its left modular
chain (Theorem 3). We also show that if G is a group which acts on a trim lattice L
by lattice automorphisms, then LG, the sublattice of L consisting of elements fixed
by G, is again trim (Theorem 4).

We show that a trim lattice satisfies the level condition of [7] (Theorem 5). Left
modular lattices satisfying this condition are known as LL-lattices [7]; thus, trim
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lattices are LL-lattices. One consequence of Theorem 5 is that in a trim lattice, if
w is covered by y and z, then y ∨ z covers at least one of y and z (Theorem 6). This
is a weakened form of modularity. Another consequence of Theorem 5 is that the
order complex of a trim lattice is either contractible or homotopic to a sphere, and
the latter holds exactly when the maximum element of the lattice is a join of atoms
(Theorem 7). (Note that since intervals of trim lattices are trim, Theorem 7 can also
be applied to any interval in a trim lattice, thus showing that the order complex of
any interval is again either homotopic to a sphere or contractible.)

In [15], Reading introduced a family of Cambrian lattices for each finite reflection
group. The finite reflection groups consist of four infinite families together with some
exceptional groups. We will be chiefly interested in the An (n ≥ 1) and Bn (n ≥ 2)

families, which consist of the symmetric and hyperoctahedral groups, respectively.
The Cambrian lattices in type A include the classical Tamari lattice (which goes

back to [18]; a more recent reference is [6]) and in type B include the type B Tamari
lattice (also studied in [19]). We show that all the Cambrian lattices in types A and
B are trim (Theorems 8 and 9). We offer the following conjecture:

Conjecture 1 All Cambrian lattices are trim.

The reader interested in further information about Cambrian lattices should
consult [15] (especially for types A and B) and [16].

2 Left Modular Lattices

The proofs in this paper depend on the theory of left modular lattices. The study
of such lattices was initiated by Blass and Sagan [7], and continued in Liu [10], Liu
and Sagan [11], and McNamara and Thomas [14]. We will begin with a review of
the properties of left modular lattices. More details on all of these properties can be
found in [14].

Proposition 1 [14] If L has a left modular maximal chain 0̂ = x0 � x1 � · · · � 1̂, then
any interval [y, z] also has a left modular maximal chain. More precisely, the elements
y ∨ xi ∧ z form a left modular maximal chain in [y, z]. (Note that the y ∨ xi ∧ z will
not all be distinct.)

We define three edge-labellings of a left modular lattice L with left modular
maximal chain 0̂ = x0 � x1 � · · · � xn = 1̂, which we refer to as the labelling induced
from join-irreducibles, that induced from meet-irreducibles, and that induced from
the left modular chain. (Note that these labellings all depend on the prior choice of a
left modular maximal chain.)

If v is a join-irreducible of L, we label it by the natural number

δ(v) = min({i | v ≤ xi}).
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Now, for any y � z, define

γ1(y � z) = min({δ(v) | v join-irreducible, v ≤ z, v �≤ y}).

The labelling induced from meet-irreducibles is defined similarly. If v is a meet-
irreducible, we set

ε(v) = max({i | xi ≤ v}) + 1.

(Except for the +1, this is just the dual of the definition of δ.) Now, as we did for the
labelling induced from join-irreducibles, for y � z, we define

γ2(y � z) = max({ε(v) | v meet-irreducible, v ≥ y, v �≥ z}).

Thirdly, the labelling induced from the left modular chain is defined as follows:

γ3(y � z) = min({i | y ∨ xi ∧ z = z}).

Proposition 2 [10] For any left modular lattice with a specified left modular maximal
chain, the three labellings γ1, γ2, and γ3 coincide.

The fact that γ1 and γ3 coincide is proved in [10]; the dual of that result shows that
γ2 and γ3 coincide. Since the three labellings coincide, we will drop the subscripts and
denote the labelling by γ .

A labelling of the edges of the Hasse diagram of a poset is called an EL-labelling
[1] if it satisfies the following two properties:

(1) In any interval, there is a unique maximal chain which has the property that
the labels on the chain strictly increase as you read up the chain. (This chain is
called the increasing chain.)

(2) In any interval, the label word obtained by reading up the increasing chain
lexicographically precedes the word obtained by reading up any other maximal
chain in the interval.

(In our context, the labellings of the edges of a Hasse diagram will always be
positive integers with the usual order. In general, the labels may be drawn from any
poset; this introduces some additional technicalities which we shall not need to refer
to.)

If a partially ordered set admits an EL-labelling then its order complex is shellable,
and is therefore homotopic to a wedge of spheres, one for each maximal chain such
that the labels weakly decrease as you read up the chain. (Such chains are called
decreasing chains.) The dimension of the sphere corresponding to a given decreasing
chain is two less than the length of the chain.

Proposition 3 [10] For a left modular lattice L, the edge-labelling γ is an EL-labelling.

In fact, we can say more about the labelling of a left modular lattice. In [14], we
defined interpolating labellings to be EL-labellings such that in addition, if v � u � w



Order (2006) 23: 249–269 253

is a maximal chain which is not increasing, and the corresponding increasing chain
is v = y0 � y1 � · · · � yr = w, then the label of v � u coincides with the label of
yr−1 � yr, and the label of u � w coincides with the label of y0 � y1. We showed
the following proposition:

Proposition 4 [14] If L is a left modular lattice, then the labelling γ is interpolating.
Conversely, if a lattice L admits an interpolating labelling, then the elements of the
increasing chain from 0̂ to 1̂ are left modular, and therefore L is left modular.

We need one more result from [14] about labellings of intervals. Let [y, z] be an
interval in a left modular lattice L. Since the y ∨ xi ∧ z form a left modular chain in
[y, z], the above construction can be applied to yield an EL-labelling. The restriction
of the labelling of L to [y, z] also yields an EL-labelling. These two labellings
typically do not coincide for the trivial reason that their label sets differ. However,
we have the following proposition:

Proposition 5 [14] Let [y, z] be an interval in a lattice L with left modular maximal
chain 0̂ = x0 � x1 � · · · � xn = 1̂. The labelling of L restricted to [y, z] agrees (up to
an order-preserving relabelling) with the labelling which [y, z] has as a lattice with left
modular chain y ∨ xi ∧ z.

