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Abstract
New features of light propagation in nonmagnetic lossless medium with weak nonlocal 
nonlinear response are described. The function of nonlinear response in a weak nonlocal 
approximation included in the dielectric permittivity is proposed. Stationary self-consistent 
wave equation in the term of the average of the field intensity is formulated. The proce-
dure allowing to find the spectrum of stationary states of such an equation in relation to 
the metal-film covered waveguide is indicated. Dispersion equation determining the propa-
gation constant as a function of the waveguide system parameters in general form of the 
waveguide region is obtained. The proposed theory is applied to calculate the eigenmode 
spectrum of metal-film covered circular fiber. Exact solution to the self-consistent wave 
equation describing the radial symmetric distribution of the electric field in a fiber cross 
section is found. Explicit equation determining the discrete spectrum of the propagation 
constant is obtained. It is shown that each mode corresponds to a set of the propagation 
constant values, which are generated by the zeros of the Bessel functions. Discrete spec-
trum of the propagation constant is linearly shifted by a value proportional to the coeffi-
cient of nonlinearity. Varying the value of the nonlinearity coefficient is effectively used to 
adjust the fiber diameter, which optimizes the characteristics of the waveguide.

Keywords  Nonlinear mode · Nonlinear fiber · Nonlinear waveguide · Waveguide optics · 
Circular fiber · Nonlocal nonlinearity

1  Introduction

Localized optical structures in nonlinear media such as surface and guided waves, and soli-
tons are studied extensively (Malomed and Mihalache 2019; Mihalache 2021). The interest 
in such research is due to their wide technical applications, including nonlinear fiber optics 
(Agrawal 2008, 2019; Kaminow et al. 2013) and photonics (Knight et al. 1999; Poli et al. 
2007; Novoa and Joly 2021; Khusyainov et al. 2020).
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The properties of nonlinear waves are determined by the optical response of nonlinear 
medium, which can be significantly nonlocal (Dong and Wang 2006). In particular, soliton 
self-bending during its propagation in a medium with nonlocal nonlinearity is described 
(Kartashov et al. 2004).

Nonlocal nonlinear systems are studied theoretically based on the nonlinear Schrödinger 
equation in recent years (Gürses and Pekcan 2018; Darti et al. 2012). Oscillatory responses are 
used to describe the unique features of nonlocal nonlinear systems (Liang et al. 2020; Liang 
2022). Nonlinear media with nonlocal nonlinearity can demonstrate optical instability (Tabi 
et al. 2022). Exact solutions corresponding to optical solitons in dispersive medium with non-
local nonlinearity are found (Arnous et al. 2022). Problems of finding exact solutions to the 
wave equations with nonlocal nonlinearities remain relevant (Kudryashov 1991, 2021, 2022).

Note that metal-coated optical fibers and waveguides are widely used in various techni-
cal applications (Albert et al. 2018), including chemical and biochemical sensing technolo-
gies (Spackova et al. 2016; Savkare 2023; Shen et al. 2023). Also, in modern industry, many 
types of single-mode and multimode fibers with a heat-resistant coating made of aluminum 
or copper alloy are produced. A thin layer of metal provides mechanical strength and elimi-
nates out-gassing, while simultaneously increasing the temperature range and thermal conduc-
tivity of the fiber. Fibers coated with a heat-resistant metal material can withstand tempera-
tures up to 600 °C or higher, depending on heating conditions and atmospheric composition 
(Cherpak et al. 2020). For example, single-mode fibers with copper and aluminum coating 
for the near-infrared range have an operating wavelength ranges depending on the type of 
fiber: 450–600 nm, 800–600 nm, 800–1000 nm, 1300–1600 nm; attenuation at 800/1300 nm 
depending on the type of fiber is: 14 dB/km, 12 dB/km, 10.5 dB/km, 9.5 dB/km, 4.0 dB/km 
1.5 dB/km; the coating thickness is about 10–15 μm with a single-mode fiber radius of about 
100 μm. Therefore, the study of the waveguide properties of metal-coated waveguides with the 
nonlocal nonlinearity is important for developing technical applications of photonics, opto-
electronics, physicochemical and bio-technologies.

