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Abstract
This investigation delves into the analytic optical exploration of the Biswas–Milovic equa-
tion featuring both parabolic and power law nonlinearity. It provides valuable insights into 
the distinctive characteristics of optical soliton solutions, enhancing our comprehension 
of soliton dynamics in diverse optical systems. Employing the potent Sardar-subequation 
analytical method, we construct a variety of wave structures, revealing a spectrum of opti-
cal soliton solutions that span trigonometric and hyperbolic functions. Thorough validation 
with Mathematica software ensures precision and dynamic visual representations depict 
soliton solutions that exhibit diverse patterns. These patterns include bright solitons, dark 
solitons, singular solitons, king solutions, bell-shaped patterns, as well as parabolic-shaped 
and hyperbolic-shaped patterns. These solutions hold significance in the realms of optical 
fiber and wave dynamics within various optical systems. Our approach above demonstrates 
versatility and applicability in solving a wide range of mathematical and physical prob-
lems, indicating its usefulness in generating such optical solutions.

Keywords Sardar-subequation method · Exact solutions · Biswas–Milovic equations · 
Parabolic and power law nonlinearity · Optical soliton solutions

1 Introduction

Nonlinear equations (NLEs) are nature’s language, describing the intricate dances of phe-
nomena from heat flow to light waves. Unlike the simple lines of linear equations, NLEs 
twist and turn, capturing the true complexity of our world. These equations weave stories 
of solitons, solitary waves that dance through optical fibers, and their solutions hold the key 
to understanding a vast array of scientific mysteries. From the scorching heat flow in a fur-
nace to the shimmering ripples of light pulses, NLEs provide a powerful narrative tool. By 
unlocking their secrets, mathematicians, and engineers can harness the behavior of these 
phenomena, building better fiber optic networks, designing efficient heat transfer systems, 
and even delving into the mysteries beyond the realm of light (Tozar et  al. 2021; Rasid 
et al. 2023; Eslami and Mirzazadeh 2016; Liu et al. 2019). In addition, comprehending and 
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managing soliton dynamics are imperative for diverse optical applications, spanning optical 
communication, nonlinear optics, and ultrafast photonics. Optical solitons present distinct 
advantages, including stable propagation across extensive distances and the preservation 
of pulse shape and integrity. Consequently, precise modeling of soliton dynamics holds 
paramount importance in the development and enhancement of optical devices and systems 
tailored for these specific applications (Shaikh et al. 2023; Mirzazadeh 2015; Hossain et al. 
2024a; Zou and Guo 2023). Among various NLEs, the BME also known as the generalized 
nonlinear Schrödinger equation, represents a significant advancement in modeling optical 
solitons in nonlinear media. Unlike the standard nonlinear Schrödinger equation (NLSE), it 
includes additional terms for higher-order effects like self-steepening, self-frequency shift, 
and third-order dispersion. These terms are crucial in shaping optical pulse behavior. By 
incorporating them, the BME provides a comprehensive framework for studying soliton 
propagation, especially in regimes with significant nonlinear effects. This enhanced model 
facilitates accurate prediction and analysis of soliton behavior in various optical systems, 
driving advancements in optical communication, nonlinear optics, and ultrafast photon-
ics. It’s a valuable tool for designing and optimizing optical devices for applications rang-
ing from long-distance communication to nonlinear signal processing (Altun et al. 2022; 
Ozdemir 2023; Gupta and Yadav 2023). Additionally, the equation is integrable, implying 
that it possesses an infinite number of conservation laws. The interplay of Parabolic and 
Power law nonlinearities within the BME is the focus of this investigation. The form of 
BME is as follows (Altun et al. 2022):

In this equation, Υ = Υ(x, y, t)  represents the complex function,{Υn}t =
�Υn

�t
 , {Υn}xx =

�2Υn

�x2
 

and {Υn}yy =
�2Υn

�y2
 . Equation (1) comprises three terms: the first denotes the overall evolution, 

the second term involving the functionF , embodies the nonlinearity term, and the third 
term, the general form of group velocity dispersion. Here, F is a real-valued algebraic func-
tion, and n serves as a parameter that extends from the NLSE to the BME. The variablesx
,y , and t are independent spatial and temporal variables, whileB,ℂ , and W are real 
quantities.

In a general context, n is greater than or equal to 1, and when n equals 1, Eq. (1) sim-
plifies to the (2 + 1)-dimensional NLSE form of the BME. This study focuses on Eq. (1), 
which exhibits distinct nonlinearity, with the assumption that n equals 1 is an essential 
NLSE form for optical fibers.

Numerous scholars have developed diverse approaches to derive precise solutions for 
nonlinear equations, utilizing approaches like the ( G�∕G,1∕G)-expansion method (Li et al. 
2010; Hossain et al. 2024b), the 

(
G

′

G
′

+G+A

)
 technique (Iqbal et al. 2023a; Mia et al. 2023), 

the finite-gap integration method (Niu and Guo 2023), the Riccati equation method 
(Yomba 2005; Elsayed and Khaled 2015), the Hirota bilinear method (Chen et al. 2023; 
Kumar et al. 2022a), Lie group method (Jafari et al. 2015; Buckwar and Luchko 1998), the 
(G�∕G)-expansion technique (Mohanty et  al. 2023; Naher and Abdullah 2012), the 
extended Jacobi elliptic function method (Zafar et al. 2020; Wen and Lü 2009), the exp-
function method (Islam et al. 2022), the exp {−�(�)} method (Khan et al. 2024; Roshid and 
Rahman 2014), the functional variable technique (Babajanov and Abdikarimov 2022; 
Bekir and San 2012), the homogeneous balance method (Wang et  al. 1996; Fan et  al. 
1998), the fractional approach (Tandel et  al. 2022), the new auxiliary equation method 
(Islam et al. 2023; Zhang 2013), the sine–Gordon expansion scheme (Kumar et al. 2022b), 

(1)i{Υn}t −
{(

�F|Υ|2) −W
}
Υn − ℂ

{
{Υn}xx + {Υn}yy

}
= 0.
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the first integral method (Taghizadeh and Mirzazadeh 2011), the tanh–function method 
(Parkes and Duffy 1996; Fan 2000), the simple equation technique (Islam et al. 2024; Nofal 
2016), the unified auxiliary equation method (Ali et  al. 2023), the generalized (G�∕G)
-expansion technique (Kaur 2014), the tanh–coth method (Kumar and Pankaj 2015; 
Mamun et  al. 2022), the generalized Kudryshov method (Habib et  al. 2019; Islam et  al. 
2015), the Hirota bilinear formulation (Fokas and Lenells 2012; Abdel-Gawad and Osman 
2015) and so on.

