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Abstract

Highly important is a three-dimensional nonlinear partial differential equation because for
many physical systems, one can, subject to suitable idealizations, formulate a differential
equation that describes how the system changes in time. Thus, this article comprehensively
reveals the investigation carried out on a (3+1)-dimensional generalized fifth-order
Zakharov—Kuznetsov equation with power-law as well as dual power-law nonlinearities
analytically, where the fifth-order term involved is regarded as a dispersion perturbation
term. We utilize the well-celebrated Noether’s theorem to comprehensively construct con-
served currents of the underlying equation. A detailed Lie group analysis of the under-
studied model consisting of power-law nonlinearities is further performed. This involves
performing reductions of the underlying models using their Lie point symmetries. In con-
sequence, various invariants are found. In addition, the equation reduces to diverse ordinary
differential equations using its point symmetries and consequently diverse solutions of
interest were achieved. Moreover, we derive some solitary wave solutions by invoking the
newly introduced logistic function technique for some particular cases of the equation under
consideration. In consequence, we achieve some exponential function solutions. In addition,
the physical meaning of the results is put on the front burner by revealing the wave
dynamics of these solutions via graphical depictions. Finally, the significance of the robust
and detailed findings in the work are further corroborated with various real-world
applications.

Keywords A (3+1)-D generalized fifth-order Zakharov—Kuznetsov - Lie point symmetries
Exact solutions - Soliton solutions - Logistic function technique - Conserved currents

1 Introduction

The examination of solitary wave solutions in exact structure to nonlinear partial differential
equations (NLNPDEQ) plays an active and highly pivotal role in investigating nonlinear
physical occurrences (phenomena). These equations (i.e. NLNPDEQs) remain the subject of
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much research. This is due to their unquestionable role in attempting to model natural and
man-made relationships between physical quantities. In recent times, significant inroads
have been made in coming up with algorithms for handling NLNPDEQs, with much credit
due to the advancement of computers and their computational power. Nevertheless, great
minds have had to lay the theoretical foundations upon which these technologies are built.

Lately, many researchers, who have a keen interest in the nonlinear physical phenomena,
delve into examining exact solutions of NLNPDEQ’s due to their relevance in analyzing the
outcome of any given model. Therefore, it is germane that research into closed-form
solutions to NLNPDEQ’s serves a very crucial purpose in observing certain physical cir-
cumstances. Besides, the diversity of solutions of NLNPDEQ’s occupies an essential
position in a variety of areas of sciences inclusive of optical fibers, chemical physics,
geochemistry, biology, hydrodynamics, chemical kinematics, meteorology, heat flow,
plasma physics, together with electromagnetic theory. Given the aforementioned and for
emphasis, having realized that sizeable scientists have contemplated nonlinear science as the
most outstanding borderline for fundamental cognition of nature, we present some pertinent
models that include a 3D generalized nonlinear potential Yu-Toda-Sasa-Fukuyama equation
in Physics alongside Engineering, recently investigated by the authors in Adeyemo et al.
(2023). Moreover, the authors in Adeyemo et al. (2022) examined another generalized
NLNPDEQs called advection—diffusion equation with power law nonlinearity in fluid
mechanics. This generalized equation characterized buoyancy-propelled plume movement
embedded in a medium that is bent on nature. Further to that, a generalized structure of
Korteweg-de Vries-Zakharov—Kuznetsov model in the paper (Khalique and Adeyemo 2020)
was investigated. The dilution of warm isentropic fluid alongside cold static framework
species together with hot isothermal, applicable in fluid dynamics, was recounted via the use
of the model. Besides, an investigation in Du et al. (2020) was carried out on the modified as
well as generalized Zakharov—Kuznetsov model, delineating the ion-acoustic meandering
solitary waves resident in a magneto-plasma and possessive of electron-positron-ion
observable in an autochthonous universe. This model was utilized in representing waves in
the structure of dust-magneto, ion, together with dust-ion acoustics in laboratory dusty
plasmas. Additionally, the vector bright solitons, alongside their various interaction attri-
butes related to the coupled Fokas-Lenells system (Zhang et al. 2020) were studied in the
given reference. The femto-second optical pulses embedded in a double-refractive optical
fiber, modeled into an NLNPDEQs, were further investigated. Furthermore, the Boussinesq-
Burgers-type system recounting shallow water waves and also emerging near ocean beaches
and lakes was given attention in the paper (Gao et al. 2020). We can continue with the list
but we mention a few. See more in Adeyemo et al. (2022), Adeyemo and Khalique (2023a),
Adeyemo and Khalique (2023b), Al Khawajaa et al. (2019), Adeyemo et al. (2022),
Wazwaz (2017), Adeyemo and Khalique (2023), Ablowitz and Clarkson (1991), Adeyemo
(2024), Jarad et al. (2022), Khater et al. (2021), Marquez et al. (2023), Raza et al. (2024),
Khalique et al. (2024), Adeyemo et al. (2024), Pillay and Mason (2023), Mubai and Mason
(2022), Kopcasiz et al. (2022), Kopcasiz and Yasar (2023), Zahran et al. (2024) and Rabie
et al. (2024).

Now, having established the fact that no general technique in achieving various exact
travelling wave results of NLNPDEQs has been found, mathematicians and physicists came
up with some sound, effective, and efficient techniques lately so that the seemingly nagging
problem could be nipped in the bud. Take, for example, Sophus Lie (1842—1899) with his
quintessential work on Lie Algebras (Ovsiannikov 1982; Olver 1993), which is essentially a
unified approach for the treatment of a wide class of differential equations (DEs). More
recent methods of solving DEs include Hirota’s bilinear method (Li et al. 2019), power
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series solution method (Feng et al. 2017), simplest equation method (Yu et al. 2016),
Darboux transformation (Zhang et al. 2020), Kudryashov’s technique (Kudryashov and
Loguinova 2008), just to mention a few. Some others include bifurcation technique (Zhang
and Khalique 2018), Painlevé expansion (Weiss et al. 1985), homotopy perturbation tech-
nique (Chun and Sakthivel 2010), tanh-coth approach (Wazwaz 2007), extended homoclinic
test approach (Darvishi and Najafi 2011), Cole-Hopf transformation technique (Salas and
Gomez 2010), Adomian decomposition approach (Wazwaz 2002), Backlund transformation
(Gu 1990), Lie symmetry analysis (Ovsiannikov 1982; Olver 1993), F-expansion technique
(Zhou et al. 2003), rational expansion technique (Zeng and Wang 2009), tan-cot technique
(Jawad et al. 2014), extended simplest equation approach (Kudryashov and Loguinova
2008), Kudryashov’s technique (Kudryashov 2005), Hirota technique (Hirota 2004), Dar-
boux transformation (Matveev and Salle 1991), tanh-function technique (Wazwaz 2005), the
(%) -expansion technique (Wang et al. 2005), sine-Gordon equation expansion technique
(Chen and Yan 2005), generalized unified technique (Osman 2019), exponential function
technique (He and Wu 2006), the list continues. Since the inception of Kadomtsev and
Petviashvili’s hierarchy of equations a little more than half a century ago, dozens of research
papers have emerged, each exploring an aspect of this rich domain of equations, see for
example, Kuo and Ma (2020); Wazwaz (2012); Date et al. (1981); Ma and Fan (2011); Ma
(2015); Zhao and Han (2017); Simbanefayi and Khalique (2020).

The usual basic Zakharov—Kuznetsov (ZK) model, furnished as Zakharov and Kuznetsov
(1974),

b+ Db+ V2, =0, (L.1)

where variable ¢ = ¢(¢,x) instituted by Kuznetsov and his counterpart Zakharov, came to
light in the first place. The model (1.1) delineates the forward movement of the decrepitly
nonlinear plasma-containing-acoustic-ion waves possessing hot plutonic electrons as well as
cold ions with the attendant involvement of a dissimilar magnetic field tending towards x-
direction. Underlying model (1.1) also surfaced in areas like optical fibre, geochemistry,
alongside physics in solid states Yan and Liu (2006). In Shivamoggi (1989), the author
outlined a discourse with regard to the analytical characteristics of ZK model (1.1). Besides,
in Nawaz et al. (2013), the authors instituted significant solutions to a version referred to as
ZK(3, 3, 3) equation presented as

b+ (), +2() gy +2(07), = O, (1.2)

where there is an attendance of dispersion property that are fully nonlinear from the
homotopy analytical viewpoint.
Moreover, another model, 3-D ZK equation presented as Moleleki et al. (2017)

(/)t +p1¢¢x +p2¢xxx +p3¢xyy+p4¢xzz = 07 (13)

contains the nonzero constant parameters p;, p,, p3 and ps. Equation (1.3) has been
investigated in the literature by a handful of researchers. For example, the authors in
Moleleki et al. (2017) achieve some analytic results to (1.3) via the application of the Jacobi
elliptic function (JEF) together with Kudryashov’s techniques. They went a step further to
construct various forms of low-order conserved vectors for the model by invoking the
multiplier technique. In addition, in Kumar and Kumar (2019), the authors gained a group of
closed-form solutions to the 3-D ZK model (1.3) which in their own case, called the model
an extended version of ZK. The solutions they found include kink wave, lump-type soliton,
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explicit Weierstrass Zeta function, travelling wave, quasi-periodic-soliton, single soliton,
alongside solitary wave solutions through the engagement of the invariance of (1.3). On the
exploration of Lie symmetry transformations, they also produced various invariant solutions
to the model (1.3). Moreover, in Magalakwe and Khalique (2019), diverse conserved cur-
rent of 3-D ZK (1.3) were derived by the authors via the application of the classical Noether
theorem.

Further to the above, the authors in Islam et al. (2014) considered a modified version
(MZKeQ) of (1.3) that reads

¢t + q1¢2¢x + q2¢)ooc + q3(¢xzz + ¢xyy) = 0’ (14)

where ¢, q2, g3 serve as real constants. A large number of exact travelling wave outcomes
of the model were computed. These results consist of solitary waves occasioned by
enhanced (%) -expansion technique. Not only that, in Tariq and Seadawy (2019), Tariq and
Seadway examined the MZKeQ (1.4) with the authors invoking the auxiliary equation
technique, thereby securing analytical outcomes of the model under consideration. Besides,
in Seadawy (2016), the author affirmed the problem derivation of copious ion-acoustic
waves that are frailly nonlinear embedded in plasma-induced magnetic electron-positron
comprising equal hot-cool components present in the MZKeQ (1.4). Not only that,
implementation of the extended direct algebraic (EDA) as well as fractional direct algebraic
(FDA) technique were taken into account by him to find solutions to (1.4). This conse-
quently affords him the space to gain outcomes that are of solitary wave in nature to the
model. Moreover, in Lu et al. (2017), Lu et al. sought solutions to (1.4), formatted as elliptic
function and new exact solitary wave. These were made possible by the researchers via the
involvement of modified extended EDA technique, thereby occasioning various kinds of
solitons, namely; anti-bell soliton, periodic bell soliton, bright as well as dark solitons. In
addition to that, solitary wave that is of bright-dark structure of periodic shape was attained.
The secured solutions possess a variety of significant applications which can largely be
found in physics as well as other areas of applied science.