(When we speak of an order-preserving relabelling, we mean that one label set
has been replaced by a different label set, but the relative orders of the labels have
been preserved.)

We record here one additional lemma about left modular lattices which we shall
need.

Lemma 1 Let L be a lattice with left modular maximal chain 0̂ = x0 � x1 � · · · � xn =
1̂, and let y and z be two distinct join-irreducibles with δ(y) = δ(z). Then y and z are
incomparable.

Proof Suppose on the contrary that y < z. Let j = δ(y) = δ(z). Observe that xj−1 ∨
y = xj ≥ z, so

(z ∧ xj−1) ∨ y = z ∧ (xj−1 ∨ y) = z.

However, z ∧ xj−1 and y are both strictly less than z, so z is not join-irreducible,
contrary to our assumption. ��

3 Trim Lattices

We now proceed to our study of trim lattices. Let L be a trim lattice, with a specified
left modular chain 0̂ = x0 � x1 · · · � xn = 1̂.

Lemma 2 If L is a trim lattice, it has exactly one join-irreducible and one meet-
irreducible labelled i for 1 ≤ i ≤ n.
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Proof Since xi is the join of the join-irreducibles labelled at most i, while xi−1 is the
join of the join-irreducibles labelled at most i − 1, there must be at least one join-
irreducible labelled i. By extremality, there is exactly one. The dual argument proves
the statement for meet-irreducibles. ��

Theorem 1 If L is trim, so is any interval of L.

Proof If is sufficient to show that if x ∈ L, then the interval [0̂, x] is trim, since the
dual result follows, and the trimness of [y, x] can be proved by showing the trimness
of [0̂, x], and then applying the dual result to the trim lattice [0̂, x].

By Proposition 1, [0̂, x] is left modular. Let the length of the left modular maximal
chain in [0̂, x] be m. We must show that there are exactly m join-irreducibles and m
meet-irreducibles in [0̂, x].

We consider [0̂, x] labelled by the labelling induced from L. The join-irreducibles
of [0̂, x] are exactly the join-irreducibles of L that lie in [0̂, x], and they have the
same labels that they do in L, so their labels are all different. Since, by Proposition
5, the labelling induced from L agrees (up to an order-preserving relabelling) with
the labelling of [0̂, x] induced from its left modular chain, the induced labelling uses
m different labels. Thus, [0̂, x] has m join-irreducibles, as desired.

Let a be a label that does not appear on a join-irreducible of [0̂, x] (and which
therefore doesn’t appear in [0̂, x] at all). Since the labelling on [0̂, x] can also be
considered as being induced by its meet-irreducibles, there is no meet-irreducible of
[0̂, x] labelled a.

Let b be a label that appears on a join-irreducible of [0̂, x]. Let y be the join-
irreducible of L with that label (which is also a join-irreducible of [0̂, x]). Let z
be the meet-irreducible of L with label b . Let z̄ = z ∧ x. Since z̄ ≤ z, and y �≤ z,
y �≤ z̄. So y ∨ z̄ �= z̄. Let the increasing chain from z̄ to y ∨ z̄ be z̄ = t0 � t1 � · · · �

tr = z̄ ∨ y. Since all the ti ≤ x, it follows that t1 �≤ z (otherwise t1 ≤ x ∧ z = t0, a
contradiction). Thus, by the meet-irreducible labelling, γ (t0, t1) ≥ b . By the join-
irreducible labelling, γ (tr−1, tr) ≤ b . Since the labels on the chain are increasing, the
chain consists of a single covering relation, which is labelled by b .

By the meet-irreducible labelling for [0̂, x], it follows that z̄ lies below some meet-
irreducible of [0̂, x] labelled b . But any element at the bottom of an edge labelled
b in [0̂, x] lies below x and below z, thus below z̄. So z̄ must be a meet-irreducible
labelled b in [0̂, x]. Since any other meet-irreducible labelled b in [0̂, x] would have
to lie below z̄, z̄ is the only one, since two meet-irreducibles with the same label in
a left modular lattice must be incomparable, by the dual of Lemma 1. Thus there is
exactly one meet-irreducible labelled b , as desired. ��

Theorem 2 [12] If L is trim and graded, it is distributive.

Remark As was remarked in the introduction, Markowsky ([12], Theorem 17)
shows that any graded extremal lattice is distributive. Since trim lattices are by defi-
nition extremal, Theorem 2 follows. However, in the interests of self-containedness,
we give a different proof.

It is worth noting that there are extremal lattices which are not trim. As was
mentioned in the introduction, Markowsky shows that any finite lattice can be
embedded as an interval of an extremal lattice, while Theorem 1 tells us that the
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Figure 2 M3 and N5.

intervals of trim lattices are trim. These two results imply that not all extremal lattices
are trim. In particular, [12] gives an example of an extremal lattice with 39 elements
containing M3 (see Figure 2) as an interval; since M3 is not trim, we know that this
example is not trim.

Proof To show that a lattice is distributive, it suffices to show that it has no sublattice
M3 or N5 (see Figure 2) ([8], Theorem II.1). This will follow from the following two
lemmas.

Lemma 3 If L is trim, then L contains no sublattice isomorphic to M3.

Proof We are going to assume that L contains a sublattice isomorphic to M3 and
obtain a contradiction. The property of being trim passes to intervals, by Theorem 1,
so we can reduce to the case where the minimum and maximum elements of the copy
of M3 are 0̂ and 1̂. Let the elements of the copy of M3 be identified as in Figure 2.

As always, let n be the maximum label on the increasing chain from 0̂ to 1̂. Let B,
C, D denote the set of labels on the increasing chains from 0̂ to b , c, d respectively.
Suppose some two of them, say B and C, both contain n. Then b and c both lie
over some join-irreducible labelled n. Since b ∧ c = 0̂, there is more than one join-
irreducible labelled n, contradicting Lemma 2.

On the other hand, suppose that some two of B, C, D, say B and C, do not contain
n. Since n is the maximum label on the increasing chain from 0̂ to 1̂, we can see from
the labelling induced from meet-irreducibles that every maximal chain from 0̂ to 1̂
contains an edge labelled n. Thus, it occurs on both the increasing chain from b to
1̂ and on the increasing chain from c to 1̂. We now apply the dual of the previous
argument to obtain a contradiction in this case also.