In this paper, we derive the dispersion equation of the wave propagating in a metal-film 
covered waveguide using an exact solution to stationary self-consistent wave equation with 
a weak nonlocal nonlinear response. We generalize the procedure of finding the dispersion 
equation and eigenmodes, which was presented for one dimension slab waveguide in Smirnov 
et  al. (2022), in the case of 3D model. In particular, we find the propagation constant and 
eigenmodes via explicit equations in the case of circular fiber covered by a metal film.

The obtained results expand theoretical studies of optical nonlinear fibers (Horak and 
Poletti 2012; Zhang and Lu 2021; Krupa et al. 2019), including graded-index multimode fib-
ers (Mafi 2012; Renninger and Wise 2013; Ahsan and Agrawal 2018). Despite of the dis-
persion and propagation properties of circular cylindrical optical fibers are described well 
(Morishita 1983; Yeh 1987; Shu and Bass 2007), we describe the new features of the light dis-
tribution in a fiber cross section induced by a weak nonlocal nonlinear response. In particular, 
the explicit dependence of the fiber radius on the nonlinearity coefficient, for which the mode 
of the certain order can be excited, is obtained analytically.

2 � Governing equations

Let the nonlinear medium occupies region D limited by the surface Г in the transverse 
direction (xy cross-sectional plan) and unlimited in the longitudinal direction (z direc-
tion) (see the schematic sketch of the waveguide with an arbitrary cross-section in 



Features of dispersion properties of a waveguide with a modified…

1 3

Page 3 of 12  1159

Fig. 1). We describe the light propagation in a nonmagnetic lossless medium with weak 
nonlocal nonlinear response in the region D. We neglect the anisotropic properties of 
the medium basing on the paraxial approximation. The light propagation is described 
along the z axis in the waveguide region with inhomogeneous dielectric function in a 
transversal direction and a nonlocal contribution to nonlinear response.

We present the transverse component of the electric field as:E(�⊥, z) = 𝜓(�⊥) exp(i𝛽z) 
where 𝜓(�⊥) is the spatial transverse distribution of the wave propagating along z direc-
tion as, r⊥ is the transverse coordinate vector (in particular, r⊥ = (x, y) in Cartesian coor-
dinates and r⊥ = (r, φ) in polar coordinates), z is the longitudinal propagation coordi-
nate. The spatial transverse distribution obeys the nonlinear wave equation

where Δ⊥ is the Laplace operator in transverse coordinates r⊥ (note that the Laplace opera-
tor can be presented as Δ = Δ⊥ +

𝜕2

𝜕z2
 , in particular, Δ⊥ =

𝜕2

𝜕x2
+

𝜕2

𝜕y2
 in Cartesian coordi-

nates), �(|�|2) is the dielectric permittivity of the nonlinear medium, β is the propagation 
constant, k0 = ω/c is the wave number, ω is the wave frequency, c is the speed of light 
(Adams 1981; Chen 2005).

We assume that the dielectric permittivity of the nonlinear medium can be written 
as ε = ε0 + δε, where ε0 is the unperturbed dielectric constant, �� = ��(|�|2) is the small 
nonlinear addition. In the case of nonlocal nonlinearity, the nonlinear addition can be 
written as (Darti et al. 2012)

where R is the function described the nonlocal nonlinear response in D region of the trans-
verse space of coordinates r⊥.

In the case of a local Kerr nonlinear response, we can replace R(�⊥ − �
�
⊥
) with the 

Dirac delta function 𝛼𝛿(�⊥ − �
�
⊥
) where α is the nonlinearity coefficient. Then 

𝛿𝜀(|𝜓|2) = 𝛼
|||𝜓(��

⊥
)
|||
2

 and Eq.  (1) transforms into the well known stationary nonlinear 
Schrodinger equation.