Now, in Elwakil et al. (2011), Elwakil et al. introduced a fifth-order dispersion pertur-
bation term to the (1.3) which reads

U, + ayuuy + %um + % (thxyy + ez ) + Elheey = 0, (1.5)
which is a fifth-order three-dimensional ZK equation (3D-FoZKeQ) with ay, .. ., a3 repre-
senting real constants and ¢ a small parameter. We notice that if the parameter ¢ = 0, with
p1 =ai, pp = ay/2 and p; = py = a3 /2, we recover (1.3). The authors in their research
engaged the reductive perturbation technique to derive (1.5). They investigated how con-
sequential the frequency of cold electron cyclotron, outer magnetic field, the obliqueness as
well as the energetic demographic characteristics could be on solitary waves which are
higher-ordered, that brought about some changes in both the roughly-calculated electric
field and soliton energy of the electrostatic format for a system of a plasma that is colli-
sionlessly magnetized which comprises a non-thermal hot electrons as well as cold electron
fluid. These obey stationary ions along with a non-thermal distribution. Moreover, it was
revealed that solitons possessive of both positive as well as negative density perturbations
could surface. In Kumar and Kumar (2020), some solutions of (1.5) were gained using Lie
symmetries. Moreover, the authors in Ali et al. (2019) achieved nonlocal conservation laws
and six Lie symmetries of (1.5). Instead of utilizing “group-invariant solution,” they
engaged wave transformation in lessening 3D-FoZKeQ (1.5) into nonlinear ordinary
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differential equations (NLNODEs). The authors generated analytic results via the applica-
tion of modified Kudryashov alongside the sine-cosine techniques. Akin to that, multiplier
together with the new conservation theorem given by Ibragimov (Ibragimov 2007) were
used for computing the local-conservation laws related to the 3D-FoZKeQ (1.5).

In our research work, we investigate a more generalized structure of (1.5) given as the
(341)-dimensional fifth-order generalized Zakharov—Kuznetsov (3D-gnFoZKe) equations
with power-law and dual power-law nonlinearities presented as

U + au’uy + by + Cliyyy + ditye; + €Uy = 0, (1.6)
u; + a(hu" + ki, + b, + Cllyyy + Atz + €Uy = 0, (1.7)

where parameters a, b, ¢, d, e, k and h, nonzero real valued constants with n > 0. We state
categorically here for the purpose of emphasis and to preserve the novelty of the research
work that (1.5) is just a particular case of (1.6), that is when n = 1, and so we are con-
sidering a more generalized version and as such more generalized results as can be observed
subsequently. Besides, for the first time we obtain various nonlocal and local conservation
laws of the equation with n-power and 2n-power laws with nonlinearities using the classical
Noether’s theorem. This research fills the gap in the literature regarding the work done on
the model so far.

In this study, explicit solutions of the 3D-gnFoZKe (1.6) and (1.7) were abundantly
provided. The paper is outlined in the following structure: Sect. 1 introduces the topic while
Sect. 2 focuses on constructing diverse conserved currents of the equations using the well-
known Noether’s theorem. Section 3 explains the procedural steps involved in performing
the Lie group analysis of 3D-gnFoZKe (1.6) and (1.7) along with their symmetry reduc-
tions. In Sect. 4, we utilize Kudryashov’s logistic function approach to derive closed-form
results of the equations for specific cases. Additionally, Sect. 5 presents the solutions
graphically to comprehend the dynamics and physical implications of the results. Finally,
concluding remarks are given.

2 Conserved currents of 3D-gnFoZKe (1.6) and (1.7)
This section exhibits conserved currents’ computations for 3D-gnFoZKe (1.6) and (1.7).
The focal point is Lagrangian construction, first, for the equations by invoking the Noether

theorem (Noether 1918) to secure their conserved vectors. We explicate a brief outline of
this technique and some other essential definitions.

2.1 Preliminary information

We observe Gth-order of system Q> 1 partial differential equations (PDEQs) presented as

0 ={0(x,¥,0¥,...,09%),...,0%,x,¥,0¥,...,09%)} =0, (2.8)
where variables x = (xl7 ...,x") alongside ¢, connote the independent variables, n>1
together-with ¥ = (‘I—’l, ..., ") standing in for the dependent variables in the case where

m>1. In addition, 0¥ = (¥,, W, ..., ¥Yw) appears for the partial derivatives of ¥
regarding the presented ¢, x, whereas oW k>2 appears for the kth-order partial derivatives.
Not only that, an observation is made to the space of all locally smooth outcomes related to
W(t,x) of the system represented as E.
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Conservation law A local conservation law of related to any furnished system of PDEQ
(2.8) is explicated as a local continuity relation

(D,-C*+D,C")|_ =0, (2.9)

1

holding for the system on the entire domain of solution space = with differential operators
(Dy,Dy), on ¢t and x denoting the total derivatives of involved variables accordingly and
Div=D,-, the spatial divergence connoting the vector dot product. Moreover,
C'(t,x,¥,0¥,...,0'¥Y) stands for the conserved density whereas C*=
{Cl(t,x7 Y, 0¥,...,0"Y),...,C"(¢,x,¥,0Y,.. ., OV‘P)} denotes the spatial flux. There-
fore, the relation ®* = (C', C*), with components C' and C*, refers to the conserved
current.

Lagrangian A PDEQ system explicated in (2.8) is said to be locally variational if one
could express it via the Euler-Lagrange relations

Ey(L) =0=0, (2.10)
where ¢ connoting for some differential function explicated as £(z,x, ¥, 0¥, ..., 0"\P), the
transpose, referred to as a Lagrangian. Thus, Ey is explicated as

0 e g Dxi-l-Dth ¢

Ey=——=—_D — _ _—
L T o, o,

T (2.11)
Next, let us observe a Lemma;
Lemma 2.1 © = Ey(L)" holds for some defined Lagrangian L(t,x,¥,0¥,...,0"¥) iff

5,0 =510 (2.12)

for all differential functions v(¢,x) also holds.

One could regain a Lagrangian from defined system © = (@', .., ®Q) through the general
homotopy integral relation explicated as

1
.cz/ LY, di (2.13)
0

Y=Y

Remark 2.1 One could add a complete divergence to Lagrangian £ in (2.13) in a bid to
achieve an equivalent Lagrangian that attains the lowest possible differential order, and that

is, G/2.

A variational symmetry also called divergence symmetry, for a local variational principle
explicated in (2.10), is a generator with its prolongation fulfilling the invariance criterion

PrV(L) = E'D,L+ & DL+ DY + D, - ¥ (2.14)

where i =2,3,4, (with V = £'0/0r + £'0/0x) for some differential vector function ¥*
along-side differential scalar function ¥’.
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2.2 Conservation laws’ construction using the Noether theorem

We thoroughly explain the Noether theorem (Noether 1918) to derive the conserved currents
of 3D-gnFoZKe (1.6) with both n-power and 2n-power-law nonlinearities. In the first
instance, the observation that (1.6) admits no Lagrangian in its current state is made.
Nonetheless, invoking the transformation u = v, could interestingly yield a six-order
structure of Eq. (1.6) which readily has a Lagrangian. Thus, in the light of this, (1.6)
becomes:

Vie + @ViVy F DV + CVigy + @Vizz + €Vxr = 0. (2.15)

Therefore, the 3D-gnFoZKe (1.6) is variational locally under the previously mentioned
transformation. Having been sure of the fact that a Lagrangian (£) is repossessed for (2.15),
equivalent differential order in a minimal format for £ thus explicates as

1 avit? 1 1 1 1,
L= —E ViVy —m+§ bex +§ CVxxVyy +§ dv)ocvzz —5 €Vives (216)

we give a Lemma.

Lemma 2.2 The 3D-gnFoZKe (1.6) admits a functional for the Euler-Lagrange equation
demonstrated as

o0 o0 o0 [o ]
J(v) = / / / / L(t,X,,2, Ve, Vi, Vaxs Virx, Yy, Vzz )dtdxdydz (2.17)
o Jo Jo Jo ’
with Lagrange’s conforming function enucleated as
1 a V;+2

L= Loy v 1
T2 T iy Dt2) " 2

1 1 1
bvﬁx + 3 €Vl + 3 d Vv, — 3 eV)ch- (2.18)

We emphasize clearly here that one can verify that Lagrangian (2.16) satisfies the Euler—
Lagrange equation (2.11). We establish variational symmetry V by invoking the symmetry
invariance criterion as delineated, that is

PrOVL 4 LIDi(E") 4+ Do(&) 4+ Dy(&) + D.(¢Y)] = Dy(B') + D.(B) + Dy(B") + D.(B),
(2.19)

where the second extension of Q, Pr?Q of Q, can be repossessed via (2.14) with functions
(gauge) B', B*, B, together with B* dependent on (¢, x, y, z, ). Monomials’ separation in the
expanded structure of (2.19) purveys sixty-one systems of linear PDEQs, viz;
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611, = Oa é;lc = 07 5}1; = 0: é; = 07 6\1;\; = 07 ﬁ‘l,y = 07 511;2 = Oa 6\2; = 07
1 3 3 3 3 4 w4
éxx =0, év =0, ix =0, fvv =0, évx =0, 7, =0, év =0, S = 0,
1 3 v4 23 4 4 4
Ny = 07 évx = 07 éxx = 05 Sy = 07 ¢ = Oa 5{ = 07 évx = 07 Coxr = 07

&=0, B.=0, B=0, &,=0, & =0, & =0 & =0,

G =0, &L =0, My =0, &, =0, &, =0, &, =0, & =0,
& +BL=0, 2b& +c& =0, 2b& +dE =0, n,+2B,=0, &, =0,
My =28, =0, n,, =28, =0, 2n,,— &, =0, 1, -3, =0,

My =280 =0, 2b&) +dE =0, 268, + &), =0, &, =0,

G =M =0, & +dE. =0, (n+1)& +B,=0, & =0,

Mow = Eeer Bi— 1, — & — &2 =0, 2by, + e,y +dn,, =0,

2b¢), +cé), +deL =0, 20, — (&, +E) =0, Bi+ B+ B =0,
2dn,, — 2b&L, — ¢, —dEL =0, 2, —3E + & + &+ & - Bl =0,
G+&-¢&-8-22,+B =0, &+E-¢ & —2,+B,=0,
g4é+8-58+2m,—B =0, 4by,, —2bE, — & —dE. =0,
(n+ D& —(n+2)n,—& —& - +B=0, &, =0,

2en,, — 268, — &, —d& = 0.