Since either two of B, C, D contain n or two do not, we are done. ��

Lemma 4 Let L be a graded trim lattice. Then L contains no N5.

Proof As in the proof of the previous lemma, we may assume that the minimum and
maximum elements of the N5 are 0̂ and 1̂. Let the other elements be identified as
in Figure 2. Let B be the set of labels on the increasing chain from x to y. Suppose
that the increasing chain from 0̂ to z has a label drawn from B, say b . Then z and y
both lie over join-irreducibles with label b . By the assumption that L is trim, there is
only one join-irreducible labelled b , so z and y both lie over it, which contradicts the
assumption that z ∧ y = 0̂.
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Dually, no label from B can occur on the increasing chain from z to 1̂. However,
since we are assuming that L is graded, the set of labels appearing on every maximal
chain from 0̂ to 1̂ is the same, and we have a contradiction. ��

This completes the proof of Theorem 2. ��

Theorem 3 If L is trim, and K is a sublattice of L containing the left modular chain
of L, then K is trim.

Proof It is clear that the left modular chain in L is still left modular in K, so K is left
modular.

Suppose K is not trim. Therefore, K has either two join-irreducibles with the same
label, or two meet-irreducibles with the same label. Dualizing if necessary, we may
assume that K has two join-irreducibles with the same label, say y and z, with label
b . The fact that y and z are labelled b means that y and z lie below xb but not below
xb−1. This implies that, in L, each can be written as a join of join-irreducibles with
labels no more than b , and including at least one join-irreducible of L labelled b . Let
j be the unique join-irreducible of L labelled b . So both y and z lie over j. It follows
that p = y ∧ z also lies over j. So p lies below xb but not below xb−1. It follows that,
in K, p lies over some join-irreducible labelled by b . But this implies that there are
two join-irreducibles labelled by b in K which are comparable, and that is impossible,
by Lemma 1. ��

One might hope, by analogy with distributive lattices, that any sublattice of a trim
lattice would be trim. However, we will now construct an example which shows that
that is too much to hope for. In order to do that, we need a small lemma:

Lemma 5 If P and Q are trim lattices, so is P × Q with the Cartesian product order.

Proof It is easy to see that (p, q) ∈ P × Q is left modular iff p is left modular in P
and q is left modular in Q. If 0̂ = y0 � y1 � · · · � yr = 1̂ is a maximal left modular
chain in P and 0̂ = z0 � z1 � · · · � zs = 1̂ is a maximal left modular chain in Q, then
(y0, z0) � (y0, z1) � · · · � (y0, zs) � (y1, zs) � · · · � (yr, zs) is a maximal left modular
chain in P × Q. The join irreducibles of P × Q are the elements of the form (0̂, j) for
j a join-irreducible of P or ( j, 0̂) for j a join-irreducible of Q. It follows that there are
r + s join-irreducibiles of P × Q, and, dually, the same number of meet-irreducibles.
Thus P × Q is trim. ��

Let L = N5 × N5, with N5 as in Figure 2. Observe that (0̂, 0̂), (x, z), (y, z), (z, x),
(z, y), (1̂, 1̂) forms a sublattice of L. But it is evidently not trim.

4 The Sublattice Fixed Under a Group of Automorphisms

The goal of this section is to show that if L is a trim lattice, and a group G acts on
L by lattice automorphisms, then LG, the sublattice of L consisting of elements of L
fixed by G, is a trim lattice.
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Example To orient oneself in this section, it is useful to consider the case where L is
the Boolean lattice of all subsets of [n], and G = {1, σ } where σ acts by interchanging
1 and n.

The first important thing to notice about this example is that the maximal chains
in LG are shorter than the maximal chains in L. The second thing to notice is that if
we make a reasonable-seeming choice of left modular chain by setting xi = [i], only
the top and bottom elements of our chosen left modular chain actually lie in LG.
Inspired by this example, before we try to show that LG is trim, we will find some
more left modular elements in L.

For L a trim lattice, we follow the terminology suggested by Drew Armstrong and
say that the spine of L consists of those elements of L which lie on some chain of
maximum length in L.

Lemma 6 If L is a trim lattice, then all the elements of the spine of L are left modular.

Proof This proof was suggested by McNamara (2004, personal communication).
Suppose z is in the spine of L. Let the labels which occur on the increasing chain
from 0̂ to z be C, and let the labels which occur on the increasing chain from z to 1̂
be D. Since z is in the spine, C ∪ D = [n], where n is the length of the left modular
maximal chain in L.

Now suppose, for the sake of contradiction, that z is not left modular. It follows
that there are some elements p < q in L such that p ∨ (z ∧ q) �= (p ∨ z) ∧ q. Since
the modular inequality tells us that p ∨ (z ∧ q) ≤ (p ∨ z) ∧ q, it is in fact true that

p ∨ (z ∧ q) < (p ∨ z) ∧ q.

Now set x = p ∨ (z ∧ q), y = (p ∨ z) ∧ q. Note that x ∨ (z ∧ y) = x, while (x ∨ z) ∧
y = y. Thus, x, y, z generate a sublattice of L as in Figure 3.

Let b be a label on the increasing chain from x to y. Suppose b ∈ C. Since there
is a unique join-irreducible labelled by b , say j, it follows that y and z both lie over
j. But this means that w lies over j, and therefore x lies over j, so j cannot appear
as a label on the increasing chain from x to y, which contradicts our assumption. On
the other hand, if b �∈ C, then b ∈ D, and we can apply the dual argument to yield a
contradiction. ��

Figure 3 Sublattice of L
generated by x, y, z.
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The following lemma was suggested to me by Armstrong (2004, personal commu-
nication), who observed it to hold in the Tamari lattice.

Lemma 7 The spine of a trim lattice L is a distributive sublattice of L.

Proof The main difficulty is to show that the spine is closed under lattice operations.
Suppose y and z are in the spine. We will show that y ∧ z is also in the spine.

Choose a left modular maximal chain 0̂ = x0 � x1 � · · · � xn = 1̂ in L. Let the set
of labels below y be A, below z be B, above y be C, above z be D. So A ∪ C =
B ∪ D = [n]. Let P = A ∩ B = {p1, . . . , pr}, with p1 < · · · < pr. Let wi be the join
of the join-irreducibles indexed by {p1, . . . , pi}. The wi are all distinct, since wi lies
below xpi but not below xpi−1. Thus, they form a chain of length r from 0̂ to y ∧ a.
Since there are only r labels available for this chain (namely, the labels in P), and
each label occurs at most once, this chain must be maximal.