In the case of a weak local approximation, the Kerr-like nonlinear response can be 
presented as R(�⊥ − �

�
⊥
) = 𝛼∕S0 , where S0 is an area of D region (sse Fig. 1). Therefore, 

the nonlinear addition (2) transforms into

(1)Δ⊥𝜓 + (𝜀(|𝜓|2)k2
0
− 𝛽2)𝜓 = 0

(2)𝛿𝜀(|𝜓|2) = ∫
D

R(�⊥ − �
�
⊥
)||𝜓(��

⊥
)||
2
d��

⊥

Fig. 1   Schematic sketch of the 
waveguide with an arbitrary 
cross-section at xy plane where 
the nonlinear medium occupies 
the region D bounded by surface 
Γ along the longitudinal direc-
tion z 
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The average of the field intensity is given by

Therefore, the nonlinear dielectric permittivity can be written as

The dielectric permittivity given by Eq. (5) corresponds to the modified Kerr weak non-
local nonlinearity. The positive value of α corresponds to a self-focusing nonlinearity, and 
the negative value of α corresponds to a defocusing one. In the case of a plane shielded 
waveguide the problem of a TE-wave propagation with a similar one-dimension analog of 
Eq. (5) is investigated in Albert et al. (2018).

Wave Eq. (1) with substitution of Eq. (5) transforms into

where 𝛼̃ = 𝛼k2
0
.

Equation  (6) can be also considered as the stationary Schrodinger equation with self-
consistent potential, which is interpreted as the charge localized in the quantum well occu-
pying region D in the case of a one-particle state (Presilla et al. 1991).

3 � Metal‑film coated waveguide

We consider a waveguide coated with a thin metal with a nonlinear optical core, the radius 
of which is much greater than the thickness of the coating (see an arbitrary cross-section 
of the waveguide in Fig. 2). The use of metallic fiber coating is related to its properties. 
When light passes through the fiber core, it induces very weak currents at the surface of the 
metal, which drain power from the waveguide. In special fibers with a larger cladding, the 
metal is further away from the core and the attenuation is much lower.

The metal coating is typically quite thin compared to the radius of the fiber. For exam-
ple, the authors of Song et al. (2011) studied waveguide modes in a fiber with a silica core 
of radius of 0.55 μm, coated with a silver film of 0.05 μm thickness. Therefore, we will 
assume that the coating thickness is negligibly small compared to the characteristic trans-
verse size of the waveguide.

We write the transverse field distribution as 𝜓(�⊥) = U0F(g(q, �⊥)) , where U0 is the 
unknown constant, the function F solves the equation

where, q2 = 𝜀0k
2
0
− 𝛽2 + 𝛼̃U2

0
|F|2 and the function g = g(q, �⊥) relates the coefficients of 

the Eq. (6) and the transverse coordinates r⊥. It is assumed that the function F is limited 
anywhere in the waveguide region D, in particular, at the origin O.

(3)𝛿𝜀(|𝜓|2) = 𝛼

S0 ∫
D

||𝜓(��
⊥
)||
2
d��

⊥

(4)I = |𝜓|2 = 1

S0 ∫
D

||𝜓(��
⊥
)||
2
d��

⊥

(5)�(|�|2) = �0 + �|�|2

(6)Δ⊥𝜓 + (𝜀0k
2
0
− 𝛽2)𝜓 + 𝛼̃|𝜓|2𝜓 = 0

(7)F��∇⊥g + F�Δ⊥g + q2F = 0
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We assume that the waveguide region D is covered by a thin metal film. In this case, the 
field at the boundary between region D and metal film cladding turns to zero and we get 
the boundary condition

where Γ is the boundary of the waveguide region D. We write the second boundary condi-
tion using the normal derivative as (see Fig. 2)

where V is known constant.
Therefore, the function F satisfies the boundary conditions

From Eq. (10) we obtain

where ξ is the zero of the function F (here we suppose that there is at least one root of the 
equation F(ξ) = 0).

From Eq. (11) we can find the amplitude

Using Eq. (13) we obtain

(8)�|Γ = 0

(9)
��

�n

||||Γ
= V

(10)F(g(q, �⊥))
||Γ = 0

(11)U0F
� �g

�n

||||Γ
= V

(12)g(q, �⊥)
||Γ = 𝜉

(13)U0 = V

(
F� �g

�n

||||Γ

)−1

q2 = 𝜀0k
2
0
− 𝛽2 + 𝛼̃V2|F|2

(
F� 𝜕g

𝜕n

||||Γ

)−2

Fig. 2   The arbitrary cross-section 
of the metal coated waveguide 
where n is the normal vector to 
the waveguide boundary Γ
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Thus, we derive Eq. (12) relating the propagation constant, waveguide system parameters, 
and zero of the function F, which can be considered as a dispersion equation of the metal-film 
covered waveguide with the modified Kerr weak nonlocal nonlinearity. By solving Eq. (12) 
with known functions F and g in the case of the specified boundary of the waveguide region, 
one can obtain the propagation constant as a function of the waveguide system parameters.