Solving the above systems of PDEQs, one gains the results explicated as

d
=0, &=Cs, & =0Cz+C, 54——ZCzy+C4, n=F(),

1
_ 2 | 3 / 4 _ 2
B = —/(Fy +Fz)dx—§F v+ F(t,y,z), B =F(t,x,y,2),

B :Fl(x7y7z)v B :F3(t7xay7z)'

Aftermath of the computation finally gives the following six Noether symmetries together

with their associate gauge functions, that is,

Vl:% B'=0, B'=0, B =0, B =0,
Vo=l B =0, B=0 B =0 F=0
ox
Viel B0 B =0 B =0 F=0
oy
a !
Vi=—, B'=0, B'=0, B'=0, B =0,
0z
d o x
VSZCZ—fdy_7 B :07 B :07 By:07 BZZO’
dy 0z

0 1
Vi =F()5 B'=0, B'=—F()v, B'=0 B =0,

where arbitrary function F(¢) satisfies F’(¢) = 0. Using the relation (Sarlet 2010)
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' oL k oL n . oL
R (Gt A0 (= oM (et VT g
™+ (& —yhd) (61//2@ ; '/(a[//:uk )) + 2 (n —aut )alj/i‘kx/

thus, conserved vectors corresponding to the six Noether symmetries are respectively cal-
culated as

1, a , 1 1 1
L i T K L B T T
a ! b n c
lec :n+lvt‘/;z+ +l’l+ lvtvxxx+n+_ lvtvxxx_bvxxvtx+2(n_+ l)vtvxyy
+ cn 1 + d + dn +1 )
ViV — = VW + Vi Ve + ViV + SV
2+ 1) 7 2T T (1) T T2 1) TE T2

e en
- 7dethx + Vi Vyxxxx + n ViVixoor = €V Vix + €VxuxVixx

2 n+1 +1
64 zlcvv —lcv v,
1= 5 Vivey = 5 VeV,
C = zdv,vm - Edvxxvlz;
=7
G = %vﬁ“ T l)a(n -y VARES aq Vet nb%vmv)C - Ebvix
c cn d dn
+ mvxvxyy + 2(}1 T 1) VaVay + 2(}1 T 1) ViVxzz + 2(117_'_1)‘&\’)(3
e en s n
+ mvxmxvx + m e Eevﬂx — eV Vyxxx T mv,vx
1 1
+ m"tvx —Vivn
o] 1
2 = 5 CViVog = 5 Vs
G = Edvxvxxz - Edexszé
Cl = 1\/ v
3 2 XYy
ngiv it +Lv» v +—nv v, — bvyv +;vv
n+177 n+17 T T 2m+1) T
cn 1 d dn
+ m VyVyyy — ECVnyxy + m VyVyzz + m VyVxzz
e en
- Edvzzvxy + PR + PR + Vi Vxy
n 1
B T T DR
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1 a 1 1 1
== —7\/’“ v dvev: — = eve
3T T i Do)y T e 5 O

1

_Evtvxv

1
G = Edvyvm - Edvxxvyz;

(@ n e
C4 o n lvzvx + "t lvxxxvz + "t lvxxxvz VixVaz + 2(n T 1) VzVxyy

cn 1 n d n dn
T VoVay — OV < VoV T <
2n+1) “ 27E T 2(n4+1) T 2(n+ 1)

e en
—=d VzzVxz + Vyxxxx Vz + VyxxxxVz + EVxxxVxxz — €VxxxxVxz

2 n+1 n+1

vZ V.XZZ

n
mrnEt

1 1
5 CVzVxxy — E

z a W 2 1 1 !
G=- I L L L L

ViVz,

1
2(n+1)
G =

VaxVyzs
1
E ViVx;

ct=

5 CZVVy — = dyvzvx,
ac ad 1 1
ZVyV,ZJrl n—+ 1sz n+1 + Edzyvzzvxz + ECdyVyyvxz

d? d’n n cd n cdn
a7 WV — 7 WeVazz 57\ EVyVazz PY2EEEEY
2+ )7 T 2 1)) 2m+ )= T 2 1)

1 1, cd cdn
— ECdZVZZny — 5 C ZVnyXy — myvzvx)y — myvzvxyy

ZVyVxzz

T 02 + czn
< ZV,V. <
2+ 1) 2+ 1)

bdn 4 b b
+1yzxxx n+1

ZVyVyy + DAy Vv — WV Vrx

bd
+1

ZVy Vyxx + n ZVyVxxx — dey VixzVaxr C€ZVyxyVaxx

n+1
de den
my Vz Voo — n+ 1
cen d dn
mZVnyxxm - myvzvt - m
cn

2(n+1)

+ deyvxzv)oooc - bCZnyVxx — CeZVxyVxxxx — — 7 VVzVxouxx

ce
+ ZVyVxxxxx + YvzVi

n+1

zZv vy + ZVyVy,

c
METCESY

Cl = e v"*zflczvv + 1bczv2 flcezvz + 1cdvv
5 (Vl+ )( +2) 2 tVx xx 2 XXX zVxx

—

— czzvy Vi

1 1
+ 2 cdzv vy, + 5 cdyvyVix — 7 cdyv Vi + 3
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ad 1 1 1 1
Ci=————— W't —dyv, bdvz —deyV? . — ~cdvyvy,
ST ) T T P T A Ty ety
1 1 1
—3 cdzvy Ve — 3 cdyVy,Vex — Edzyvzvxxz + 3 cdzvyVyyz;
1
C;,-v = 7§F(t)vx,
aF (1) b bn c
Cp=— el — DVeew — ——F () — 5—— F (1
F n+1* n+ 1 ()Vxxx 1 ()vm 2(I’l+1) ()VX)W
cn d dn e
——F(t x;_iFt xzz_iFt xzz — F(t XXXXX
21y Ve 2(n+1) (Ovee = 0 gy F v =g FO
en 1
— F(t ——F(t F(t
pr 1! Wvee =50 +1) (v T2+ 1) (v
1
Ch= fECF(t)vmy,
1

Hence, retrograding to the original variables, we have the conserved currents accordingly as

1 1 1 a
Cl = b+~ d + = duy [ dy — ———2 2
173 ”x+26”x/”wx+2 ”/” Tt D +2)"

1 2

XX’

d nd
n+l n+1 d
(n+l 2+1)" ”ZZ+2(n+1)””>/”’x
i nc n c n b + nb / d
u Uyy u ugdx
20+ ) T 2 ) e ™ !
e 1
+ (n+1 Urpr + +1”xxxx+m/uth) /utdx

2
n 1 1
+m (/ utdx> —zdut/uzzdx — Ecut / uwdx

— busu, — ey,

;1 1
Cl = Ecuxy/u,dx—icux/u,ydx,

1 1
Ci = Eduxz/u,dx—idux/uzzdﬂ

1
Cézzuz,
a a
cr = n+2 n+2 -
2T 1Y T hrner" ™
+— T LTS N
2+ ) T 2 ) T T
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n nb n nd n ) L e
Ulhyy Uz €U — Uxlyxy Uldyxxx
n+1 2(n+1) 2 n+1

+£uu +¥u/udx+Lu/udx
n+1 T2+ 1) T2+ 1) !

1
— Eu / udx,

1 1
c = 3 Clltly = 3 Cltzlty,

1
C; = = duuy, — Eduxuz;

1
C, = Eu/uydx,
"o a n+1 d I’ld
G 77n+1u /uydx+72(n+ l)uzz/uydx+72(n+ 1)uzz/uydx
1 1 c
_Eduy/uzzdx—icuy/uyydx—muyy/uydx

cn b
+ muyy / uydx — buxuy + ml/{xx / uydx

nb e
+ P Upe | UydX + ellyllyy — lyyclly + P Upeer | Updx

en
+—n+ luwm/uyd +— /utdx/uydx
n

+1 "
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en 1
eruxxm/uzderm/u,dx/uzdx
e n
+7n+ lumr/uzdx+72(n+ 1)/u,dx/uzdx,
1 1
C zzcuxy/uzdx—icux/uyzdx,

1 a 1 1
C4 :Ebu)zc _mun+2 +§duxz/uzdx+icux/uwdx

1 1
—Eeuix—iu/u,dx;
Ct —lczu udx—ldu u,dx
5 _2 'y 2 y 4 9

d 1
C3 :izu"+1 /uydxfna?yu”+1 /uzdx+§d2yuz/uzzdx

n+1
1 d? nd?
~ d z d T A/ 1\ 774 zd YRR EY 74 zd
+20yu/uwx 2(n+1)yu /u X 2(n+1)yu /u X
cd ned 1
+mzuzz / uydx—i-mzuzz / uydx—icdzuy / Uz dx

1 cd ned
— Eczzuy / Uyydx — m Vidyy / udx — m Vidyy / u,dx

2
< Zllyy, / uydx—l— ( 1)zuyy / uydx + bdyuyu,

METCESY
bd nbd
— bezucu, — Y Vikyy / udx — Y Vilyy / u.dx
bc nbc
+ quxx / uydx + mzuxx / uydx — deyiy iy,

de
+ cezuly, + deyiygu; — cezilylyyy — ? Ve | Uzdx

ned ec
i lyu{m/uzdx—i—?zumcx/uydx—l— zuxm/uydx

P PR B
n+ /u,/u,dx—i—z( +1) /u,/uydx

1 1
Ci= 2cdux/uzdx mz +2+zcdzux/uzzdx

1 1 1 1
+ 3 cdyuy / Uy-dx + Ebczuﬁ —3 cdyuy, / u.dx + Eczzuxy / uydx
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1 1
— Ecezuir + Eczu / udx,

- ad 1 1
C:= m 't — icdux / uydx — Ecdzux / uy-dx

1 " 1 1 " 1 "
_ Ecdyux / Uy, dx — Ebdyui — EdZyuxz / u,dx + 3 cdzu,, / u,dx

1 1 '
+ zdeyu)zcx + Edyu / u,dx;

Ch = —3uF (),
CL=— ﬁu"HF( ) — z(n%i])uzzF(t) - Z(nniil)uﬂF(t)
Z(nj— 1)”)yF(t) - z(nnij_l)”ny(t) - %”xxF(t)
- %umm) P (1) — e F (1)
2(n1—|—1)F(t)/u’dx_2( n_'_l)F(t)/u,dx,
Cr = %cuxyF(t),
G = — 3 ducF (1)

Construction of the conserved currents of (1.7)

Computations of the conserved vectors related to (1.7) is enunciated here. Thus, fol-
lowing the procedural steps earlier-adopted, that is, invoking the transformation # = vy, one
has

Ve +a(hv; + kvzxn)vxx + BV + gy + AVizz + Voo = 0. (2.21)

In consequence, the 3D-gnFoZKe (1.7) is consequently variational and owns a Lagrangian
(£) which commensurate with the minimal differential order given as

r 1 ahv'+? akv2rt? N 1 b2 +1
= — 3 VitVx — - = = CVxxVy
2 T ik Dn+2) @it D@nt2) 27 ey et

(2.22)

1
+ 7 d Vi V. — 3 evixx.