Among various methods, the Sardar subequation method is a highly valuable analytical 
technique employed for solving NLEs (Rehman et al. 2023). This method is a particular 
case of the transformed rational function method given in Yasin et al. (2024) and is eas-
ier than this method. It hinges on representing solutions as power series, with coefficients 
determined by a single variable. The method derives these coefficients by substituting the 
series into the equation and equating coefficients of like terms. This approach has extensive 
applications in revealing analytical solutions and has been utilized by several investigators 
to uncover solutions for various NLEs (Ibrahim et al. 2023; Rezazadeh et al. 2020; Rehman 
et al. 2022; Cinar et al. 2022; Iqbal et al. 2023b). In the past, numerous researchers have 
employed various mathematical laws such as the parabolic law, Kerr law, power law, and 
Kudryashov’s quintuple power law, among others, to explore optical soliton solutions of 
BME using diverse solving techniques (Eslami and Mirzazadeh 2016; Altun et al. 2022; 
Gupta and Yadav 2023). The majority of these studies focused on revealing bright and dark 
soliton solutions. This study, however, aims to explore a wide range of soliton patterns, 
including bright solitons, dark solitons, singular solitons, king solutions, bell-shaped pat-
terns, as well as parabolic-shaped and hyperbolic-shaped patterns. As of now, there has 
been no exploration of the above-mentioned equation, which incorporates parabolic and 
power law nonlinearity, using the Sardar subequation method. The main objective of this 
work is to use the previously established techniques to obtain soliton solutions for the men-
tioned nonlinear equations. The paper is organized into the following sections: (i) Sect. 2 
provides an overview of the methodology. (ii) Sect. 3 discusses the parabolic and power 
law nonlinearity. (iii) In Sect. 4, the methodology is applied to the equations, resulting in 
the derivation of the necessary solutions. (iv) In Sect. 5, we explore dynamic representa-
tions using contour, 3D, and 2D graphs to illustrate the intriguing characteristics of various 
soliton solutions. (v) Sect. 6 contains concluding observations. (vi) Lastly, the paper end-
ing with the list of references.

2  Sardar‑subequation approach

This section provides a concise overview of the Sardar-subequation method, a highly effec-
tive technique for obtaining exact solutions to various nonlinear partial differential equa-
tions (Ibrahim et al. 2023; Rezazadeh et al. 2020; Rehman et al. 2022; Cinar et al. 2022; 
Iqbal et  al. 2023b). Facilitating this analytical journey, assume the NLEs involves three 
independent variables x, y and t which is expressed as:

(2)T
(
Υ,Υx,Υxx,Υy,Υyy,Υxy,Υt,Υtt,Υxt,………

)
= 0.
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In this framework, T  corresponds to a polynomial function that depends upon the varia-
bles compressed in Υ and Υx =

�Υ

�x
, Υy =

�Υ

�y
, Υt =

�Υ

�t
, Υxx =

�2Υ

�x2
, Υyy =

�2Υ

�y2
, Υtt =

�2Υ

�t2
, 

Υxt =
�Υ

�x�t
, Υxy =

�Υ

�x�y
 and so on.

We establish a new variable Ψ , which is governed by the following relation, in order to 
transform Eq. (2):

where � represents the wave velocity, Θ denotes the phase component, �0 stands for the 
phase constant, and �1 , �2 , and � be nonzero real values need to be determined.

Therefore, Eq.  (2) is converted into an ordinary differential equation that can be put 
together as follows using Eq. (3),

The new polynomial in this case that holds ℜ and its ordinary derivatives is called S , 
( ℜ = ℜ(Ψ),ℜ� =

dℜ

dΨ
,ℜ�� =

d2ℜ

dΨ2
,ℜ��� =

d3ℜ

dΨ3
,………).

The general solution of Eq. (4) is given by the following equation as mentioned in the 
Sardar-subequation method:

subsequent in:

where ‘′’ is called the derivative with respect to Ψ , aj,(j = 1, 2, 3,……… ,P) , ω and � are 
the arbitrary constants and here, P is defined as a balance number that needs to be figured 
out.

The solutions offered by Eq. (6) depend on the characteristics of the parameters ( ω and 
� ) and manifest in the following manner:

Scenario I. When ω > 0 but � = 0 then

where cosechh�(Ψ) =
2

heΨ−�e−Ψ
  and sechh�(Ψ) =

2

heΨ+�e−Ψ
.

Scenario II. When ω < 0 but � = 0 then

where cosech�(Ψ) =
2i

heiΨ−�e−iΨ
  and sech� (Ψ) = 2

heiΨ+�e−iΨ
.

(3)Υ(x, y, t) = eiΘℜ(Ψ), Θ = x + y + �t + �0 and Ψ = �1x + �2y + �t

(4)S
(
ℜ,ℜ�,ℜ��,ℜ���,………

)
= 0.

(5)ℜ(Ψ) =

P∑
j=0

ajH
j(Ψ),

(6)H
�(Ψ) =

√
H

4(Ψ) + �H2(Ψ) + �,

(7)H
±
1
(Ψ) = ±

√
h��cosechh�

�√
�Ψ

�
,

(8)H
±
2
(Ψ) = ±

√
−h��sechh�

�√
�Ψ

�
,

(9)H
±
3
(Ψ) = ±

√
−h��cosech�

�√
−�Ψ

�
,

(10)H
±
4
(Ψ) = ±

√
−h��sech�

�√
−�Ψ

�
,
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Scenario III. When ω < 0 but � = �2

4
 then

where tanhh� (Ψ) = heΨ−�e−Ψ

heΨ+�e−Ψ
  and cothh�(Ψ) =

heΨ+�e−Ψ

heΨ−�e−Ψ
.

Scenario IV. When ω > 0 but � = �2

4
 then

where tanh�(Ψ) = −i
heiΨ−�e−iΨ

heiΨ+�e−iΨ
  and coth�(Ψ) = i

heiΨ+�e−iΨ

heiΨ−�e−iΨ
.

Next, we advance to the subsequent stages to derive exact solutions for the NLEs:
Stage 1: The homogeneous balance method is applied in order to determine the bal-

ance number P. Using this strategy, the equation’s highest-order derivative term and 
highest-degree nonlinear term are balanced.