Now let Q = C ∪ D = {q1, . . . , qn−r}, with q1 < · · · < qn−r. Similarly to the above,
the meet-irreducibles lying above y ∧ z are exactly those indexed by Q. Let vi be the
meet of the meet-irreducibles indexed by {qi, . . . , qn−r}. By a dual argument, the vi

are all distinct, and therefore form a chain of length n − r from y ∧ z to 1̂, which is
necessarily maximal. Thus y ∧ z is in the spine of L, and dually the same is true for
y ∨ z.

We have shown that the spine is a sublattice of L. By Lemma 3, it contains no
sublattice isomorphic to M3, and by Lemma 6 it contains no sublattice isomorphic to
N5, so it is distributive. ��

We are now ready to prove the main theorem of this section:

Theorem 4 If L is a trim lattice and G is a group which acts on L by lattice auto-
morphisms, then LG is also trim.

Proof First, we want to show that LG is left modular. Let S be the spine of L. Now
the elements of SG are left modular in LG, since they are left modular in L. To show
that LG is left modular, it remains to show that SG contains a maximal chain in LG.
It will suffice to show that if y � z in SG, then y � z in LG.

Fix y � z in SG, and pick a maximal chain in S, y = t0 � t1 � · · · � tr = z. Let j be
the (unique) irreducible of L which lies below t1 but not below y. Let the G-orbit
of j be { j = j1, . . . , jk}. Let vi = y ∨ ji. Because G acts by lattice automorphisms, for
every i, y � vi, and vi ∈ S. Let w be the join of the vi. Observe that w ∈ SG. But w ≤ z,
so, since y � z in SG, z = w.

The vi are all distinct, and since S is distributive, the length of any maximal chain
in S from y to z is of length k. This means that the only join-irreducibles lying below
z but not below y are the ji.

Now suppose that there is some u in LG such that y < u < z. There must be some
join-irreducible below z but not below y which is also below u, but since u ∈ LG, all
the ji must lie below u, which would force u = z, a contradiction.

This implies that the maximal chains in SG are left modular maximal chains in LG

as desired.
Now we want to show that LG is trim. Let T be the set of elements of LG formed

by taking the join of the join-irreducibles in some G-orbit. Clearly, any element of LG
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can be written as a join of elements from T, so T contains all the join-irreducibles of
LG. However, we showed above that if y � z in SG, then there is exactly one G-orbit
of irreducibles below z but not below y. So there are chains in LG whose length is the
number of G-orbits of irreducibles, which implies that there are at least that number
of join-irreducibles in LG, so all the elements of T are join-irreducibles in LG, and in
particular, LG has the correct number of join-irreducibles to be trim. Dually, LG has
the correct number of meet-irreducibles, and it is therefore trim. ��

5 The Level Condition and its Consequences

Theorem 5 If L is a trim lattice then it satisfies the level condition of [7]:

If a and b1, . . . , bk are atoms, and δ(a)< δ(b1)< . . .< δ(bk), then a �< b1 ∨ · · · ∨ bk.

Proof Suppose otherwise. The proof is by induction on k. The statement is clearly
true when k = 1. Suppose it is true for k − 1. Consider a set of atoms b1, . . . , bk as in
the statement of the theorem. Let y = b1 ∨ · · · ∨ bk−1, and z = b 2 ∨ · · · ∨ bk. Since,
by assumption, the statement is true for {b 2, . . . , bk}, b1 �≤ z. Since b1, . . . , bk−1 all lie
below xδ(bk−1) while bk does not, bk �≤ y.

Suppose there is some atom a with δ(a) < δ(b1), such that a < y ∨ z. Choose such
an a with δ(a) as small as possible. Thus, we may assume that a is the first element
on the left modular chain from 0̂ to y ∨ z. It follows that a appears on every maximal
chain from 0̂ to y ∨ z. By the induction assumption, a lies below neither y nor z. Thus,
a appears as a label on the increasing chain from y to y ∨ z, and also on the increasing
chain from z to y ∨ z. Since the interval from 0̂ to y ∨ z is trim, there is some meet-
irreducible in it labelled a, and both y and z lie below it. But this contradicts the fact
that y ∨ z is the top of the interval. Thus there can be no such atom a. ��

Recall that a lattice is said to be upper semimodular if, given three elements
such that y and z both cover w, then y ∨ z covers y and z. Lower semimodularity
is the dual condition. A lattice is said to be modular if it is both upper and lower
semimodular. Distributive lattices are examples of modular lattices.

Modularity implies gradedness, so we cannot hope that trim lattices will be
modular. The following theorem shows that trim lattices posess a weakened form
of upper semi-modularity. The dual statement, which is also true, gives an analogue
of lower semi-modularity.

Theorem 6 Let L be a trim lattice. Let y and z cover w, and suppose that γ (w � y) <

γ (w � z). Then z � y ∨ z.

Proof By Theorem 1, we can reduce to the case where w = 0̂, y and z are atoms,
and y ∨ z = 1̂. As usual, let 0̂ = x0 � x1 � · · · � xr = 1̂ be the left modular chain. By
Theorem 5, y is the join-irreducible of L with the smallest label, so y = x1. The left
modular maximal chain from z to 1̂ consists of z ∨ xi. But x1 = y, so the first element
of this chain above z is y ∨ z. Thus y ∨ z covers z. ��
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We will call a lattice nuclear if 1̂ is the join of the atoms of L. (In [15], the term
“atomic interval” is used for an interval in which the join of the atoms is the top of
the interval. Because this might cause confusion with the standard use of atomic to
describe a lattice in which every element can be written as a join of atoms, we prefer
to use a different term.)

Theorem 7 If L is trim and nuclear then its order complex is homotopic to a sphere,
whose dimension is 2 less than the number of atoms of L. If L is trim but not nuclear,
then its order complex is contractible.

Remark Note that since all intervals in a trim lattice L are trim by Theorem 1, this
theorem also applies to any interval in a trim lattice.