Just as previously engendered, one achieves six Noether symmetries (2.20) here also, and
we get different conserved currents analogous to the gained-symmetries as
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1 1 1 ah
Ct:*bz - x/ . 7d)(/ szx7771+2
173 ux+2cu Uy, x+2 u u (n+1)(n+2)u

ak w2 Lo
n+)n+2)" 2 e
o ah n+1 ak 2n+1 1
C zmu udx +2 +114 u,derzduZZ udx

1
+§cuyy/u,dx—|—buxx/u,dx—&-euxm/u,dx

+l d 2fld d ,1 d
2 udx 2 u; | uzdx zcut uy,dx

— bugy — eUglhyey + €Uy,

;1 1
G :zcuxy/u,dx—zcux/u,ydx,

1 " 1 "
i = 2duxz / udx — Edux/ U dx;
1
Cé = i u27
X = ah Z4n+2 _ ah n+2 ak 2n+2
2 n+1 (n+1)(n+2) (2n 4 1)(2n +2)
ak 1 1 1
+ muz’”z + Eduuzz + Ecuuyy — Ebui + buit,
1
+ E eu)zo( — CUxlUyxx + EUUxxxx 5
| 1
C’2 = Ecuuxy — Ecu,{uy7

1 1
G = Eduuxz — Eduxuz;

1
C =u / uydx,
X ah M k n
Cé:mu“/uy 1 2“/ vdx + = duzz/uydx
1
—Eduy / Uzdx — cu}, / u}ydx—&- cuyy / uydx

+ by, / Uydx + ety Uy, — elyeclty, — buy,

" 1
+euxxxx/uydx+§/utd)€/uydx,

1 ah 1 '
CY = —du, L dX — ————————— u't? - / d
3 2u'/u x (n+1)(n+2) +2cu} uydx

ak P IO B /
S — 7. B, - d
N E T A A R Bt

1 1
G ziduﬂ/uydx—idux/uyzdx;

1
Ci = Eu/uzdx,
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h k 1
(] :aiu’“rl /uzdx+a7u2"“/uzdx—iduz-/uzzdx
n

1 1
7§cuz/u)ydx+§du:z/uzdx+§cuw /uzdx

+ by / UzdX + Uy Uy, — €UzUyyy — DUy,

+euxxxx/uzdx+%/ugdx/uzdx,

;1 1
Cﬁ :Ecux},/uzdxficux/uyzdx,

o1 ah 1 ‘ 1
= Ebu)zC Sy W' 4 Eduxz / u.dx + 5 €t / Uyydx
ak iz 1 o 1
——— —= - dx;
Qn+ Hn+2)" 2w Tt | e

1 1
Ci = Eczu/uvdxfiduy/uzdx,

h dh " 1
= %Zu"“ /uydx — naﬁyu"“ / w-dx + idzyuz / -.dx

1 h dh
-0—Ecdyuz/uyyabc—O—Lzuz”Jrl /uydx— 2Z+ 1yuz”+1 /uzdx

2n+1
1 1, 1 :
+ 3 cdzu. | uydx — Ed Yy, | udx — 5 cdzuy, | udx

- %czzuy / uyydx — %cdyuj,y / u-dx + %czzuyy / u,dx
+ bdyuu: — bezuuy, — byt / udx + bczuy, / uydx
— deyuyiy; + ceziiyily, + deyuyu, — edyu,mx/ udx
+ eCZuyey / Uydx — cezlylye, — %dy / . u, / u-dx

1
+§cz/u,/uydx;
1

Cy = Ecdux / u-dx — m

h 1 "
ac 2?2 Jrica’zu)r / udx

1 " 1 1 1
+ 5 cdyuy / uy-dx + 5 bczui -3 cdyuy, / u.dx + 3 czzuxy / uy,dx

ack iz 1 , 1 /
4R 2 __ d
(2n+1)(2n+2)zu 5 ezt zczu. udx,
- adh . 1 1
Ci= m ' — Ecdux / uydx — Ecdzux / uy-dx
1 " 1 1 " 1
- Ecdyux / uyydx — Ebdyuﬁ - Edzyuxz / udx + 5 cdzu,. / uydx
adk 1 1
T et 2)”‘2 e+ Edy”/”’d”
1
C;'” = 7§uF(t)7
2 ah n+1 1 1
Cr = T L F(r) — EduzzF(t) - Ecu}yF(t) — buyF (1)
ak i 1
el F (1) i F(z) 2F(t) u,dyx,

, 1
Cr =~ EcuxyF (1),

1
Cp = 5 ducF (1),
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3 Determining equations via Lie group analysis

This part of the research, first reveals the computation of the related Lie point symmetries to
models (1.6) and (1.7), which are thereafter, utilized to compute exact solutions to the
models.

3.1 Computations of infinitesimal generators of (1.6)

Symmetry group of 3D-gnFoZKe (1.6) will be achieved via the vector field which is
formatted as

0 0 0 0
W= 51(f,x>y,z>u)§+ 6207)‘7;)/72’ u)@Jr és(taxvyazv u)§+ 54(t,x,y,z, u)&

0
+’1(fax7)427u)&a

where &, i=1,---,4 and 5 are coefficient-functions of 7, x, y, z and u. W is a Lie point
symmetry of model (1.6) if invariant criterion

PrOW [u, + auuy + by, + Cliyy + AUyzr + llrne] = 0, (3.23)

whenever u; + au"u, + buyy + iy + duy.; + ety = 0. We express that Pr® W denotes
fifth extension of W delineated as

Pr<5) =W+ Ctau, + Cxaux + CXXXauxxx + nyyauw + CxZZauxz: + +nyyaum + éxxxxxaumm

(3.24)
where the (s are defined as
G = Din) — weDi(E') — w,Di(E%) — uzDi(E) — uDy(EY),
G = Dx(n) = ueDo(&) = u,Do(&%) = uzDx(&) = uDy(&Y),
Coe = Dx({a) = esaDx(E") = iy Dx(&) = taDs (&) = e Di(EY), (3.25)
Gy = Dx(Gyy) — o Dr(E") — tyy D(&) = ey D(&) — 1y Di(E°),
Cezr = Da(Cex) = tzDi (") =y Di(6%) — D (&%) — 1z Di(EY)
Cevvere = Di(Levee) = hrreeeD(€1) = iy Da(€%) = e D(€)) — e Da(EY),
where the total differential operators are given as
D, = 0, + u,0, + uy0y, + 1,0, + - -, (3.26)

D, = ax -+ anu + uxxau,( + uxtau, 4+

Expanding equation (3.23) and splitting same over the various derivatives of u, we procure
twenty-one overdetermined system of linear PDEQs
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53:0’ 6114: P 5)1(:07 é}l;:()a 5;: 3

&=0, &=0 ¢&=0 ¢&=0 &=0,

&=0, &=0 &=0, &=0, &=0 ¢&=0,
&=0, &=0, c¢&+dZ=0 &=0, n=0.

z

Six Lie point symmetries that are secured from the solution of the system are

W—6 W—6 W—6 W—a
1_6)(" 2_6_)/7 3_627 4_617
. N (3.27)
Ws = cz —dy~.
ST T Y

Therefore 3D-gnFoZKe equation (1.6) admits a five-dimensional Lie algebra spanned by the
above vectors W),...,Ws. In the same vein, following the earlier-given procedure, we
achieve the same set of symmetries for (1.7).

Next, we utilize the obtained Lie point symmetries to reduce equations (1.6) and (1.7)
with a view to achieving possible exact solutions. Thus, we consider the theorem:

Theorem 3.1 Symmetry reductions and invariant solutions to 3D-gnFoZKe (1.6) and (1.7)
are achieved using symmetries given as: Ws, Wy + Wy, W1 4+ egWs + et Wy, W1 + coWs +
c1Wy and Wy + Wy + W3 + Wy, for arbitrary constants f3,c;,e;,i =0, 1.