Stage 2: The left side of Eq.  (4) is converted into a polynomial that contains the 
terms H by changing the value of P in Eq. (5) and then adding that modified equation 
into Eq.  (4) and using Eq.  (6). When terms with matching powers inside the poly-
nomial have their coefficients set to 0, an algebraic system of equations involving aj , 
� , and other terms is established. The more details of this technique are given in the 

(11)H
±
5
(Ψ) = ±

√
−
�

2
tanhh�

(√
−
�

2
Ψ

)
,

(12)H
±
6
(Ψ) = ±

√
−
�

2
cothh�

(√
−
�

2
Ψ

)
,

(13)H
±
7
(Ψ) = ±

�
−
�

2

�
tanhh�

�√
−2�Ψ

�
± i

√
h�sechh�

�√
−2�Ψ

��
,

(14)H
±
8
(Ψ) = ±

�
−
�

2

�
cothh�

�√
−2�Ψ

�
±
√
h�cosechh�

�√
−2�Ψ

��
,

(15)H
±
9
(Ψ) = ±

√
−
�

8

{
tanhh�

(√
−
�

8
Ψ

)
+ cothh�

(√
−
�

8
Ψ

)}
,

(16)H
±
10
(Ψ) = ±

√
�

2
tanh�

(√
�

2
Ψ

)
,

(17)H
±
11
(Ψ) = ±

√
�

2
coth�

(√
�

2
Ψ

)
,

(18)H
±
12
(Ψ) = ±

�
�

2

�
tanh�

�√
2�Ψ

�
±
√
h�sech�

�√
2�Ψ

��
,

(19)H
±
13
(Ψ) = ±

�
�

2

�
coth�

�√
2�Ψ

�
±
√
h�cosechh�

�√
2�Ψ

��
,

(20)H
±
14
(Ψ) = ±

√
�

8

{
tanh�

(√
�

8
Ψ

)
+ coth�

(√
�

8
Ψ

)}
,
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references (Ibrahim et al. 2023; Rezazadeh et al. 2020; Rehman et al. 2022; Cinar et al. 
2022; Iqbal et al. 2023b).

3  Application of nonlinearities law

In this portion, we examined Eq.  (1) by employing both Parabolic law nonlinearity and 
Power law nonlinearity.

3.1  Parabolic law

To explore Eq. (1) with Parabolic law nonlinearity, specifically when F(Π) = B1Π + B2Π
2 , 

the NLSE corresponding to Eq. (1) assumes the following form (Zhou et al. 2016; Biswas 
2004):

Upon substituting Eq.  (3) into Eq.  (21) and organizing the resulting expression, we 
derive the following equations from the imaginary and real components:

As ℜ(Ψ) is non-zero and possesses second-order derivatives, Eq. (22) yields the follow-
ing constraint on the velocity:

Thus, Eq.  (23) represents the NODE (Nonlinear Ordinary Differential Equation) form 
of Eq. (21) with Parabolic law nonlinearity, subject to the constraint specified in Eq. (24).

3.2  Power law

To investigate Eq. (1) with power law nonlinearity, particularly when F(Π) = Πn , the NLSE 
associated with Eq. (1) takes the following form (Zhou et al. 2016; Biswas 2004):

Under this circumstance, for stability, it is necessary that 0 < n < 2 (Zhou et al. 2016). 
Upon substituting Eq. (3) into Eq. (25) and arranging the resulting expression, the follow-
ing equations are obtained:

As ℜ(Ψ) is non-zero and possesses second-order derivatives, Eq. (26) yields the follow-
ing constraint on the velocity:

(21)i{Υ}t −
{(

�1|Υ|2
)
+
(
�2|Υ|4

)
−W

}
Υ − ℂ

{
{Υ}xx + {Υ}yy

}
= 0.

(22)
(
�1 + �2

)
(� − 2ℂ)ℜ�(Ψ) = 0,

(23)and
(
W − �1 + 2ℂ

)
ℜ(Ψ) − �1(ℜ(Ψ))3 − �2(ℜ(Ψ))5 − ℂ

(
�2
1
+ �2

2

)
ℜ

��(Ψ) = 0.

(24)� = 2
(
�1 + �2

)
ℂ.

(25)i{Υ}t −
{(

�|Υ|2n) −W
}
Υ − ℂ

{
{Υ}xx + {Υ}yy

}
= 0.

(26)
(
�1 + �2

)
(� − 2ℂ)ℜ�(Ψ) = 0,

(27)and
(
−�(ℜ(Ψ))2n +W − �1 + 2ℂ

)
ℜ(Ψ) − ℂ

(
�2
1
+ �2

2

)
ℜ

��(Ψ) = 0.
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Thus, Eq. (27) represents the NODE form of Eq. (25) with power law nonlinearity, sub-
ject to the constraint specified in Eq. (28).

4  Method’s application

Here, we use the procedure described in Sect. 2 to obtain the optical soliton solution for 
Eq. (1):

4.1  Parabolic law

Considering Eq. (5), (6), and (23) collectively, and employing the balancing principle, we 
get the balance number P = 1∕2 , so it is essential to establish the following relationship:

Reorganizing Eq. (23) in accordance with Eq. (29) yields the following equation:

Reapplying the balance principle and acquiring P = 1 , so that, the solution takes on the 
following structure:

In this equation, the constants a0 and a1 are coefficients that need to be figured out. 
When applying the discussed methodology, the resulting coefficients are as follows:

Utilizing Eqs. (3), (5), (29), (31), and (32), the solutions for Eq.  (1) are derived as 
follows:

Scenario I. When ω > 0 but � = 0 then

(28)� = 2
(
�1 + �2

)
ℂ.

(29)ℜ(Ψ) = X(Ψ)
1

2

(30)
4
{
W − �1 + 2ℂ − �1X(Ψ) − �2(X(Ψ))

2
}
(X(Ψ))2

+ ℂ
(
�2
1
+ �2

2

)(
X

�(Ψ)
)2

− 2ℂ
(
�2
1
+ �2

2

)
X(Ψ)X��(Ψ) = 0.

(31)X(Ψ) = a0 + a1H(Ψ).