Proof Observe that x1 is the join-irreducible labelled 1, and is an atom. Any maximal
chain in L has an edge labelled by 1; in a decreasing chain, this must be the last edge.
The bottom of such an edge is a meet-irreducible labelled 1; thus, there is at most
one edge labelled 1 descending from 1̂.

Suppose L is nuclear. We prove the statement of the theorem by induction on the
number of atoms of L. If L has only one atom, the statement is obvious. Suppose the
statement holds for nuclear trim lattices with r − 1 atoms. Let a1, . . . , ar be the atoms
of L, in increasing order by their labels. Let z = a2 ∨ · · · ∨ ar. The interval [0̂, z] is a
nuclear trim lattice with r − 1 atoms, so by induction it has a unique decreasing chain
from 0̂ to z. This chain corresponds to a sphere of dimension r − 3, so it is of length
r − 1. Now consider the increasing chain from z to 1̂ = z ∨ a1. The top of this chain
is labelled with the label of a1, which is 1, and all the other labels must be strictly
greater than 1. Since the chain is increasing, this means that the chain is of length 1.
Thus, the decreasing chain from 0̂ to z extends uniquely to a decreasing chain from
0̂ to 1̂. By the remarks in the first paragraph, any decreasing chain from 0̂ to 1̂ passes
through z. Since there is only one decreasing chain from 0̂ to z, the decreasing chain
form 0̂ to 1̂ which we have found is unique, and it is clearly of length r, which implies
that the order complex of L is homotopic to a sphere of dimension r − 2, as desired.

For the second statement, it is well-known that if L is any finite non-nuclear lattice,
then its order complex is contractible. This follows from the Crosscut Theorem; see,
for example [3]. ��

Theorem 7 can also be proved using Theorem 5, which establishes that trim lattices
are LL-latices, together with results on LL-latices from [7].

One of the reasons to be interested in statements about the homotopy types of
order complexes of intervals is that for x < y in any poset, the Möbius function
µ(x, y) is the reduced Euler characteristic of the order complex of the interval [x, y].
Thus, from Theorem 7 combined with Theorem 1, we can deduce that the Möbius
function of any interval in a trim lattice is either 0, 1, or −1.

6 Cambrian Lattices

Let W be a finite subgroup of the orthogonal transformations of E = R
n, generated

by reflections. Such a group is called a finite reflection group. A general reference for
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finite reflection groups is [4]. W has an associated finite root system � ⊂ E, which can
be partitioned into positive and negative roots, denoted �+ and �−. The elements of
W permute �.

For any element w of W, let the inversion set of w be defined by:

I(w) = {α ∈ �+ | w−1(α) ∈ �−}.
If we order the elements of W by inclusion of inversion sets, we obtain a partially

ordered set structure called weak order on W. Weak order on W is a lattice.
A lattice homomorphism is a map of lattices which preserves lattice operations. A

quotient lattice of a lattice L is the image of a homomorphism from L. If L is a finite
lattice, the fibers of a lattice homomorphism from L are necessarily intervals in L.

Associated to any finite reflection group W is a graph called its Coxeter diagram,
which we denote G. This diagram (which may also include integer labels on the
edges) encodes a canonical presentation of the group. Let Ḡ be an orientation of
G (that is to say, for each edge of G, we designate one end of the edge as the source
and the other as the target). Associated to Ḡ is a Cambrian lattice C(Ḡ), which is a
lattice quotient of weak order on W. We shall not give the general definition here,
restricting our attention to reflection groups of types A and B.

The general definition and the explicit description in types A and B were given by
Reading in [15]. Explicit descriptions of the Cambrian lattices in the other types were
given by Reading more recently [16]. In what follows, we will review the descriptions
in types A and B, and then show that the Cambrian lattices in types A and B are trim,
and consequently that the results of the first half of this paper apply to them (and
their intervals). The result of Theorem 7 applied to Cambrian lattices was already
proved in [15]. The results of Theorems 5 and 6, as applied to Cambrian lattices, are
new.

6.1 Type A Cambrian Lattices

In type An−1, the reflection group W is isomorphic to Sn. Let e1, . . . , en be a basis for
R

n. A permutation π ∈ Sn acts on R
n by taking ei to eπ(i). The roots are the vectors

ej − ei for i �= j. The positive roots are ej − ei for j > i.
For π ∈ Sn, ej − ei is an inversion of π for j > i if j precedes i in the word

π1, . . . , πn. As already mentioned, weak order on Sn is the inclusion order on
inversion sets.

The Coxeter diagram G consists of a path of n − 1 nodes, labelled s1, . . . , sn−1. Let
Ḡ be an orientation of this diagram. We write si−1 → si and si−1 ← si to represent the
two possible orientations of the edge between si−1 and si. Define two complementary
subsets of [2, n − 1] by D = {i | si−1 → si}, U = {i | si−1 ← si}.

For our purposes, a pattern is a permutation of [k]. A permutation π contains a
given pattern σ if there are some i1 < · · · < ik such that πi1 , πi2 , . . . , πik are in the
same relative order as σ1, . . . , σk. If we put a bar over an element of a pattern (as,
for example, in 2̄31), then to say that π contains that pattern means that π contains
an instance of the pattern in which the element of π that corresponds to the barred
element of the pattern belongs to U . Similarly, if we underline an element of the
pattern, we mean that the corresponding element of π must belong to D.

Let B be the set of permutations in Sn avoiding 2̄31 and 312. Let T be the set of
permutations in Sn avoiding 2̄13 and 132.
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Figure 4 The Cambrian setup
in type A2.
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Proposition 6 [15] There is a lattice quotient of weak order on Sn the minimal elements
of whose fibers are B and the maximal elements of whose fibers are T . This is the
Cambrian lattice C(Ḡ). B and T are sublattices of weak order on Sn, each also
isomorphic to C(Ḡ).

Note that in the case that all the edges of Ḡ are oriented si−1 → si, B consists of
all those permutations avoiding 312, while T consists of those permutations avoiding
132. In this case, C(Ḡ) is a Tamari lattice, and the map from Sn to C(Ḡ) is the well-
known lattice quotient map from weak order on Sn to the Tamari lattice. (See, for
instance, [6] for more details.)

Figure 4 gives an example, showing weak order on S3, an oriented Dynkin
diagram, and the induced Cambrian lattice.