3.1.1 Reductions of (1.6) using symmetry generator W; =W, + W,

The characteristic equations associated to symmetry W; = 0/0¢ + 0/0x are
dt dx dy dz du

. 3.28
1 1 0O 0 O ( )
This system of equations solves to give the invariants attained as
X=x—1t Y=y, and Z =z, where R(X,Y,Z) = u(t,x,y,z).
Using these obtained invariants transform equation (1.6) to the NLNPDE
RX - aR”RX - bRXXX - CR)(yy - arRXZZ - eR)QQ(XX =0. (329)
On solving equation (3.29) for n = 1, one obtains a solution of (1.6) as
1 1
u(t,x,y,z) = - {3360A;‘etanh2 (Al -3 \/ —d(5243¢ + 43b + A3c)z
a
+Ax[x —t] + Agy) — 16804;e tanh* (Az [x — 1] + 43y
(3.30)

_é\/—d(52A‘2‘e + 43b + Adc)z +A1)
! (110443 — 1)},

a
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where A, A, and A3 are integration constants. Also, when n = 2, we have

1 1
u(t,x,y,z) = P {—6\/ —lanBg tanh? <81 —J \/— (bB%d + Bgcd + Qo)z

1
+B, [x — 1] +B3y>} +m [ng + Bic — 40eB) (3.31)
- 2

1

5 (bB3d + Bled + Qo)}

with Qp = \/—240B3d?e2 — 10B3d2e, and integration constants Bj, B, and Bs. Further
study on (3.29) reveals that Lie point symmetries furnished as

0 0 0 0 0
—, My=—, M3=—, My=cZ——dY —

ax' Ty BT T Yy Yz
are admitted by the equation. Exploring M, one observes that it produces a trivial solution
and so on engaging M,, one discovers that it purveys invariant @ (r,s) = R(X, Y, Z), where
r =X, s = Z. Insertion of the achieved result in (3.29), attains a reduction of the equation
explicated as

M, =

©, — a@"®, — bO,,, — dO,;, — €0, = 0. (3.32)

A particular case of (3.32) for n = 1 gives the result purveyed as

u(t,x,y,z) = é {336oc§etanh2 <C2x - % \/—d(52C3e + b) Coz + cl>
— 1680C5e tanh* (sz - % \/—d(52C3e + b)Coz + C,> (3.33)
—1104Cje — 1},
where C;,i = 1,2, 3 are arbitrary constants. In the same vein when n = 2, we secure

1 1
u(t,x,y,z) = Z{ — V/—360aeC; tanh? (sz - V—bd — Q3Coz + C1> }
1
d

| (3.34)
+—— {b — 40eC3 —

—10ae

(bd + Q3)],

where Q; = /—240C3d%e? — 10d2e. Further exploration of (3.32) gives symmetries N; =
0/0r and N, = 0/0s, which we linearly combine as N = boN, + b1 N,, where real constants
by = by # 0 and furnishes invariant G(w) = @(r,s) where w = s — by /bor. Substituting
the result further reduces 3D-gnFoZKe (1.6) to a nonlinear ordinary differential equation
(NONLDE)

byG' (w) — abyG"(w)G (w) — bbb G" (w) — bydG" (w) — bteG™ (w) = 0. (3.35)
Examining Ms, gives O(r,s) = R(X,Y,Z), r = X, s = Y, which reduces (3.29) to
0, —a®"0, — bO,,, — O, — €0,y = 0. (3.36)
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Again, a particular scenario of (3.32) for n = 1 gives the result purveyed as

1 1
u(t,x,y,z) = . {3360C§etanh2 (sz — [—c(52C3e + b) Coy + C1>

1

— 1680C;etanh* <C2x ——1/—¢c(52C3e + b)Coy + C]) (3.37)
C

— 1104Cje — 1},

where C;,i = 1,2, 3 are arbitrary constants. In the same vein when n = 2, we secure

1 1
u(t,x,y,z) = —{ — —360aeC§ tanh? <C2x ——/—=bc—Q;Cy + C1> }
a c

1 1
+————|b—40eC? — = (bc+Q ]

v —10ae [ 2 C( )
where Q3 = \/—240Cjc2e? — 10c?e. Next, we investigate M = M; + M, + M; and this
gives O(r,s) = R(X,Y,Z), forr =Y — X, as well as s = Z — X, thus transforming (3.29)
to

(3.38)

0, + 0y —a0"0, —a®"O; — b0, — O, — 35O,y — dO 5 — 3505 — O
- b®sss - d ®sss - e®rrrrr - Se®rrrrs - loe®ssrrr - loe®sssrr - Se®ssxsr

— Q5555 = 0.
(3.39)
Solving the equation produces a solution of 3D-gnFoZKe (1.6) as
u(t,x,,z) = Ay + Ay tanh® (4, [t — x +y] — A\ [t +z — x| + 4o) (3.40)
+ Astanh(4, [t —x +y] — A1t +z — x] + 4o)
with arbitrary constants A4;,i = 0, 1,...,4. Furthermore, equation (3.39) admits translation

symmetries combined as 0/0r + a(0/0s, with real constant ay # 0. This eventually gives
invariant G(w) = ©(r,s) where w = s — aor. The use of the invariant further reduces (1.6)
to the NONLDE
G (W) — ayG (w) — aG"(w)G (W) + aapG" (w)G' (w) + a3bG" (w) + ajcG" (w)
—3a3bG" (w) + apdG" (w) + 3ashG" (w) — atcG" (w) — bG" (w) — dG" (w)
+ ageG"" (w) — 5dgeG"" (w) + 10ageG"" (w) — 10a3eG"" (w) 4 SaeG"" (w)
_ eG””/(W) — 0

(3.41)

Now, we consider the use of M, which gives ©(r,s) = R(X,Y,Z), where r = X, and
s = 7% +d/cY?. Now, introducing the new invariant, (3.29) under My reduces to

0, —a0®"0, —4d0O,; — bO,,, — 4dsO,; — €O,y = 0 (3.42)

from which no solution of importance could be found.
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3.1.2 Reductions of (1.6) via symmetry generator W5 =W, + e W; + e W,

In this part of the reduction process, we engage symmetry W3 = 0/0t + ¢,0/0y + ¢,0/0z.
Therefore, the corresponding invariants to the symmetry are given as

X=x, Y=y—eot, Z=z—eit, R(X,Y,Z) =u(t,x,y,z). (3.43)
Application of the obtained-outcome (3.43) provides a reduced form of (1.6) as
e‘oRy + elRZ — aR”RX - bRXXX - CR)(yy - dRXZZ - @Rw =0. (344)

Solving equation (3.29) for n = 1, one achieves a solution of (1.6) as

1 1
u(t,x,y,z) = - {336033etanh2 <31 - \/—d(snge + B3b + Bic)(z — eit)
a

+Byx + Bs [y — eot]) — 16SOB§€ tanh* <Bzx + B3 [y — eot]
(3.45)

1
(2Bl + B3+ Be) 2 — en) +B1>

1
+o [(Bm — 1104B3e — %‘ \/fd(SZB‘Z‘e + B3b + B%c))} }
2

where By, B, and Bj are integration constants. However, for n = 2, no solution of interest
could be attained. Now, invoking the Lie group analysis, we observe that (3.44) admits
translation symmetries: M; = 0/0X, M, = 0/0Y and M5 = 0/0Z. As usual, we engage M,
yields ©(r,s) = R(X,Y,Z), where r = Y and s = Z. Invoking the invariant in (3.44), one
gets e9®, + e;®; = 0, which solves to give

u(t,x,y,z) :f{(zfelt)fz—:)(yfeot)}, (3.46)

where arbitrary f'is a function depending on its argument. In the case of M3, we attain the
invariant ©(r,s) = R(X,Y,Z), where r = X and s = Z. Substituting the new relation in
(3.44) produces NLNPDE

10, —a®"0, — bO,,, —dO,;; — €O,y = 0. (3.47)

Solving (3.47) for n = 1 gives no new result and for n = 2, no interesting solution could be
achieved. Furthermore, symmetries Ny = 0/0r and N, = 0/0s, linearly combine as
N = N; — apN,, where real constants ag # 0 and furnishes invariant G(w) = O(r, s) where
w = s + agr, and this further reduces 3D-gnFoZKe (1.6) to

e1G' (w) — aayG"(w)G (w) — bayG" (w) — agdG" (w) — ayeG™" (w) = 0. (3.48)
Examining M3, one gets O(r,s) = R(X,Y,Z), r =X, s = Y, reducing (3.44) to
Oy —a®"0, — bO,,. — cO,;; — €0,,,,,. = 0, (3.49)

which purveys no new solutions of importance but admits symmetries combined linearly as
0/0r + 00/0s, 0 # 0. This gives invariant G(w) = O(r, s) where w = s — Or which when it
is substituted in (3.49) produces the fifth-order NONLDE

eoG' (W) — alG"(w)G' (w) — bO*G" (w) — 0dG" (w) — 0°eG™" (W) = 0. (3.50)
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Finally, we consider 0/0X + 0/0Y + 0/0Z, furnishing ®(r,s) = R(X,Y,Z), r =Y — X,
s = Z — X. This function eventually further transforms (1.6) to
eO®r + el®s + aG)n@r + a®n®s + b®rrr + C®rrr + 3b®rss + d®rss + 3b®rrs + C®rrs
+ b®SSS + d®SSS + e®rrrrr + 56@’7‘7‘75 + loeG)SSVrr + 106@5’&?7’7‘ + SeQSSSSV

(3.51)

Just as experienced earlier, we linearly combine the admitted symmetries of (3.51) as
0/0r + 190/0s, with real constant ¥ # 0. This eventually gives invariant G(w) = O(r,s)
where w = s — Jr. The use of the invariant further reduces (1.6) to

e1G' (w) — 9egG (W) — aG" (W) G (w) + adG" (w)G (w) + 9*bG" (w) + 9P*cG” (w)
—39°bG" (W) + 0dG" (w) + 39bG" (w) — 9*cG" (W) — bG" (W) — dG" (w)
+ 9%eG"" (W) — 59°eG"" (w) 4+ 100°eG"" (W) — 100%eG"" (W) + 509eG"" (w)
—eG""(w) = 0.
(3.52)

Next, in this research work, we reduce the dual power-law 3D-gnFoZKe (1.7) via the
attained symmetries and obtain some exact solutions of the equation.

3.1.3 Reductions of (1.7) using symmetry generator W; =W, + W,

Reducing (1.7) using symmetry W, = 0/0t + 0/0x, the related Lagrangian system solve to
give the invariants attained as

X=x—-1t Y=y, and Z =z, with R(X,Y,Z) = u(t,x,y,z).
Applying these obtained invariants transform equation (1.7) to the NLNPDE
RX - ahR"RX - akR2”RX — me — CRXYY — dRXZZ — eRXXXXX =0. (353)

In this case, we have for n = 1, a group-invariant solution of 3D-gnFoZKe (1.7) as

1 vV —10ak
u(t,x,y,z) = { - 595 +2v10C2d <ec§k - 40“%)

\/% [4@95 — 4dk(C3b + C%c)}z —2d[Cy(x — 1)

1
h [ —
X COS <2d

) - 3ec§dk} {de%\/—ake cosh? (ﬁ [ —2d[Cy(x — 1)

)

where Qs = \/ —ekCd? (k [96C§e —+ 4] + ahz) with arbitrary constants Cy, C, as well as

Cj;. In addition, for n = 2, one obtains the tan-hyperbolic complexion solution

+Csy + Cl}

+Cy+ G+ \/% [—2@95 — 4dk(C3b + Cgc)}z

(3.54)
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1/4
u(t,x,y,z) = \/ i —— (S5ah* — 96)tanh{ (‘/5{ kl (396 — 15an* 441«)}

12
3 1/4
+%z[ e (396—15ah2—54k)] )[x—t]+C2y+C1

1 1
~T0%dk <3bkl\/ e (3Q¢ — 15ah* — 54k) + 180ckC3 + Q7>z ,

(3.55)

where Qs = /2542 h* + 180akh?, Q; = 10ah® — 2Qq + 90k. Further to that, Eq. (3.53)
produces four symmetries; M, =0/0X, M, =0/0Y, M; =0/0Z,
My = cZ0/dY — dY0/0Z. Studies show that M; gives a trivial solution whereas M, and M;
do not give new solutions of interest. However, we try to examine the combination of the
three, linearly, and so we have 0/0X + 0/0Y + 0/0Z, which yields ©(r,s) = R(X, Y, Z),
r=Y —X,s =7 —X. Therefore, using the result reduces (3.53) to

O, + O, — ah®"0O, — ah®" O, — ak®”'®, — ak®*' @, — bO,,. — cO,,, — 35O,
- d®rss - 3b®rrs - C®rrs - b®sss - d®sss - e®rrrrr - Se®rrrrs - lOQ@ssrrr
- loe®ssxrr - Seessssr - e®vvwv =0.