(32)

a0 = −
3�1

8�2
and a1 = ±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

, ω =
9�2

1
− 32�1�2 + 32W�2 + 64ℂ�2

8
�
�2
1
+ �2

2

�
ℂ�2

(33)Υ±
1
= ei(x+y+�t+�0)

⎡⎢⎢⎢⎣
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

√
h��cosechh�

�√
�Ψ

�⎤⎥⎥⎥⎦

1

2

,
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Scenario II. When ω < 0 but � = 0 then

For scenarios (scenario I and scenario II) we have Ψ = �1x + �2y + 2
(
�1 + �2

)
ℂt , 

𝛽2 < 0 and constrain condition, 15�21 + 64�2
(

2c + w − �1
)

= 0.
Scenario III. When ω < 0 but � = �2

4
 then

Scenario IV. When ω > 0 but � = �2

4
 then

(34)Υ±
2
= ei(x+y+�t+�0)

⎡
⎢⎢⎢⎣
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

√
−h��sechh�

�√
�Ψ

�⎤⎥⎥⎥⎦

1

2

,

(35)Υ±
3
= ei(x+y+�t+�0)

⎡⎢⎢⎢⎣
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

√
−h��cosech�

�√
−�Ψ

�⎤⎥⎥⎥⎦

1

2

,

(36)Υ±
4
= ei(x+y+�t+�0)

⎡⎢⎢⎢⎣
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

√
−h��sech�

�√
−�Ψ

�⎤⎥⎥⎥⎦

1

2

,

(37)Υ±
5
= ei(x+y+�t+�0)

⎡⎢⎢⎢⎣
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

�
−
�

2
tanhh�

��
−
�

2
Ψ

�⎤⎥⎥⎥⎦

1

2

,

(38)Υ±
6
= ei(x+y+�t+�0)

⎡⎢⎢⎢⎣
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

�
−
�

2
cothh�

��
−
�

2
Ψ

�⎤⎥⎥⎥⎦

1

2

,

(39)Υ±
7 = ei(x+y+�t+�0)

⎛

⎜

⎜

⎜

⎝

−
3�1
8�2

±

√

3
√

�21ℂ + �22ℂ

2
√

−�2

[√

−�
2

{

tanhh�
(
√

−2�Ψ
)

± i
√

h�sechh�
(
√

−2�Ψ
)}

])

1
2

,

(40)Υ±
8 = ei(x+y+�t+�0)

⎛

⎜

⎜

⎜

⎝

−
3�1
8�2

±

√

3
√

�21ℂ + �22ℂ

2
√

−�2

[√

−�
2

{

cothh�
(
√

−2�Ψ
)

±
√

h�cosechh�
(
√

−2�Ψ
)}

]

⎞

⎟

⎟

⎟

⎠

1
2

,

(41)

Υ±
9
= ei(x+y+�t+�0)

⎛
⎜⎜⎜⎝
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

��
−
�

8

�
tanhh�

��
−
�

8
Ψ

�
+ cothh�

��
−
�

8
Ψ

���⎞⎟⎟⎟⎠

1

2

,
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For scenarios (scenario III and scenario IV) we have Ψ = �1x + �2y + 2
(

�1 + �2
)

ℂt , 𝛽2 < 0 
and constrain condition, 3�2

1
+ 16�2

(
2c + w − �1

)
= 0.

4.2  Power law

Considering Eqs. (5), (6), and (27) collectively, and employing the balancing principle we 
obtain P = 1∕n , therefore, the following relation can be defined:

So, Eq. (27) transforms into the following form:

Once again applying the balance principle and obtaining P = 1 , the solution assumes 
the following structure:

Now, the constants a0 and a1 are coefficients that need to be figured out. When applying the 
discussed method, the resulting coefficients are as follows:

(42)Υ±
10

= ei(x+y+�t+�0)

⎧
⎪⎨⎪⎩
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

�
�

2
tanh�

��
�

2
Ψ

�⎫⎪⎬⎪⎭

1

2

,

(43)Υ±
11

= ei(x+y+�t+�0)

⎧
⎪⎨⎪⎩
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

�
�

2
coth�

��
�

2
Ψ

�⎫
⎪⎬⎪⎭

1

2

,

(44)Υ±
12 = ei(x+y+�t+�0)

⎧

⎪

⎨

⎪

⎩

−
3�1
8�2

±

√

3
√

�21ℂ + �22ℂ

2
√

−�2

[√

�
2

{

tanh�
(
√

2�Ψ
)

±
√

h�sech�
(
√

2�Ψ
)}

]

⎫

⎪

⎬

⎪

⎭

1
2

,

(45)

Υ±
13

= ei(x+y+�t+�0)

⎧
⎪⎨⎪⎩
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

��
�

2

�
coth�

�√
2�Ψ

�
±
√
h� cos echh�

�√
2�Ψ

���⎫⎪⎬⎪⎭

1

2

,

(46)

Υ±
14

= ei(x+y+�t+�0)

⎧⎪⎨⎪⎩
−
3�1

8�2
±

√
3

�
�2
1
ℂ + �2

2
ℂ

2
√
−�2

��
�

8

�
tanh�

��
�

8
Ψ

�
+ coth�

��
�

8
Ψ

���⎫⎪⎬⎪⎭

1

2

.

(47)ℜ(Ψ) = X(Ψ)
1

n

(48)

(
W − �1 + 2ℂ

)
n2(X(Ψ))2 − �n2(X(Ψ))4

+ ℂ
(
�2
1
+ �2

2

)
(n − 1)

(
X

�(Ψ)
)2

− nℂ
(
�2
1
+ �2

2

)
X(Ψ)X��(Ψ) = 0.

(49)X(Ψ) = a0 + a1H(Ψ).
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Operating Eqs. (3), (5), (47), (49) and (50), the solutions for Eq. (1) are obtained as follows:
Scenario I. When ω > 0 but � = 0 then

Scenario II. When ω < 0 but � = 0 then

Scenario III. When ω < 0 but � = 0 then

(50)a0 = 0, and a1 = ±

√
2

�
�2
1
ℂ + �2

2
ℂ

√
−�

where ω =
−�1 +W + 2ℂ

�2
1
ℂ + �2

2
ℂ

(51)Υ±
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= ei(x+y+�t+�0)
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⎢⎢⎢⎣
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√
2

�
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2
ℂ

√
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√
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�√
�Ψ
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1∕n

,

(52)Υ±
16

= ei(x+y+�t+�0)

⎡⎢⎢⎢⎣
±

√
2

�
�2
1
ℂ + �2

2
ℂ

√
−�

√
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�Ψ
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1

n

,

(53)Υ±
17

= ei(x+y+�t+�0)
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±

√
2

�
�2
1
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2
ℂ

√
−�

√
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−�Ψ

�⎤⎥⎥⎥⎦
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n

,

(54)Υ±
18

= ei(x+y+�t+�0)
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√
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(55)Υ±
19

= ei(x+y+�t+�0)
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(56)Υ±
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= ei(x+y+�t+�0)
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(57)
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Scenario IV. When ω > 0 but � = �2

4
 then

For scenarios (scenario I, scenario II, scenario III, and scenario IV) we have, 
Ψ = �1x + �2y + 2

(
�1 + �2

)
ℂt , n = 1, 𝛽2 < 0.