4 � Metal‑film coated circular fiber

Let us consider, for example, the circular fiber of R radius covered by thin metal-film with s 
small thickness h (see cross-section of the circular fiber in Fig. 3). We assume that h <  < R. 
The r⊥ = (r, φ), where r and φ are the polar coordinates, in the case considered. The Laplace 
operator in the polar coordinates is Δ⊥ =

1

r

𝜕

𝜕r

(
r
𝜕

𝜕r

)
+

1

r2
𝜕2

𝜕𝜙2
 . Therefore Eq. (6) after substitu-

tion of the transverse distribution �(r,�, z) = u(r) exp(im�) , m = 0, ± 1,… transforms into:

The boundary conditions (8) and (9) transforms into.

Exact solution to Eq. (14) limited at 0 < r < R is given by

where Jm(x) is the Bessel function of the first kind, and

From the boundary condition (15) it follows the equation: Jm(qR) = 0 , therefore,

(14)
𝜕2u

𝜕r2
+

1

r

𝜕u

𝜕r
+

(
𝜀0k

2
0
− 𝛽2 + 𝛼̃|u|2 − m2

r2

)
u = 0

(15)u(R) = 0

(16)u�(R) = V

(17)u(r) = U0Jm(qr)

(18)q2 = 𝜀0k
2
0
− 𝛽2 + 𝛼̃U2

0
I

Fig. 3   The cross-section of the 
circular metal coated fiber of 
radius R and the metal-film thick-
ness of h (h <  < R)
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where ξmj are the zeros with number j of the Bessel function of m order: Jm(ξmj) = 0.
We find the amplitude from the boundary condition (16) using Eq. (19) as

We calculate the average of the field intensity (4) using Eq. (19) in case considered as

Therefore, we obtain the discrete spectrum of the propagation constant combining 
Eqs. (18)–(20):

where m is the mode order, j is number of zero of the Bessel function of m order.
We plot the dependencies of the propagation constant defined by Eq.  (22) on the 

nonlinearity parameter αV2 in Fig.  4. Figures  4 a, b, and c demonstrate the functions 
βmj = βmj(αV2) for modes of orders m = 0, m = 1, and m = 2 respectively for five num-
bers of zero of the Bessel function j = 1, 2, 3, 4, 5. The propagation constant for each 
mode increases monotonically with an increase in absolute value of the nonlinearity 
coefficient.

We find that a mode of the corresponding order m can be excited for values of j start-
ing from a certain number at values of the nonlinearity parameter αV2 exceeding the 
minimum value.

Figure 4 d demonstrates for example the functions βmj = βmj(αV2) for the number of zero 
of the Bessel function j = 3 and three modes of orders m = 0, m = 1, and m = 2. We obtain 
that the value of the propagation constant increases with an increase in the mode order m at 
the fixed number of zero of the Bessel function j and the nonlinearity coefficient.

Thus, we find that the spectrum of modes of the metal-film coated circular fiber with 
the modified Kerr weak nonlocal nonlinearity is linearly shifted by a value proportional 
to the coefficient of nonlinearity. A similar result was obtained in the case of a planar 
waveguide (Kudryashov 2022).

The modes of the metal-film coated circular fiber can be obtained combining Eqs. 
(17), (19) and (20) as

We plot the radial distributions of the intensity Imj = (umj(r)∕V)
2 of modes of differ-

ent orders and numbers of zero of the Bessel function inside the fiber in Figs. 5 and 6. 
Figures 5 a, b, and c demonstrate the radial distributions of the intensity for modes of 
orders m = 0, m = 1, and m = 2 respectively for numbers of zero of the Bessel function 
j = 1, 2, 3, 4. The intensity of the main peak increases with the increasing zero number 
of the Bessel function j.