(3.56)
Solving (3.56) produces an outcome fulfilling 3D-gnFoZKe (1.7) as
u(t,x,y,z) = Cy + Cy4tanh®(C; +t—x]—Cilz+t—x]+ Cp) (3.57)
+ Cstanh(Cy[y + ¢t —x] — Ci[z + ¢t — x] + Co)
with C;,i =0, 1,...,4 as arbitrary constants. We linearly combine translation symmetries of

(3.51) as ¢y0/0r + €,0/0s, with real constant ey = e; # 0. This eventually gives invariant
G(w) = O(r,s) where w = s — ey /er. On using the invariant, one further reduces (1.7) to

akeyG*" (w)G' (w) — ake egG*" (w)G' (w) + ahey G (w)G (w) — ahe eyG" (w)G' (w)
— ceielG" (w) + 3betey G (w) + dey G (w) — bei el G (w) — dejey G (w)
+ 10eetey G (w) — 10ee3e3 G (w) — See1eyG™" (w) + eey G (w) + bey G (w)
+ celey G" (w) — 3beieyG" (w) + SeetenG"" (w) — ee; G (w) = 0.
(3.58)

Next, we examine symmetry My which gives us R(X,Y,Z) = O(r,s), with » = X as well
as s = Z% +d/cY?. Inserting the outcome in (3.53) gives a reduction of (1.7) as

0, — ah®"®, — ak®* O, — 4dO,; — bO,,, — 4dsO,;;, — €O, = 0. (3.59)

Further investigation of NLNPDEQ (3.53) produces no solution of significance.
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3.1.4 Reductions of (1.7) via symmetry generator W5 =W, + coW5 +c; W,

Lie symmetry application using W3 = 0/0t + ¢,0/0y + ¢10/0z gives invariants
X=x, Y=y—cot, Z=z—c1t, R(X,Y,Z) = u(t,x,y,z), (3.60)
which in turn transform the 3D-gnFoZKe (1.7) with dual power-law to

cRy + iRz — ahR"Ry — akRZ"RX — bRyyx — cRyyy

(3.61)
— dRyzz — eRyxyxx = 0.

Equation (3.61) admits three translation symmetries which are M, = 0/0X, M, = 0/0Y,
and M3 = 0/0Z. On examining M;, we obtain O(r,s) = R(X,Y,Z), r =Y, s = Z. Using
the invariant in (3.44), one gets ¢)®, + ¢;®, = 0, which solves to give

u(t,x,y,z) :f{(zfclt)fz—:)(yfcot)} (3.62)

with the prevalence of arbitrary f'as a function depending on its argument. Studying M,, and
M; individually, one sees that none of them produce any new results so we contemplate
linear combination of the achieved three symmetries leading to invariant
O(r,s) =R(X,Y,Z),r=Y — X, s =Z — X. Applying the result in (3.61), yields
c0®, + ¢10, + ah®"®, + ah®" O, + ak®*'®, + ak®™' @, + b®,,, + cO,,
+ d®rss + 3b®r‘rs + C®rrs + b®sss + d®sss + e®rrrrr + Se®rrrrs + loe®ssrrr (363)

We note that equation (3.63) admits symmetries combined linearly as;
N = ¢y0/0r + €,0/0s, with real constant ey = e; # 0. This eventually gives invariant
G(w) = O(r,s) where w = s — ¢ /e r. Application of the invariant, one transforms (3.63)
to

coeye1 G (w) — c1eyG (w) + ake e} G*' (W) G (w) — akey G (w) G (w) — ahey G (w)G (w)
+ ahe1)G"(w)G (w) + ceies G (w) + 3betel G (w) + dey G (w) — bei el G (w)
— de1€)G" (W) + 10ee?e} G (w) — 10ee3ea G (w) — See1eyG™" (w) + eey G (w)
+beyG" (w) — ceteyG" (w) — 3berey G (w) + SeetenG"" (w) — ee; G (w) = 0.
(3.64)

Next, we utilize the combination of all the four symmetries which are W, W, W3, and W,
to reduce equations (1.6) and (1.7) concurrently. This will give us a more general case than
any of the other cases earlier considered.

3.1.5 Reductions using symmetry generator W = W, + W, + W5 + W,

In this segment, we involve symmetry W = W, + W, + W3 + W4 with constant value
P # 0 to reduce the 3D-gnFoZKe (1.6) alongside (1.7) to a PDEQ in three independent
variables. Thus, solving the related Lagrangian systems for symmetry W, one secures four
invariants:

ny:fa X*ﬁy:g, t—y=w, u(t7xay>z):0(fang)' (365)
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We treat 0 as new dependent variables and g, fand w as new variables that are independent,
3D-gnFoZKe (1.6) and (1.7) then transforms respectively to

0, + a0"0g + bOgge + (B 0gge + 2B0g0w + 2B0gqr + Oguny + 205

(3.66a)
+ Qgﬂf) + deg]f + eF)ggggg =0,

0, + ah0"0g + ak0?" 0y + bOggy + c(*Oggq + 2050w + 2P0er

(3.66b)
+ Oguw + 2000 + Ogpr) + dOgpr + €04gg05 = 0,

which is a NLNPDEQ in three independent variables. Investigating (3.66) further, we
managed to find a solution of (3.66a) appropriately for n = 1 as

u(t,x,y,z) = é {33603§etanh2 {Bz(z — )+ Bs(x— py) + B
+ [—1104B§e + é (1104B5ce — fcB; — cB, — Qg)} (t —y)}
— 1680B3e tanh* {Bz (z—y) + Bs(x — By) + B, (3.67)
+ [—1104B§e + % (1104B5ce — BcBs — cB, — Qg)} (t —y)}

1
+— (1104B3ce — BcBy — B, — Q) }
B3C

where Qg = \/—c(52B§e + B%d + B%b), with constants B;,i = 1,2,3 arbitrary.

Now utilization of Lie point symmetries of (3.66) is done in transforming the PDEQ to a
NLNPDEQ in two independent variables. Thus, equations (3.66a) together with (3.66b)
then yield the following three translation symmetries, viz.,

0 0 0
37 Y2*§7 YS*%

Utilizing the linear combination Y = Y| + oY, + Y3, of the generators Y, Y, and Y3, with
arbitrary constant o # 0, we reduce (3.66). Solving the related Lagrangian system for Y, we
have the following three invariants, viz.,

r=g—of, s=w-—f, 0=4¢. (3.68)

Now handling ¢ as the new dependent variable with new independent variables » and s, then
3D-gnFoZKe (1.6) as well as (1.7) are further reduced accordingly to

d)x + ad)nd)r + bd)rrr + C(ﬂzd)rrr - Zaﬁd)rrr + azd)r)'r) + d(azd)rrr
+ zad)rrs + d)rss) + e¢rrr;'r = 07

¢S + ah¢n¢r + ak¢2n¢r + bd)rrr + c(ﬁzd)n‘r - Zaﬁd)r}’r + Oczd)rrr)
+ d(a2¢rrr + ZOC(f)”.s + d)r.s‘s) + e¢rrr)‘r = 07
which are also NLNPDEQs in two independent variables. Now, invoking Lie point sym-

metries of (3.69), we then make a transformation to an ordinary differential equation
(ODEQ). Thus equations (3.69) give the following two translation symmetries, namely

Y, =

(3.69a)

(3.69b)
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0 0
= = . 3.70
Q] o and Qz s ( )

Combined form of secured translation symmetries gives Q = yQ; + ,, where o is a
constant, thus producing invariants

p=r—ys and ¢ =G, (3.71)

thus yielding a group invariant solution ¢ = G(p). Consequently, applying these invariants,
PDEQ (3.69a) is transformed into the fifth-order NONLDE

eG<5)(p) +aG"(p)G'(p) + (b + e = 20fc + oPc + oPd — 2day + yzd)G/”(p) —9G(p) =0.
(3.72)

In the same vein, the dual-powerlaw nonlinearity (1.7) becomes also

eGPp) +a(hG'(p) + kG (P)G'(p) + b+ cff’ ~2ofetole o,
+o?d = 2doy +°d) G (p) = 7G'(p) = 0 |

with p =x+ (o — B)y + (y — o)z — yt.

Next, in additions to the earlier gained solution under symmetry W, we utilize a standard
technique to achieve some solitary wave solutions of both (3.72) and (3.73) for some
particular cases of n in the equations.

4 Solitary wave solutions of (1.6) and (1.7)

This section focuses on securing the solitary wave solutions of 3D-gnFoZKe for both the
power-law (1.6) and dual power-law (1.7) for some particular cases of the equations via
Kudryashov’s logistic function technique.

4.1 Kudryashov’s logistic function technique

In our approach, we shall utilize the logistic function Q(p) introduced in Kudryashov
(2020); Dan et al. (2020) and based on the function R(p) defined by

R(p) = [aexp (oap) + qexp (—op)] ' (4.74)

to find solutions to (1.6) and (1.7). In (4.74), a, g as well as o are parameters related to
function R(p). Kudryashov’s function R(p) has the property that it satisfies

2 _ . p2 P2
R, = aR(p)(1 — xR*(p)), (4.75)
where y = 4aq and this can be proved by inserting R(p) given by
R(p) = 4al4a® exp (op) + xexp (—op)] ! (4.76)

into equation (4.75). Furthermore, (4.75) possesses the property that its even higher-ordered
derivatives can be expressed in terms of the polynomials of R. However, its odd higher-
order derivatives are polynomials of R as well as R,. The main difference between the
logistic function Q and R lies in the fact that the former fulfills either O, = 0> —1 or
0, = 0> — O and therefore all the higher-order derivatives of logistic function Q are
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necessarily polynomials only of Q. Now, we hypothesize a finite series term solution of the
form

Gp)=> 4R (p), (4.77)
j=0

where the constant parameter 4,7 = 0, ..., M needs to be determined. Furthermore, we note
that without loss of generality, we assume o = 1 to simplify our calculations.