Remark: We checked all extracted new solutions in our article by back substitution to 
the original PDEs via the Mathematica package program. We confirmed that all results are 
valid solutions of the Biswas–Milovic equation for both power and parabolic law.

(58)

Υ±
22

= ei(x+y+�t+�0)
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1
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5  Graphs and physical interpretations

Using the advanced mathematical computing program Mathematica, we were able to 
unravel the complex graphical patterns that the BME with power law nonlinearity and the 
BME with parabolic law nonlinearity displayed. We used a wide range of graphic aids in 
our presentation, including contour plots, 2D graphical displays, and 3D renderings. We 
were able to acquire a thorough grasp of the graphical behavior of these NLEs and shed 
light on their subtleties over a large range of parameter values for each relevant variable.

For each scenario, we chose four representative solution sets in order to keep things 
concise and clear (BME with parabolic law nonlinearity and BME with power law nonlin-
earity) from our extensive results for visual representation. For simplicity, we standardized 
only four graphs, including 3D, 2D, and contour plots out of 14 equations for each case. 
The relevant figure captions contain the specific constants related to each graph. By chang-
ing the parameter t in 2D graphs, we were able to integrate several solutions into a single 
figure.

Fig. 1  Graphical representations of Eq.  (34) for 
ℂ = 0.05,� = 2.6, �1 = 1.1, �2 = 0.1h = −0.3, l = 0.1, �1 = 0.1 and �2 = 0.2 : a A 3D representation of 
bell-shape soliton b A 2D representation of bell-shape soliton and c Contour representation of bell-shape 
soliton
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5.1  Visualization of the BME with parabolic law nonlinearity

Figure 1 derived from Eq.  (34); this figure effectively illustrates a bell-shaped wave pat-
terns soliton solution. Here in (a) 3D visualization of the bell-shaped wave patterns soliton, 
(b) 2D plot illustrating variations over time, and (c) a contour representation of the bell-
shaped wave patterns soliton. The advantages of bell-shaped soliton solutions in optical 
physics encompass their smooth energy distribution, mitigated dispersion effects, suitabil-
ity for pulse compression, association with nonlinear effects, waveform stability, precision 
in imaging, relevance in optical signal processing, predictable interactions, and diminished 
intensity fluctuations. These attributes render bell-shaped solitons invaluable in a myriad of 
optical applications and technologies.

Figure 2, resulting from the application of Eq.  (36), aptly demonstrates the solution’s 
parabolic shape. In a, a 3D visualization, b a 2D display showcasing variations of time, and 
c contour plot. In the realm of optical physics, these solutions characterized by parabolic 
profiles offer a versatile and valuable range of possibilities.

They can be utilized for various technological advancements and applications in optics, 
encompassing optical fiber design, pulse compression, and the customization of spatial and 
temporal characteristics within optical fields, among other uses.

Figure 3, obtained through the utilization of Eq. (37), prominently showcases the dis-
tinctive soliton characterized by a kink shaped. In panel (a), a 3D representation, (b) offers 

Fig. 2  Graphical representations of Eq.  (36) for 
ℂ = 0.06,� = −0.1, �1 = .01, �2 = −1.09h = 0.3, l = 0.1, �1 = 0.1 and �2 = 0.01 : a 3D parabolic represen-
tation b 2D parabolic representation and c Contour parabolic representation
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a 2D representation and (c) exhibits a contour plot. The advantages of these kink solitons 
in optical physics would be rooted in their stability during propagation, predictable interac-
tion properties, energy localization capabilities, and versatile applicability to various opti-
cal communication and signal processing applications.

Figure 4, obtained through the utilization of Eq. (45), illustrates singular soliton solu-
tions characterized by a distinctive single-soliton structure: (a), a 3D singular representa-
tion, (b) provides a 2D plot, and (c) showcases a singular contour representation. Singu-
lar solitons in optics, as exemplified in Fig. 4, offer advantages in pulse shaping, optical 
switching, waveguide design, exploration of nonlinear optical effects, precision optics, 
wavefront control, optical amplification, and optical imaging. The unique characteris-
tics of singular solitons make them valuable tools in a variety of optical applications and 
technologies.

5.2  The Graphical representation of the BME with power law nonlinearity

Figure  5, obtained through the utilization of Eq.  (52), vividly showcases dynamic solu-
tions characterized by bright soliton. In (a), 3D representation, (b) offer 2D view of soliton, 
and (c) displays a contour representation. This graphical representation enables us to 
clearly identify the inherent periodic behavior within the bell-shaped wave patterns soliton 

Fig. 3  Graphical representations of Eq.  (37) for 
ℂ = 0.41,� = −5.25, �1 = 1.1, �2 = −0.9h = 0.3, l = 0.1, �1 = 0.1 and �2 = 0.2 : a 3D kink shaped repre-
sentation b 2D kink shaped representation and c Contour representation
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solutions of the BME with parabolic law nonlinearity. The observation of bright soliton 
behavior is particularly significant as it reflects a delicate balance between nonlinear and 
dispersive effects, which inherently influence the focusing and spreading characteristics of 
the pulse.

Figure  6, obtained through the utilization of Eq.  (53), prominently features soliton 
solutions characterized by a hyperbolic pattern with a regular singularity. In (a), 3D 
representation, (b) offers a 2D presentation and (c) displays a contour representation. 
The advantages of hyperbolic-shaped soliton solutions in optical physics, as illustrated 
in Fig. 6, encompass their ability to localize energy, provide propagation stability, asso-
ciate with nonlinear effects, find applications in optical fiber design, exhibit predictable 
interactions with other solitons, offer precision in imaging, demonstrate suitability for 
optical signal processing, show reduced sensitivity to perturbations, and prove effective 
in pulse compression. These features establish hyperbolic-shaped solitons as valuable 
components in a range of optical applications and technologies.