6.2 Type B Cambrian Lattices

We now consider the type Bn Cambrian lattices. Here, W is isomorphic to Bn, the
group of signed permutations of [n], that is, permutations of {−n, . . . ,−1, 1, . . . , n}
which are fixed under the involution interchanging positive and negative numbers.
We think of π ∈ Bn as acting on R

n by taking ei to eπ(i), where we let e−i = −ei. The
roots of Bn are ±ei ± ej for i �= j, together with ±ei. The positive roots are those of
the form ej − ei for j > i, ej + ei, and ei.

The Coxeter diagram G consists of a path of n vertices, labelled s0, . . . , sn−1,
where the edge from s0 to s1 is the unique edge with a label (which need not
concern us). Let Ḡ be an orientation for G. We define two complementary subsets of
{−n + 1, . . . ,−1, 1, . . . , n − 1}: for 1 ≤ i ≤ n − 1, if si−1 → si, then i ∈ D and −i ∈ U ,
and vice versa if si−1 ← si.

The one-line notation for π ∈ Bn is π−n . . . π−1π1 . . . πn. For 0 < i < j, ej − ei is an
inversion of π if j precedes i in the one-line notation for π , ei is an inversion of π

if i precedes −i in the one-line notation for π , and ej + ei is an inversion for π if i
precedes − j (or equivalently j precedes −i) in the one-line notation for π . Weak
order on Bn is defined (as always) by inclusion of inversion sets.

As in type A, we say that π contains a pattern σ ∈ Sk iff there are some i1 < · · · <

ik such that the relative order of πi1 , πi2 , . . . πik is the same as that of σ1, . . . , σk —
but we allow i1, . . . , ik to be chosen from [n] ∪ −[n]. The meaning of overlines and
underlines are the same as in type A. (Note: sometimes Bn is considered as a set
of permutations on {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}, i.e. k̄ is used where we would write −k.
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There is a possibility of confusion for the reader here. When we write k̄ we will never
mean −k; we will always mean that k ∈ U .)

The definition of the Cambrian lattice C(Ḡ) is very similar to the definition in type
A. Let B be the set of permutations in Bn avoiding 2̄31 and 312. (Note that, because
of the symmetry of elements of Bn, it is actually sufficient to check that an element of
Bn avoids one of these patterns – the avoidance of the other pattern comes for free.)
Let T be the set of permutations in Bn avoiding 2̄13 and 132. (As for B, we only need
to check one of these conditions.) An analogue of Proposition 6 holds in type Bn:

Proposition 7 [15] There is a lattice quotient of weak order on Bn the minimal
elements of whose fibers are B and the maximal elements of whose fibers are T . This
is the Cambrian lattice C(Ḡ). B and T are sublattices of weak order on Bn, each also
isomorphic to C(Ḡ).

6.3 Trimness of Cambrian Lattices

The story in type B is in some respects simpler than in type A, so we begin with the
following theorem:

Theorem 8 The type B Cambrian lattices are trim.

Proof First, we must understand the join-irreducibles of C(Ḡ).

Lemma 8 There are n2 join-irreducibles and n2 meet-irreducibles of C(Ḡ).

Proof A join-irreducible π of B is necessarily a join-irreducible of Bn, because C(Ḡ)

is a quotient of Bn. Let the unique element which lies immediately below π in Bn be
σ . Let the adjacent transposition relating π and σ interchange x and y, (and also −x
and −y), with y > 0, and |y| ≥ |x|. (So x and y appear together, in the order xy in σ ,
and in the order yx in π .) We wish to show that x and y determine π .

We consider first the case where 0 < x < y. Thus π looks like either

. . . (−x)(−y) . . . yx . . . or . . . yx . . . (−x)(−y) . . .

The fact that π is join-irreducible in Bn means that each of the three segments into
which π is divided by yx and (−x)(−y) must be increasing. This immediately rules
out the second of the two possibilities displayed above. Again using the fact that
each of the three segments of π is increasing, to show that π is determined by x and
y, it suffices to show that for any z other than x, y, −x, or −y, we can determine
which segment it belongs to. If z > y, then z must occur in the rightmost segment. If
0 < z < x, then z must lie in the middle segment. If x < z < y, then z cannot lie in the
leftmost segment, and which of the other two segments it lies in is determined by the
fact that π ∈ B, and thus that exactly one of zyx or yxz is a forbidden configuration
(depending on whether z ∈ U or z ∈ D). This determines the position of all z > 0,
and by the symmetry of π , it also determines the positions of all z < 0. Thus we see
that π is determined by x and y.

The cases where x = −y and where −y < x < 0 < y are very similar. Thus, for
every pair x, y with −y ≤ x < y, there is exactly one join-irreducible in B, and thus
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there are n2 in total. Using a dual argument, there are exactly n2 meet-irreducibles
of T . Using Proposition 7 which says that B and T are both isomorphic to C(Ḡ), we
see that C(Ḡ) has exactly n2 join- and meet-irreducibles. ��

Our next step will be to identify a maximal chain of length n2 in C(Ḡ).
We let si (the labels of the nodes of the Coxeter diagram) also denote the corre-

sponding reflection in Bn: for i > 0, si interchanges i and i + 1 and also interchanges
−i and −i − 1, while s0 interchanges 1 and −1.

Write out a word in which each si occurs once, and such that for any edge si → sj,
si occurs to the right of sj in the word. Let c be the product of the si in this order. It
is a Coxeter element, and one convinces onself easily that it takes −n to the smallest
element of D, each element of D to the next largest one, the largest element of D to
n, and by symmetry n to the largest element of U , etc.

We know that cn interchanges every element and its negative. (This holds for any
Coxeter element in type B. It is also easy to see from our explicit description.) The
group element which interchanges every element and its negative is denoted −1.
For 0 ≤ i ≤ n2, let xi denote the element of Bn which consists of the product of the
rightmost i simple reflections in cn (where we think of c as being written as a word of
length n as above). Since the minimum length of an expression for −1 as a product
of simple reflections in Bn has length n2, and our expression for cn has exactly this
length, it follows that xi � xi+1 in Bn.

Lemma 9 The xi are contained in T ∩ B (so in particular, each determines a different
element of C(Ḡ)).

Proof In order to prove this, we will need to give a description of inversion sets of
elements of T and B in terms of their allowed intersections with irreducible rank 2
root systems contained in our Bn root system �.