4.1.1 Solutions of (1.6) via Kudryashov’s logistic function technique

We consider some particular cases of the power-law equation (1.6) forn =1 and n = 2 to
obtain some soliton solutions using the logistic function technique.

Case 1
We first secure the solutions of NONLDE (3.72) when n = 1 and the balancing term
M = 4. Consequently, (4.77) assumes the structure

G(p) = Ao + A1R(p) + A2R*(p) + A3R* (p) + A4R*(p). (4.78)
Reckoning (4.78) in (3.72) in conjunction with (4.75) we get the system of equations
1680 edy + ay 43 =0,
2520 yPeds + Tay AzAy = 0,
acdA; —2afcd) +oactA) —2ady ) + frcd) + dy* A4,
+ adoA; + bA, +ed, —y A, =0,
8oc?dAr — 16 fcAr + 8ac?Ay — 16 0dy Ay + 8 fPcdy + 8dy* A,
+2adoAy + ad? +8bAy +32edy — 274, =0,
120 00 y2dAy — 240 o By’ ds + 120 o 2 Ay — 240 00 ) dy Ay
+ 120 fPepPAg + 120 2dy* Ay — 720 Pedy — 6ay ArAy — 3ay A3
+ 120 by A4 + 12960 y*ed, + 4 ads = 0,
60y dAs — 120 fey’ds + 600 c® 2 As — 120 a > dy A3
+ 60 fPey’ds + 60 2dy*As — 120 Ped, — SayAiAs — 5 ay ArAs
+ 60 by*As + 4560 yPeds + T adszAy = 0,
l4aBeydr —Ta?y A + 27 0 c?dAs + 14 o ydy Ay — 7 frey A
— T ydy? A, —ayAod, — 540 fcAs + 27 0?4z — S4ady As
+ 27 ﬁchg, + 27dy2A3 +3adoAs +3ad1 Ay — Thy A, — 61 yed,
+ xyAy +27bAs + 243 eA; — 37943 — 7occzdi1 =0,
—320cydAs + 640 feydr — 320 Ay + 64 actdAs + 64y dy As
— 32 2y Ay — 32 ydy* Ay — 2ay Apdy — ay A> — 128 0 fcdy + 64 0.c? Ay
+ 64 f2cAy + 64dY° Ay + 4 adoAy + 4ad Az +2ad3 —32bydy — 512y ed,
+ 27y Ay +64bAy + 1024 edy — 4y Ay — 128 0dy Ay = 0,
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6ac?2dA, — 1207 dy A1 — 120 ferP Ay +60c? Ay —8Toc? ydA;
+62 P A +62dyP A +1T4afeyAs —8Toc? yAs+ 1 T4oydy As
—87f%cyAs — 8T ydy*As —3ayApAs —3ayA1A> +6by> A, +180 1% e,
+5aA1As+5a4,A43 —87byAs —2283 yeAs+3 yyA3 =0,
240ty dA, —48a ey’ Ar+24act P Ay — 1840c? ydAs
— 4802 dyAs+24 B2 cx? Ay +24 2 dy? Ar +368u feyAs— 1840 y Ay
+3680ydyAs— 184 cyds— 184 ydy* Ay —AayAoAs —4ay A, A3
+24by* A2+ 12007 edr +6ad,As+3ad; — 184byAs — 1264 yeds —2ayAy* +4 5y A4=0.

Employing a computer software package to secure the solutions of the ten given system of
equation, one achieves the solution

1
132 [(

A1=A4,=43=0,44 :é{420}52 [{(d+1)*—2Bc—2dy}o+Brc+dy*+b]},  (4.79)

Ao —144d—144)c* +288(Be+dy) Jo—144(fPe+dy* +b) + 137},

—51—2 [{(d+1)* —2Bc—2dy}a+fPe+dy*+b]}.

Thus, we have a corresponding general solution to the results in (4.79) as

e=

4

4a exp (p)7 (4.80)

4a’exp (p)+yexp(—p)

u(t,x,p,z)=Ao+As

where p=x+(a— f)y+(y—o)z—t.

Case 2
Now we contemplate the solution of (3.72) when n = 2 and the balancing term is M = 2.
Thus, (4.77) assumes the structure

G(p) = 4o + A1R(p) + A2R*(p). (4.81)

Invoking the expression of G(p) from (4.81) in NONLDE (3.72) in consonance with (4.75),
we gain eight system of equations which solves to give the solution

I
Ao :7\/a(yf 16e+4+/—2400% — lOey), 4, =0,
a
3y (7806+4\/724Oez - IOey>
2\/a("y—166+4\/—240e2—10ey>
1
b _768(@e— ©,)\/—24 ¢ — epV/10 + O3
12\/—2462—67»@)0{ (®1e - ©2) ’ ’

—496(a(d+ 1) + B (B —2a)c —2day + dy’ f%)ye+v2®4},

2 =

(4.82)

0= 27 (x(d + 1)@ + BB~ 20)c ~ 2day +d7 —3/12)},
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where Oy = (64e — 7)V10 + 5120€> + 496 ey — 72,
O =a(d+ 1)+ B(B—2a)c—2doy+dy* — 14]87,
©; = —51200(d + 1)c® — 5120 B (B — 20)c + 10240dory — 5120 dy? + 3207,

Oy =a(d+ 1)+ B(B—2a)c—2dy(a—y/2). Therefore, we have the associated
general solution to (4.82) as

2

da exp (p) (4.83)

4a*exp (p) + yexp (—p)

u(t,x,y,z) = Ao + 42
withp =x+ (« — By + (y — )z — yt.
4.1.2 Solutions of (1.7) via Kudryashov’s logistic function technique

In this part of the study, we consider some particular cases of dual power-law equation (1.7)
for n =1 and n = 2 to achieve some soliton solutions via the logistic function technique.

Case A
Next, we achieve the solutions of NONLDE (3.73) when n = 1 and then we use the
balancing term M = 2. Consequently, (4.77) assumes the form

G(p) = Ao + A\R(p) + A:R*(p). (4.84)

Substituting the expression of G(p) from (4.84) into NONLDE (3.73) and using (4.75), we
gain seven system of equations which solves to give the solutions

1 [ 10y%e / 12e
Ay = Os —4ak\|—=——ayh |, A1 =0, A, =64/—-10=—
0 2ak;( 5 a ak ay ’ 1 5 A2 ak’

| 2 10,7 (4.85)
D=5 o —aym | L —4KG 240 b+ O] [ =
—27(®s —ayh)[y’d = 2ady + {(cd — 2 p+ c)a + B }c] },
1
AO:E{[(_4d_4)c2+gﬁc+8yd]oc—4(c[ﬁ’2+y2d+b)}, A4, =0,
1
A2:E{IZ[{(d—l—1)c2—2ﬂc—2yd}a+c[32+“/2d+b}x}v (4.86)

_ 5yakl?
48{[(d+ e —2fc—2yda+ cf? -|—y2d+b}27

where ©5 = \/ ay? (ah2 + 96 (e + 7/24)k). Hence, we have the related general solution to
the results in (4.85) as well as (4.86), being given accordingly as

4a

2
4a? exp (p) + 7 exp (_p)] exp (), (4.87)

u(t,x,y,z) = Ao + 4> {

4a 2
4a* exp (p) + yexp (—p)

where p =x+ (o — By + (y — a)z — 2.

u(t,x,y,z) = Ao + 4> { exp (p), (4.88)
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Case B
Finally, we find the solution of NONLDE (3.73) when n =2 and then we use the
balancing term M = 1. Consequently, (4.77) assumes G(p) as

G(p) = Ay + A\R(p). (4.89)

Reckoning (4.89) in NONLDE (3.73) in conjunction with (4.75), we get a system of
equation whose solution gives

do=0, A = F /54xe+6;{yv ‘ —10eah’
oA ha 7T 3(p19e)7 (4.90)

b=2poc—duc® —oac®+2duy—cf* —p*d —e+y.

Thus, we have the general solution

4
u(t,x,y,z) = 4 [ 4

4a? exp (p) + yexp (—p)} exp (p), (4.91)

where p =x+ (0 — )y + (y — o)z — yt.
Next, we reduce both (1.6) as well as (1.7) side-by-side using symmetry Ws.

4.1.3 Reductions of (1.6) and (1.7) using symmetry generator W;

The Lagrangian system related to Ws is given as

di_ds_dy_ d=_dn

L 492
0 0 ¢ —-dy 0 (4.92)

thus producing invariants f = ¢, g = x and w = cz> + dy?. So we have a group-invariant

u=0(,gw), (4.93)

where 0 stands for an arbitrary function. Utilizing (4.93), PDEQs (1.6) and (1.7) transform
to

Or 4+ a0"0g + bOgge + 4cdWlqyny + 4cdlg, + €0ggeee = 0, (4.94a)
O + ah?0, + ak0™ 0, + b0y + 4cdwlpm, + 4cd0p, + elgggge = 0, (4.94b)

which yield the translational symmetries ¥; = 0/0f, and Y, = 0/0g.

Subcase a
So we contemplate using Y7 = 0/0f thus transforming (1.6) further to
a(bnd)r + b¢r‘rr + 4Cds¢rss + 4Cd¢rs + ed)rrrrr = 07 (4953)
ah¢n¢r + ak(/)zn(/)r + b(bl‘rr + 4Cds¢rss + 4Cd¢rs + ed)rrrrr =0. (495b)

The usual Lie symmetry process when applied to (4.95) gives Q; = 0/0r which obviously
gives a trivial solution.

Subcase b
Considering ¥, = 0/0g and taking the usual steps earlier highlighted yields ¢, (r,s) = 0,
whose solution in the case of (1.6) as well as the dual power-law (1.7) gives
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u(t,x,y,z) = H(cz’ + dy?), (4.96)

where arbitrary function H is depending on its argument.