Figure 7 displays distinctive dark soliton solutions with a specific periodicity derived 
from Eq. (57). The 3D representation in (a) showcases their unique characteristics, while 
(b) offers a 2D view and (c), a contour representation further illustrates these soliton 

Fig. 4  Graphical representations of Eq.  (45) for 
ℂ = 0.05,� = 5.5, �1 = 0.1, �2 = −0.1h = 0.3, l = 0.1, �1 = 0.1 and �2 = 0.2 : a 3D singular representation 
of soliton b 2D singular representation of soliton and c Contour singular representation of soliton
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solutions. Dark solitons provide advantages like energy localization, association with 
specific nonlinear effects, propagation stability, applications in optical fiber design, con-
trolled interaction with other solitons, suitability for optical switching, waveform stabil-
ity, precision in imaging, and effectiveness in pulse compression. These features under-
score the significance of dark solitons in diverse optical applications and technologies.

Figure  8, based on Eq.  (63), reveals unique uniform singular soliton patterns. In (a), 
3D representation showcases their characteristics, (b) provides a 2D view of temporal pat-
terns, and (c) displays a contour representation. These solitons offer advantages like energy 
localization, propagation stability, predictable interactions, precision in optical switching, 
applications in waveguide design, exploration of nonlinear optical effects, imaging preci-
sion, reduced intensity fluctuations, and suitability for optical signal processing in optical 
physics.

Fig. 5  Graphical representations of Eq.  (52) for 
ℂ = 0.5,� = 0.44, � = −0.1, h = −3.3, l = 0.1, n = 1, �1 = 0.81 and �2 = 0.4 : a 3D representation of bright 
soliton b 2D representation of bright soliton and c Contour bright representation of soliton
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Fig. 6  Graphical representations of Eq.  (53) for 
ℂ = 0.5,� = −0.5, � = −3.1, h = 0.3, l = 0.1, n = 1, �1 = −0.1 and �2 = 0.1 : a 3D representation of hyper-
bolic solution b 2D representation of hyperbolic solution and c Contour representation of the hyperbolic 
solution
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Fig. 7  Graphical representations of Eq. (57) for ℂ = 0.1,� = −0.7, � = 0.1, h = −0.3, l = 1, n = 1, �1 = 0.6 
and �2 = 0.1 : a 3D dark representation of soliton b 2D dark representation of soliton and c Contour dark 
representation of soliton



New optical soliton solutions to the Biswas–Milovic equations…

1 3

Page 19 of 23 1163

Fig. 8  Graphical representations of Eq.  (63) for 
ℂ = 0.01,� = 0.5, � = −0.09, h = 0.3, l = 0.1, n = 1, �1 = 0.1 and �2 = −5.2 : a A 3D representation of uni-
form singular soliton b A 2D representation of uniform singular soliton and c Contour representation of 
uniform singular soliton
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6  Conclusion

We applied the Sardar-subequation method, yielding numerous accurate optical soliton 
solutions for both parabolic and power law nonlinearities of BME. We used an analyti-
cal approach to generate several types of nonlinear wave patterns inside these nonlinear-
ities, and different exact solutions in rational, hyperbolic, and trigonometric forms were 
revealed. Preciseness was guaranteed by rigorous validation using Mathematica soft-
ware, and dynamic visual representations showed various patterns of soliton solutions, 
such as bell-shaped, parabolic-shaped, hyperbolic-shaped, and dark, bright, and singu-
lar soliton solutions. These optical soliton solutions offered advantages such as energy 
localization, propagation stability, predictable interactions, precision in optical switch-
ing, applications in waveguide design, exploration of nonlinear optical effects, imaging 
precision, reduced intensity fluctuations, and suitability for optical signal processing in 
optical physics. Our study’s demonstration of the flexibility of the Sardar subequation 
approach allowed us to investigate a wide range of optical soliton solutions. Crucially, 
in comparison to other methods, the optical soliton solutions obtained using this tech-
nology demonstrated its effectiveness, dependability, and ease of use. We hope that our 
current study will have a significant influence on contemporary optical phenomena.

Acknowledgements The authors would like to acknowledge Deanship of Graduate Studies and Scientific 
Research, Taif University for funding this work.

Author contributions M.N.H., K.E-R., F.A. and M.K. wrote the main manuscript text and W-X. M. and 
M.M.M. prepared all figures and supervised also. All authors reviewed the manuscript.

Funding Not applicable.

Data availability All data generated or analyzed during this study are included in this article.

Declarations 

Conflict of interest The authors have not disclosed any competing interests.

Ethical approval I hereby declare that this manuscript is the result of my independent creation under the 
reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achieve-
ments that have been published or written by other individuals or groups.

References

Abdel-Gawad, H.I., Osman, M.: On shallow water waves in a medium with time-dependent dispersion and 
nonlinearity coefficients. J. Adv. Res. 6, 593–599 (2015)

Ali, K.K., Tarla, S., Ali, M.R., Yusuf, A., Yilmazer, R.: Consistent solitons in the plasma and optical fiber 
for complex Hirota-dynamical model. Results Phys. 47, 106393 (2023)

Altun, S., Ozisik, M., Secer, A., Bayram, M.: Optical solitons for Biswas–Milovic equation using the new 
Kudryashov’s scheme. Optik Int J Light Elextron Opt 270, 170045 (2022)

Ananna, S.N., An, T., Asaduzzaman, M., Miah, M.M.: Solitary wave structures of a family of 3D fractional 
WBBM equation via the tanh–coth approach. Partial Differ. Equations Appl. Math. 5, 100237 (2022)

Babajanov, B., Abdikarimov, F.: The application of the functional variable method for solving the loaded 
non-linear evaluation equations. Front. Appl. Math. Stat. 8, 1–9 (2022)

Bekir, A., San, S.: The functional variable method to some complex nonlinear evolution equations. J. Mod. 
Math. Front. Sept 1, 5–9 (2012)



New optical soliton solutions to the Biswas–Milovic equations…

1 3

Page 21 of 23 1163

Biswas, A.: Quasi-stationary optical solitons with dual-power law nonlinearity. Opt. Commun. 235, 183–
194 (2004)

Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the lie group 
of scaling transformations. J. Math. Anal. Appl. 227, 81–97 (1998)