These are the types of rank 2 root systems contained in �:

(1) The type B2 root system corresponding to positive roots ei, ej + ei, ej, ej − ei,
(i < j). To read off which of these elements lie in the inversion set of π ∈ Bn,
we need only consider the relative positions of i, j, −i, − j.

(2) The type A2 root system corresponding to positive roots ej − ei, ek − ei, ek − ej

for i < j < k. To read off which of these elements lie in the inversion set of π ,
we need to look at the relative positions of i, j, k.

(3) The type A2 root system corresponding to positive roots ej − ei, ej + ek, ei + ek

(for i < j). To read off which of these elements lie in the inversion set of π , we
need to look at the relative positions of i, j, −k.

The inversion set for any element of Bn intersected with any of these rank 2 root
systems is an initial or final subset of the list of inversions (in the order in which they
are listed above). This can be seen by inspection in our case; a similar statement holds
for all finite reflection groups, see [2, 5].

Lemma 10 For R a rank 2 root system contained in �, there is an order on its roots
(either the one given above or its reverse) which we call the Ḡ-order such that:

(1) The inversion set of an element of B intersected with R is either an initial subset
with respect to the order, or consists of exactly the final element.
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(2) The inversion set of an element of T intersected with R is either an initial subset
or consists of all the elements except the first.

Proof This essentially follows by inspection, considering the three possible types of
root systems contained in Bn. Suppose that the rank 2 root system is of type B2. The
possible relative positions for i, j, −i, − j (ignoring all other symbols) are as follows:

ji(−i)(− j), I = {ei, ej + ei, ej, ej − ei}
ij(− j)(−i), I = {ei, ej + ei, ej} j(−i)i(− j), I = {ej + ei, ej, ej − ei}
i(− j) j(−i), I = {ei, ej + ei} (−i) j(− j)i, I = {ej, ej − ei}
(− j)i(−i) j, I = {ei} (−i)(− j) ji, I = {ej − ei}
(− j)(−i)ij, I = ∅

Observe that if i ∈ D then ij(− j)(−i) and i(− j) j(−i) are impossible for an element
of B, while if i ∈ U then j(−i)i(− j) and (−i) j(− j)i are impossible for an element
of B. Thus, if i ∈ D, part (i) of the lemma is satisfied if we set the Ḡ order to be
ej − ei, ej, ej + ei, ei, while if i ∈ U , part (1) of the lemma is satisfied if we set Ḡ-order
to be the reverse order. It is straightforward to check that the same order also satisfies
part (2) of the lemma.

The other two types of root systems are handled similarly, proving the lemma. ��

We now prove a converse to Lemma 10. First, we introduce some notation. We
say that a subset of a rank 2 root system is initial if it is initial with respect to the
Ḡ-order. We say that the subset is last if it consists of only the final element (with
respect to the Ḡ-order). We say that a subset is all but first if it consists of all the
elements except the first. We will say that a set of roots has B-good intersection with
a rank two root system if its intersection is initial or last, and T -good intersection if
its intersection is initial or all but first. Thus, Lemma 10 says that if w ∈ B then I(w)

has B-good intersection with every rank 2 root system in �, and similarly with T
replacing B. The following lemma is a converse.

Lemma 11 If a set of roots has B-good intersection with every rank 2 root system,
then the set of roots is the inversion set of an element of B. Similarly, if it has T -good
intersection with every rank 2 root system, it is the inversion set of an element of T .

Proof We prove the first statement. Given a set of roots I whose intersection with
any rank 2 root system is either initial or final, it is the inversion set of a unique
element π of Bn. (This is stated without proof in [2]; a more general statement is
proved in [5], Theorem 5.5(1).) We must show that π contains neither a 2̄31 nor
a 312. Suppose it does, and suppose first that this pattern involves three elements
of distinct absolute values. If these are all the same sign (which we may assume to
be positive) then we have found i, j, k such that ei − ej, ei − ek, ej − ek has an illegal
intersection with I. Similarly, if the pattern involves elements not all of the same sign
then we are in the other type of A2 root system, while if the pattern involves two
elements of the same absolute value, then we are in a similar situation with respect
to a B2 root system. Thus, π contains no 2̄31 or 312, and therefore is an element of B.

The second statement follows from a similar argument, and the lemma is proved.
��
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Now that we understand the possible inversion sets of elements of B and T , we
can return to the proof of Lemma 9. We now proceed to show that the inversion set of
xi intersected with any rank two root system is initial. Consider, for example, a root
system of type B2. We must determine whether, in our word for cn, the inversions
ei, ei + ej, ej, ej − ei appear in that order or the reverse order. By inspection (recalling
our explicit description of c), we see that they occur in the forward order if i ∈ U ,
and in the backward order if i ∈ D. But now observe that this order on the roots is
exactly the order provided by Lemma 10, as desired. The other types of root systems
are dealt with similarly. This completes the proof of Lemma 9. ��

We wish to show that the xi are left modular. By Proposition 4, it is sufficient to
exhibit an interpolating labelling for C(Ḡ) such that the xi form the increasing chain
from 0̂ to 1̂.

We now introduce some notation related to C(Ḡ). For x ∈ Bn, we write [x] for the
fibre of the quotient map to C(Ḡ) which includes x. We also write p↑(x) for the top
element of [x], and p↓(x) for the bottom element of [x].

We define an edge-labelling for C(Ḡ) as follows. First, observe that the edges in
the Hasse diagram of weak order on Bn have a natural labelling by positive roots: we
label the edge x � y by I(y) \ I(x). We now use this labelling to define a labelling for
C(Ḡ).

Suppose [x] � [y] in C(Ḡ), with x ∈ T . Then x is covered by an element of [y], say
y′. Then set γ ([x] � [y]) = I(y′) \ I(x).

Lemma 12 If x � y and [x] �= [y], then γ ([x] � [y]) = I(y) \ I(x).

Proof Let x′ = p↑(x), and let y′ be the element of [y] covering x′. Now y′ ∧ y is in [y]
but lies over x, so must equal y, which implies that y ≤ y′. Since y does not lie under
x′, but x does, I(y) \ I(x) = I(y′) \ I(x′), as desired. ��

We now prove an easy lemma which will be useful for computations in C(Ḡ).