(19)qR = �mj

(20)U0 = V∕J�
m
(�mj)

(21)I =
1

�R2
2�

R

∫
0

J2
m
(qr)rdr =

2

�2
mj

�mj

∫
0

J2
m
(z)zdz = (J�

m
(�

mj
))2

(22)�2
mj

= k2
0
(�0 + �V2) −

(
�
mj

R

)2

(23)umj(r) = V
Jm(�mjr∕R)

J�
m
(�mj)
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Figures  6a, b, and c demonstrate the radial distributions of the intensity for num-
ber of zero of the Bessel function j = 1, 2, 3 and three modes of orders m = 0, m = 1, 
and m = 2 respectively. The intensity of the main peak decreases with an increase in the 
mode order m at the fixed value of zero number of the Bessel function j.

Each mode of order m corresponds to a set of j values of the propagation constant, 
which are generated by the zeros of the Bessel functions ξmj. The number of such modes 
is limited by the requirement that one should choose only those zeros of the Bessel 
function for a fixed fiber radius, for which 𝜉2

mj
< R2k2

0
(𝜀0 + 𝛼V2).

On the other hand, the mode of the fixed order m and number of j can be excited in 
the fiber with radius, for which R2 > 𝜉2

mj
∕k2

0
(𝜀0 + 𝛼V2) . Therefore, there is a minimum 

fiber radius Rmin = �
mj
∕k

0
(�0 + �V2)1∕2 , in which a mode of the fixed order m and num-

ber of j can be excited. We derive that the presence of a self-focusing nonlinear response 

makes it possible to reduce the minimum allowable fiber radius Rmin. A defocusing 

Fig. 4   Dependencies of the propagation constant defined by Eq. (22) on the nonlinearity parameter αV.2 for 
modes of orders m = 0 (a), m = 1 (b), and m = 2 (c) respectively for different numbers of zero of the Bessel 
function j, and for number j = 3 (d) of zero of the Bessel function and different mode orders m with k = 1, 
ε0 = 1, R = 10 (in dimensionless conventional units)
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nonlinear response adduces to an increase in the minimum allowable fiber radius Rmin. 
However, the admissible defocusing nonlinear response must be such that: |𝛼| < 𝜀0∕V

2.
Thus, one can control a localization diameter of a light beam by using nonlinearity coef-

ficient. From a technical point of view, this means that the fiber diameter can be adjusted to 
optimize the waveguide characteristics.

5 � Conclusions

We described the features of light propagation in a nonmagnetic lossless medium with 
weak nonlocal nonlinear response. We proposed the function of nonlinear response in a 
weak nonlocal approximation included in the dielectric permittivity. We formulated the 
stationary self-consistent wave equation in the term of the average of the field intensity. 
We derived that the wave equation describing the light propagation in such a medium is 
actually a stationary nonlinear Schrodinger equation with a self-consistent potential, which 
plays the role of the charge localized in the quantum well in the case of a one-particle state.

We indicated a procedure that allows us to find the spectrum of stationary states of 
such an equation in relation to the metal-film covered waveguide. We obtained the disper-
sion equation determining the propagation constant as a function of the waveguide system 
parameters in general form of the waveguide region.

We applied the proposed theory to calculate the eigenmode spectrum of metal-film 
covered circular fiber. We found the exact solution to the self-consistent wave equation 
describing the radial symmetric distribution of the electric field in a fiber cross section. We 
obtained the explicit equation determining the discrete spectrum of the propagation con-
stant. We showed that each mode of order m corresponds to a set of j values of the propaga-
tion constant, which are generated by the zeros of the Bessel functions. The fiber diameter 
can be adjusted to optimize the waveguide characteristics by using nonlinearity coefficient.

Fig. 5   Radial distributions of the intensity for modes of orders m = 0 (a), m = 1 (b), and m = 2 (c) for differ-
ent numbers of zero of the Bessel function j with the values of parameters as in Fig. 4
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Obtained results may be useful for improvement of light propagation properties of 
the nonlinear optical fibers and supplement the nonlinear and waveguide optics and 
applications.

Fig. 6   Radial distributions of the 
intensity for number of zero of 
the Bessel function j = 1 (a), j = 2 
(b), and j = 3 (c) and different 
mode orders m with the values of 
parameters as in Fig. 4
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