Chen, W., Wang, Y., Tian, L.: Lump solution and interaction solutions to the fourth-order extended 
(2 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Commun. Theor. Phys. 75, 105003 
(2023)

Cinar, M., Secer, A., Ozisik, M., Bayram, M.: Derivation of optical solitons of dimensionless Fokas–Lenells 
equation with perturbation term using Sardar sub-equation method. Opt. Quantum Electron. 54, 1–13 
(2022)

Elsayed, M.E.Z., Khaled, A.E.A.: The generalized projective Riccati equations method and its applications 
for solving two nonlinear PDEs describing microtubules. Int. J. Phys. Sci. 10, 391–402 (2015)

Eslami, M., Mirzazadeh, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power 
law nonlinearities. Nonlinear Dyn. 83, 731–738 (2016)

Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–
218 (2000)

Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. Sect A Gen. At. Solid State 
Phys. 246, 403–406 (1998)

Fokas, A.S., Lenells, J.: The unified method: I nonlinearizable problems on the half-line. J. Phys. A Math. 
Theor. 45(19), 195201 (2012)

Gupta, R.K., Yadav, V.: On weakly nonlinear electron-acoustic waves in the fluid ions, bifurcation analysis, 
generalized symmetries and series solution propagated via Biswas–Milovic equation. Opt Quantum 
Electron (2023). https:// doi. org/ 10. 1007/ s11082- 023- 04925-3

Habib, M.A., Ali, H.M.S., Miah, M.M., Akbar, M.A.: The generalized Kudryashov method for new closed 
form traveling wave solutions to some NLEEs. AIMS Math. 4, 896–909 (2019)

Hossain, M.N., Miah, M.M., Hamid, A.G., Osman, M.S.: Discovering new abundant optical solutions for 
the resonant nonlinear Schrödinger equation using an analytical technique. Opt. Quantum Electron. 
(2024). https:// doi. org/ 10. 1007/ s11082- 024- 06351-5

Hossain, M.N., Miah, M.M., Duraihem, F.Z., Rehman, S.: Stability, modulation instability, and analytical 
study of the confirmable time fractional Westervelt equation and the Wazwaz Kaur Boussinesq equa-
tion. Opt. Quantum Electron. 56, 1–29 (2024a)

Ibrahim, S., Ashir, A.M., Sabawi, Y.A., Baleanu, D.: Realization of optical solitons from nonlinear 
Schrödinger equation using modified Sardar sub-equation technique. Opt. Quantum Electron. 55, 1–15 
(2023)

Iqbal, M.A., Miah, M.M., Rasid, M.M., Alshehri, H.M., Osman, M.S.: An investigation of two integro-
differential KP hierarchy equations to find out closed form solitons in mathematical physics. Arab. J. 
Basic Appl. Sci. 30, 535–545 (2023a)

Iqbal, I., Rehman, H.U., Mirzazadeh, M., Hashemi, M.S.: Retrieval of optical solitons for nonlinear models 
with Kudryashov’s quintuple power law and dual-form nonlocal nonlinearity. Opt. Quantum Electron. 
55, 1–13 (2023b)

Islam, S., Khan, K., Arnous, A.H.: Generalized Kudryashov method for solving some. New Trends 
Math. Sci. 57, 46–57 (2015)

Islam, S.M.R., Khan, S., Arafat, S.M.Y., Akbar, M.A.: Diverse analytical wave solutions of plasma phys-
ics and water wave equations. Results Phys. 40, 105834 (2022)

Islam, S.M.R., Arafat, S.M.Y., Wang, H.: Abundant closed-form wave solutions to the simplified modi-
fied Camassa–Holm equation. J. Ocean Eng. Sci. 8, 238–245 (2023)

Islam, Z., et al.: Stability and spin solitonic dynamics of the HFSC model: effects of neighboring inter-
actions and crystal field anisotropy parameters. Opt. Quantum Electron. 56, 1–20 (2024)

Jafari, H., Kadkhoda, N., Baleanu, D.: Fractional Lie group method of the time-fractional Boussinesq 
equation. Nonlinear Dyn. 81, 1569–1574 (2015)

Kaur, L.: Generalized (G′/G) -expansion method for generalized fifth order KdV equation with time-
dependent coefficients. Math. Sci. Lett. 3, 255–261 (2014)

Khan, M.A.U., Akram, G., Sadaf, M.: Dynamics of novel exact soliton solutions of concatenation model 
using efective techniques. Opt. Quantum Electron. 56, 385 (2024)

Kumar, A., Pankaj, R.D.: Tanh–coth scheme for traveling wave solutions for nonlinear wave interaction 
model. J. Egypt. Math. Soc. 23, 282–285 (2015)

Kumar, D., Nuruzzaman, M., Paul, G.C., Hoque, A.: Novel localized waves and interaction solutions for 
a dimensionally reduced (2 + 1)-dimensional Boussinesq equation from N-soliton solutions. Non-
linear Dyn. 107, 2717–2743 (2022a)

https://doi.org/10.1007/s11082-023-04925-3
https://doi.org/10.1007/s11082-024-06351-5


 M. N. Hossain et al.

1 3

1163 Page 22 of 23

Kumar, D., Paul, G.C., Seadawy, A.R., Darvishi, M.T.: A variety of novel closed-form soliton solu-
tions to the family of Boussinesq-like equations with different types. J. Ocean Eng. Sci. 7, 543–554 
(2022b)

Li, L.X., Li, E.Q., Wang, M.L.: The (G′/G, 1/G)-expansion method and its application to travelling wave 
solutions of the Zakharov equations. Appl. Math. 25, 454–462 (2010)

Liu, J.G., Eslami, M., Rezazadeh, H., Mirzazadeh, M.: Rational solutions and lump solutions to a non-
isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation. Nonlinear Dyn. 
95, 1027–1033 (2019)

Mia, R., Mamun Miah, M., Osman, M.S.: A new implementation of a novel analytical method for find-
ing the analytical solutions of the (2 + 1)-dimensional KP-BBM equation. Heliyon 9, e15690 (2023)

Mirzazadeh, M.: Topological and non-topological soliton solutions of Hamiltonian amplitude equation 
by He’s semi-inverse method and ansatz approach. J. Egypt. Math. Soc. 23, 292–296 (2015)

Mohanty, S.K., Kravchenko, O.V., Deka, M.K., Dev, A.N., Churikov, D.V.: The exact solutions of the 
2 + 1–dimensional Kadomtsev–Petviashvili equation with variable coefficients by extended general-
ized (G ′/G)-expansion method. J. King Saud. Univ. Sci. 35, 102358 (2023)