5 Graphical depiction of solutions and discussion

This section provides the diagrammatic representation of the obtained results. The dynamics
of the solitary wave solutions are provided by choosing appropriate parameters in the
solutions, using computer software. Additionally, the solution obtained under symmetry Ws
contains an arbitrary function that can take on various mathematical functions to represent
the wave motions. Thus, we plot the solitary wave profile of the hyperbolic function
solution (3.40) in Fig. 1 with different parameter values 49 = 10, 4, =2, 4, = 10, 43 =5,
A4 = 10, within the range of —10 <y,z <10 where variables t = 2 and x = 4. Next, we
examine solution (3.46) with assumption that " = f;(Ao) + f£2(A1), where Ag = z — e and
y — ept. Letting f take a sin function and f, assuming a sech function with parameter value
ep =e; = 1, as well as z =10 in the intervals —10 <¢,y <10, we plot Fig. 2. This fur-
nishes a wave interaction between 1-soliton and periodic soliton. Moreover, we further
examine the dynamics of the solution using the assumed mathematical functions assign-
ments with a slight difference where ¢g = 0.5 and e; = 1 in the same interval as earlier
given. This consequently yields Fig. 3. Now, we consider solution (3.62) with the plotting of
Fig. 4, allocating sin function to f3 and cos function for f; in " = f3(A2) + fa(As), where
A, =z — ¢t and y — ¢t with the parameter values ¢y = ¢; = 1, together with z = 10 in the
intervals —10 <¢,y < 10. Furthermore, the wave motion of (3.62) is examined with the
same trigonometric functions and intervals but for ¢y = 0.5 and ¢; = 1. Thus, Fig. 5 is
plotted. These wave interactions showcase the interesting aspect of obtaining algebraic
solutions with arbitrary functions. Now, we turn our attention to solution (4.80) in Fig. 6
with the adequate selection of the involved parameters as: « =2, y =2, f =1, a = 50,
b=1,¢=10,d = 0.5, y = 3, using the interval of —3 <y,z <3 with variables = 3 and
x = 2. Moreover, for Fig. 7, we assign the values « = 0.2,y =12, =03,a=10,b =1,
c=40,d = 0.5, y = 30, in the interval of —3.3 <¢,x<3.3 for y = z = 1. In the case of the
solitary wave solution (4.87) allocation of values to parameters in plotting Fig. 8 is done as
k=2,h=2,0s=0,0a=2,y=1.1,=3.6,a=2,b=20,c=10,d =0.5,e=—1,
7 = 3000, using the interval of —3.2 <y, z<3.2 with variables t = —2 and x = 0.2. Fig-
ure 9 is diagrammatically depicted by using the same value allocation with —5<y,z<5
with t = —3 and x = 1.2. Moreover, we plot Fig. 10 by using the assigned values k£ = 2,
h=2, Os=0, «a=2, y=1.1, =26, a=2, b=20, c=10, d=0.5, e=—1,
7 = 3000, using the interval of —5 <y,z <5 with t = —3 and x = 1.2. Meanwhile, solitary
wave solution (4.88) is dynamically revealed via Fig. 11 by letting k =4, h = 0.2, ®5 =0,
o=2,y=11, f=36, a=2, b=20, c=10, d=0.5, e=—1, y =3000, where
—4<t,x<4 with y = —3.2 and z = 1. We experience a change in the behaviour of the
solution in Fig. 12 by using the same value-allocation with the slight change k£ = h = 2,
with —4 <y,z<4 for t = —0.2 and x = 1.2. In the case of Fig. 13 representing solution
(4.88), we do the selectionk =2, A =12,05 =0,a=2,y=1.1, =3.6,a =2, b = 20,
c=10,d =0.5,e=—1, y = 2000, where —5 <¢,x <5 with y = —1 and z = 1.02. Next,
we examine the wave behaviour of solitary wave solution (4.91) by plotting Fig. 14 using
the parameter assignment k =2, h=0.5, e=1, 490=10.2, a =2, y=10.1, f =3.6,
a=0.1, b=0, ¢c=10, d=-0.5, y =300, whereas —5<z,x<5 with y =10 and
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Fig. 4 Soliton wave interaction depiction of solution (3.62)
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Fig. 8 Bright soliton wave profile of solution (4.87) at t = —2 and x
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Fig. 12 Bright soliton wave profile of solution (4.88) at # = —0.2 and x = 1.2
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and z = 1.02

Fig. 14 Kink shaped soliton wave profile of solution (4.91) at y = 10 and z = 0.2
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Fig. 15 Kink shaped soliton wave profile of solution (4.91) at y =2 and z =2.2

z =0.2. Regarding Fig. 15, we do the Figure using the same parametric values with
—3<t,x<3 withy=2and z=2.2.

Furthermore, we study the wave dynamics of algebraic solution (4.96) in Fig. 16 by
taking arbitrary H as the sum of the square of trigonometric functions sin(y) and cos(z) with
¢ =d = 1and ¢t = x = 0 in the interval —3 <y, z <3. The soliton interaction experienced in
Fig. 17 is come-by using trigonometric functions sin(Q) and cos(Q2), summed up where Q is
the sum of the square of the involved variables, with the usual ¢ =d =1 alongside
t = x = 0. Furthermore, we repeat the same thing for (4.96) in Fig. 18 with sin(Q) =
sech(Q) in the interval —4 <y,z <4 where c = d = 1 and ¢t = x = 0. In the case of Fig. 19,
with some constant coefficients, we implore together with cos(Q) and sech(Q), the tangent-
hyperbolic function, in the interval —2 <y,z<2 where ¢ =d = 1 and ¢ = x = 0. Finally,
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-
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Fig. 19 Soliton wave interaction profile of solution (4.96) at t = 0 and x = 0
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we plot Fig. 20 to depict (4.96) using the explicated trigonometric and hyperbolic functions
with some slightly changed constant coefficients. We notice that various wave interaction of
interest are come by using the dissimilar assignments of functions.

Fig. 21 Diagrammatic representation of a typical catenary. https://courses.lumenlearning.com/calculus1/
chapter/applications-of-hyperbolic-functions/
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5.1 Real-world application of the obtained results

In this section, we aim to showcase practical examples of how the results obtained can be
applied in real-world scenarios. We have discovered a range of hyperbolic function solu-
tions and algebraic solutions with flexible functions that can encompass trigonometric and
other important mathematical functions to solve the models under study. It is important to
highlight several intriguing cases where these solutions prove to be beneficial.

A practical application of hyperbolic functions is seen in the behavior of hanging cables.
When a cable of uniform density is suspended between two supports with only its own
weight as a load, it forms a curve known as a catenary (see Fig. 21). Cables such as high-
voltage power lines (see the illustrative diagram in Fig. 22), chains between posts, and even
strands of a spider’s web all take on the shape of a catenary. The illustration below displays
chains hanging from a line of posts (https://courses.lumenlearning.com/calculus1/chapter/
applications-of-hyperbolic-functions/).

Trigonometry plays a crucial role in navigation, helping determine the direction to orient
a compass for a straight path. By utilizing a compass and trigonometric functions during
navigation, it becomes simpler to pinpoint a location, calculate distances, and identify the
horizon. Additionally, in the field of criminology, trigonometry proves to be valuable for
analyzing crime scenes. Trigonometric functions are

instrumental in calculating projectile trajectories and determining factors contributing to
car accidents. They are also utilized to assess the trajectory of falling objects and the angle at
which a gun is fired (https://byjus.com/maths/applications-of-trigonometry).

Ground
Wire

High
Voltage
Conductors

Insulators

Tower

Fig. 22 Pictorial representation of a typical high voltage power transmission system. http://dx.doi.org/10.
13140/RG.2.2.34578.76484
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Fig. 23 Diagrammatic representation of the working mechanisms of a typical Global Positioning System.
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/global-positioning-
system

Trigonometry is a versatile mathematical tool that can be utilized to determine the heights
of towering mountains and structures, as well as to measure the distances between celestial
bodies such as stars and planets. This mathematical concept finds application in various
fields including physics, architecture, and GPS navigation systems (https:/www.vedantu.
com/maths/application-of-trigonometry) (see Fig. 23 to view the design of the working
mechanism of the GPS system). The GPS known as Global Positioning System, is a system
that relies on satellites in space to transmit signals for navigation purposes. This network
includes a group of satellites that broadcast these signals, as well as ground stations and
satellite control stations that are used for monitoring and managing the system.

In architecture, right angles play a crucial role in designing structures, while manufac-
turing processes rely on trigonometric calculations for precise measurements. Construction
projects often involve the use of right triangles to ensure accurate positioning of compo-
nents. Furthermore, trigonometry is essential in Engineers frequently rely on trigonometric
principles to determine angles. In particular, civil and mechanical engineers apply
trigonometry to compute torque (see Fig. 24 for the diagram of a typical torque in a car) and
forces acting on various structures, like bridges and building beams.

Architects utilize trigonometry in their work to accurately calculate the structural loads,
angles, and material lengths necessary for constructing safe and visually appealing build-
ings. In the field of engineering, trigonometry plays a crucial role in designing mechanical
components, analyzing forces, and solving problems related to waves and oscillations.
Moreover, trigonometry is also widely used in the development of video games and com-
puter graphics. It aids in creating lifelike animations, simulating physical movements, and
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Fig. 24 Pictorial representation of a typical engine torque in cars. https://www.dubizzle.com/blog/cars/
engine-torque/

rendering scenes in three-dimensional environments (https://www.geeksforgeeks.org/what-
are-some-real-life-applications-of-trigonometry/).

In the same vein, various conservation laws found here furnish important conserved
quantities which are highly significant in physical sciences. These include, conservation of
energy and momenta (Adeyemo and Khalique 2023). For more detail understanding of
these, see the recent work established in reference (Adeyemo and Khalique 2023).

6 Concluding remarks

In this article, an exhibition of the research carried out on the (3+1)-dimensional gener-
alized fifth-order Zakharov—Kuznetsov model with power-law and dual power-law non-
linearities (1.6) and (1.7) is analytically presented. For the very first time, a detailed Lie
group analysis of the models with power-law nonlinearities was investigated with the
purpose of attaining various exact solutions. Thus, we gained exact solutions for the fallout
models using Lie symmetry reductions, direct integration in conjunction with the logistic
function technique, and achieved solitary wave solutions for understudied models for some
particular cases of n (engendered from the fallout of the original model), appearing in the
form of exponential functions. Besides, we depicted the streaming figures of the various
outcomes by invoking suitable representations pictorially. Furthermore, we derived con-
served currents of (1.6) and (1.7) by employing Noether’s theorem. Consequently, these
conserved currents contain both nonlocal and local conserved vectors of first integrals. In
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the end, the pertinence of the comprehensive work explicated in this work was further
supported with various real-world applications in science and engineering fields using
adequate diagrams and references. This implies that the results obtained in this investigation
could be of particular interest to researchers in fields such as architecture, building, and
structural engineering, electrical, and mechanical engineering.
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