Lemma 13 If x, y ∈ T , then I(x ∨ y) = I(x) ∪ I(y). If x, y ∈ B, then I(x ∧ y) =
I(x) ∩ I(y).

Proof We prove the first statement. Observe that I(x) ∪ I(y) has T -good intersec-
tion with every rank 2 root system, and therefore, by Lemma 11, defines an element
of T . Now it is clear that this element must be the join of x and y.

The argument for the second statement is similar. ��

Lemma 14 The labelling γ defined above is an interpolating labelling for C(Ḡ).

Proof The first necessity for showing that a labelling is interpolating is to show that
it is an EL-labelling. Let [v] < [w] in C(Ḡ), with v and w in T . Let α = min(I(w) \
I(v)), where min is taken with respect to the total order on the positive roots.

We begin by showing that there is a z such that [v] � [z] ≤ [w], with γ (v � z) = α.
Let x be the element of B ∩ T whose inversion set consists of all roots up to and
including α in Ḡ-order. Let z = v ∨ x. By Lemma 13, I(z) = I(v) ∪ I(x) = I(v) ∪ {α}.



Order (2006) 23: 249–269 267

Thus γ ([v] � [z]) = α, and clearly [v] � [z] is the only edge proceeding up from [v]
labelled by α.

Next we show that every maximal chain from [v] to [w] has an edge labelled by α.
Given a maximal chain, let [q] be the first element of the chain lying over z, and let
[r] be the element lying below [q] in the chain. Let r ∈ T . Let q′ be the element of
[q] covering r. Then q′ lies over z but r does not, so I(q′) \ I(r) = {α}, and the edge
[r] � [q] is labelled α.

So α is the minimum possible label to occur on any edge of any maximal chain
from [v] to [w], and it must occur on every chain. Thus, the first step in any increasing
chain from [v] to [w] must be labelled α, so any increasing chain must begin [v] � [z].
Now, by induction, there is a unique increasing chain from [v] to [w].

Now we must show that the labelling γ is interpolating. So suppose that we have
chain of length two which isn’t increasing, say [v] � [u] � [w]. Let us assume that v ∈
T . Let β = γ ([v] � [u]) and α = γ ([u] � [w]). Let [v] = [y0] � [y1] � · · · � [yr] =
[w] be the increasing chain from [v] to [w].

Since γ ([y0] � [y1]) is the minimum label on any chain in the interval, by what
we have just shown it must occur on every chain from [v] to [w]. It cannot be that
the edge [v] � [u] has this label, so γ ([y0] � [y1]) = γ ([u] � [w]), one of the two
conditions necessary for γ to be interpolating.

In weak order on Bn, we know that there are two edges rising from v, labelled
by α and β. These correspond to simple reflections sα and sβ (i.e. the tops of these
edges are vsα and vsβ where sα and sβ are simple reflections.) Let V be the subgroup
of W generated by sα and sβ . Then v is the unique minimum-length representative
of its left coset vV in W. This coset appears in weak order on Bn as an interval with
minimum element v. (For more details, see [9], Section 1.10.) This interval of Bn is
isomorphic to weak order on V, which is a rank 2 reflection group. Therefore, this
interval consists of a two incomparable chains vsα = c1 � c2 � · · · � ck, vsβ = d1 �

d2 � · · · � dk, together with a minimum element v and a maximum element, which
we will call q.

Observe that c1 = vsα ∈ [y1] and d1 = vsβ ∈ [u]. Thus, their join, vsα ∨ vsβ , which
equals q, lies in [w]. Since [q] > [d1], but ck �> d1, [ck] �= [q]. Since [y1] = [c1] ≤
[ck] � [q] = [w], [ck] = [yr−1].

Observe that the edge (in weak order on Bn) from ck to q is labelled by β. Thus,
by Lemma 12, since ck ∈ [yr−1] and q ∈ [w], γ ([yr−1] � [w]) = β, and we have shown
that γ is interpolating. ��

It is clear that the xi form the increasing chain from 0̂ to 1̂ in C(Ḡ), and thus they
are left modular. We conclude that Cambrian lattices of type B are trim. ��

The following theorem is an easy corollary of Theorem 8.

Theorem 9 The type A Cambrian lattices are trim.

Proof Let Ḡ be an oriented type A Coxeter diagram. Let Ḡ′ be the type B Coxeter
diagram obtained by affixing an extra edge labelled 4 to G, oriented arbitrarily. It is
straightforward to see, either by the explicit description of Cambrian lattices in types
A and B, or from general theory, that C(Ḡ) is a lower interval in C(Ḡ′). (The top
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of the interval is the equivalence class of the longest word for the type A Coxeter
group.) It now follows by Theorem 1 that C(Ḡ) is trim. ��

6.4 Conjectural Description of Other Cambrian Lattices

Let W be a finite reflection group which contains −1. Let G be its Dynkin diagram,
and Ḡ an orientation. As in type B, we can order the nodes of the diagram in
accordance with the orientation of the edg es, and then take the product of the simple
reflections in that ord er, obtaining a Coxeter element c. If h is the Coxeter number
for W then, since −1 ∈ W, h will be even, and ch/2 = −1 ([9], Corollary 3.20).

Linearly order the roots of W in the order in which they appear as inversions in
the word for ch/2. Let xi be the element of W whose inversion set consists of the first
i roots, in this order.

Now, take the minimal lattice quotient of W such that the xi are all left modular.
(Here, when we say “minimal lattice quotient,” we mean minimal in the congruence
lattice of the weak order. There is a minimal quotient because, for any xi, the
condition that xi is left modular amounts to forcing certain identifications to be made
in the weak order.) Call this the pre-Cambrian lattice associated to Ḡ.

Conjecture 2 The bottom elements of the fibres of this quotient will be exactly those
elements whose inversion sets have B-good intersection with all rank 2 sub-root
systems, where the order on the sub-root system comes from the linear order on the
positive roots. (And similarly for the top elements of the fibres.)

Conjecture 3 The pre-Cambrian lattice associated to Ḡ coincides with the Cambrian
lattice C(Ḡ).

Note that we have already showed that these conjectures hold in type B.
Since every root system embeds in one whose reflection group contains −1, and

the Cambrian lattice associated to the smaller root system appears as a lower interval
in the Cambrian lattice associated to the larger root system, it would follow from
Conjectures 2 and 3 that all Cambrian lattices are trim.
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