Naher, H., Abdullah, F.A.: The basic (G′/G)-expansion method for the fourth order Boussinesq equation. 
Appl. Math. 03, 1144–1152 (2012)

Niu, J.-X., Guo, R.: The zero-phase solution and rarefaction wave structures for the higher-order Chen–
Lee–Liu equation. Appl. Math. Lett. 140, 108568 (2023)

Nofal, T.A.: Simple equation method for nonlinear partial differential equations and its applications. J. 
Egypt. Math. Soc. 24, 204–209 (2016)

Ozdemir, N.: Optical solitons for the Biswas–Milovic equation with anti-cubic law nonlinearity in the 
presence of spatio-temporal dispersion. Phys. Scr. 98(8), 058229 (2023)

Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to non-
linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)

Rahman, M.A.: The exp (−Φ (η))-expansion method with application in the (1 + 1)-dimensional classi-
cal Boussinesq equations. Results Phys. 4, 150–5 (2014)

Rasid, M.M., et  al.: Further advanced investigation of the complex Hirota-dynamical model to extract 
soliton solutions. Mod. Phys. Lett. B 2450074, 1–18 (2023)

Rehman, H.U., Iqbal, I., Subhi Aiadi, S., Mlaiki, N., Saleem, M.S.: Soliton Solutions of Klein–Fock–
Gordon Equation Using Sardar Subequation Method. Mathematics 10(18), 1–10 (2022)

Rehman, H.U., Habib, A., Ali, K., Awan, A.U.: Study of Langmuir waves for Zakharov equation using 
Sardar sub-equation method. Int. J. Nonlinear Anal. Appl. 14, 9–18 (2023)

Rezazadeh, H., Inc, M., Baleanu, D.: New solitary wave solutions for variants of (3 + 1)-dimensional 
Wazwaz–Benjamin–Bona–Mahony Equations. Front. Phys. 8, 1–11 (2020)

Shaikh, T.S., et al.: Acoustic wave structures for the confirmable time-fractional Westervelt equation in 
ultrasound imaging. Results Phys. 49, 106494 (2023)

Taghizadeh, N., Mirzazadeh, M.: The first integral method to some complex nonlinear partial differential 
equations. J. Comput. Appl. Math. 235, 4871–4877 (2011)

Tandel, P., Patel, H., Patel, T.: Tsunami wave propagation model: a fractional approach. J. Ocean Eng. 
Sci. 7, 509–520 (2022)

Tozar, A., Tasbozan, O., Kurt, A.: Optical soliton solutions for the (1+1)-dimensional resonant nonlin-
ear Schröndinger’s equation arising in optical fibers. Opt. Quantum Electron. 53, 1–8 (2021)

Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of non-
linear equations in mathematical physics. Phys. Lett. Sect A Gen. At. Solid State Phys. 216, 67–75 
(1996)

Wen, X., Lü, D.: Extended Jacobi elliptic function expansion method and its application to nonlinear 
evolution equation. Chaos Solitons Fractals 41, 1454–1458 (2009)

Yasin, S., Khan, A., Ahmad, S., Osman, M.S.: New exact solutions of (3 + 1)-dimensional modified 
KdV–Zakharov–Kuznetsov equation by Sardar-subequation method. Opt. Quantum Electron. 56, 
1–15 (2024)

Yomba, E.: The general projective riccati equations method and exact solutions for a class of nonlinear 
partial differential equations. Chinese J. Phys. 43, 991–1003 (2005)

Zafar, A., Raheel, M., Ali, K.K., Razzaq, W.: On optical soliton solutions of new Hamiltonian amplitude 
equation via Jacobi elliptic functions. Eur. Phys. J. plus 135, 1–17 (2020)

Zhang, Z.Y.: Exact traveling wave solutions of the perturbed Klein-Gordon equation with quadratic non-
linearity in (1 + 1)-dimension, part I: without local inductance and dissipation effect. Turk. J. Phys. 
37, 259–267 (2013)

Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–
Milovic equation by extended trial equation method. Nonlinear Dyn. 84, 1883–1900 (2016)



New optical soliton solutions to the Biswas–Milovic equations…

1 3

Page 23 of 23 1163

Zou, Z., Guo, R.: The Riemann-Hilbert approach for the higher-order Gerdjikov-Ivanov equation, soliton 
interactions and position shift. Commun. Nonlinear Sci. Numer. Simul. 124, 107316 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

Authors and Affiliations

Md Nur Hossain1,2 · K. El‑Rashidy3 · Faisal Alsharif4 · Mohammad Kanan5 · 
Wen‑Xiu Ma6,7,8 · M. Mamun Miah9,10

 * Wen-Xiu Ma 
 mawx@cas.usf.edu

 * M. Mamun Miah 
 mamun0954@gmail.com

1 Department of Mathematics, Dhaka University of Engineering and Technology, Gazipur 1707, 
Bangladesh

2 Department of Civil Engineering, Graduate School of Engineering, Osaka University, 
Suita, Osaka, Japan

3 Technology and Science Department, Ranyah University College, Taif University, Taif, 
Saudi Arabia

4 Department of Mathematics, College of Science, Taibah University, Al-Madinah Al-Munawarah, 
Saudi Arabia

5 Department of Industrial Engineering, College of Engineering, University of Business 
and Technology, 21448 Jeddah, Saudi Arabia

6 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
7 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, 

USA
8 Material Science Innovation and Modelling, North-West University, Mafikeng Campus, Private 

Bag X2046, Mmabatho 2735, South Africa
9 Department of Mathematics, Khulna University of Engineering and Technology, Khulna 9203, 

Bangladesh
10 Division of Mathematical and Physical Sciences, Kanazawa University, 

Kakuma, Kanazawa 920-1192, Japan


	New optical soliton solutions to the Biswas–Milovic equations with power law and parabolic law nonlinearity using the Sardar-subequation method
	Abstract
	1 Introduction
	2 Sardar-subequation approach
	3 Application of nonlinearities law
	3.1 Parabolic law
	3.2 Power law

	4 Method’s application
	4.1 Parabolic law
	4.2 Power law

	5 Graphs and physical interpretations
	5.1 Visualization of the BME with parabolic law nonlinearity
	5.2 The Graphical representation of the BME with power law nonlinearity

	6 Conclusion
	Acknowledgements 
	References




