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Abstract
The dynamic behavior of the Vakhnenko-Parkes equation is examined in this manuscript. 
This is an important subject because of its implications for comprehending intricate math-
ematical models describing traveling wave phenomena and solitons. The construction of 
traveling wave solutions for the Vakhnenko-Parkes equation in closed form is the main 
issue addressed in the study. The modified auxiliary equation approach and the extended 
(
G

�

G2
)-expansion method are used to address this because they are effective in producing 

precise solutions of a large class of nonlinear partial differential equations. A visual com-
ponent to comprehending the behavior of the equation is added by employing 3D-surface 
graphs, 2D-line graphs, and contour plots to explore these solutions graphically. A variety 
of traveling wave behavior is observed from the obtained solutions. These results imply that 
the Vakhnenko-Parkes equation and its solutions are complex, offering important insights 
into the underlying dynamics. The proposed techniques are applied for the first time to 
study the considered model in this work. A comparison of the obtained results with the 
previous works is presented to confirm the significance and novelty of the reported results.

Keywords  Vakhnenko-Parkes equation · Extended ( G
�

G2
)-expansion method · Modified 

auxiliary equation method · Traveling wave solutions

Mathematics Subject Classification  35C15 · 35Q51 · 37K40 · 37N30

 *	 Muhammad Abbas 
	 muhammad.abbas@uos.edu.pk

 *	 Ahmed S. M. Alzaidi 
	 azaidi@tu.edu.sa

1	 Department of Mathematics, University of the Punjab, Quaid‑e‑Azam Campus, Lahore 54590, 
Pakistan

2	 Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
3	 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 

21944 Taif, Saudi Arabia
4	 IT4Innovations, VSB–Technical University of Ostrava, 708 00 Ostrava‑Poruba, Czech Republic

http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-024-06953-z&domain=pdf


	 S. Arshed et al.

1 3

1072  Page 2 of 23

1  Introduction

Most of the natural occurrences depend on a number of variables that change nonlin-
early (Ozisik et al. 2023). To simulate the natural phenomena and dynamic processes, 
nonlinear partial differential equations (NLPDEs) are extensively used. NLPDEs have 
a wide range of applications in applied mathematics, plasma physics, bioinformatics, 
chemistry, fluid dynamics, quantum field theory, artificial intelligence and others. The 
swift growth of computer sciences and software technologies is directly attributed to 
the rise of research on NLPDEs. In particular, this upsurge was influenced by the use of 
computer-based techniques in mathematics and other disciplines.

Evolution equations, which involve derivatives with regard to time, explain how a 
system changes over time. Partial differential equations (PDEs) that contain nonlinear 
terms are known as nonlinear PDEs, and they offer a more sophisticated mathematical 
modeling than linear PDEs (Islam et al. 2022). A number of methods have been devel-
oped to find the exact solutions of NLPDEs to explain the underlying physical systems 
including 

(
G′

G2

)
-expansion method and its modified form Behera et al. (2022), Mamun 

et  al. (2021), Duran et  al. (2023), and Akram et  al. (2024), generalized exponential 
rational function approach (Duran 2021a), 

(
G′

G
,
1

G

)
-expansion method (Duran 2021b; 

Mamun et  al. 2021), exponential function method and its modified form Islam et  al. 
(2018) and Duran et al. (2017), rational ( 1

��(�)
)-expansion approach (Islam et al. 2022), 

extended tanh-function method (Fan 2000; Islam et  al. 2019), extended (exp(−�(�)))
-expansion method (Arshed et  al. 2022; Shahen et  al. 2021a, b), Sardar sub-equation 
scheme (Justin et  al. 2022), improved tanh method (Yokuş et  al. 2022), F-expansion 
method (Ebaid and Aly 2012), modified auxiliary equation method (Akram et al. 2022, 
2024), Hirota’s bilinear method (Zuo and Zhang 2019), Kudryashov method (Mirzaza-
deh et al. 2014), Darboux transformation method (Ma 2019), modified extended tanh-
function method (Mamun et  al. 2020), improved auxiliary equation approach (Islam 
et  al. 2023a, b), extended Riccati scheme (Islam et  al. 2022), rational 

(
G′

G

)
-expansion 

(Islam et al. 2023b; Akbar et al. 2023; Islam et al. 2019, 2022), unified method (Foyjon-
nesa et  al. 2022, 2023), ( G�

G�+G+A
)-expansion approach (Iqbal et  al. 2024), modified 

extended tanh-function approach (Mamun et al. 2021) and many more.
The surface and interior waves in a rotating ocean can be described by Ostrovsky 

equation which can be written, as:

where c0 is the velocity of dispersion-less linear waves and p is the coefficient of the non-
linear term. Moreover, q and � are the coefficients of small-scale and large-scale dispersion 
terms. The small hydrodynamic nonlinearity, uux and weak dispersion are combined in this 
equation.

When � = 0 , Eq.  (1.1) reduces to Korteweg-de Vries (KdV) equation. When q = 0 , 
Eq. (1.1) reduces to the form

which is often called the reduced Ostrovsky equation.
It was demonstrated by Wazwaz (2019) that the new integrable equation could be 

derived from the reduced Ostrovsky equation (Yusufoglu and Bekir 2007)

(1.1)(ut + c0ux + puux + quxxx)x = �u,

(ut + c0ux + puux)x = �u,
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The behavior of long surface water waves in a two-dimensional ideal fluid is modeled using 
the Vakhnenko-Parkes equation. It is a generalization of the well-known KdV equation, 
and it has been used in research into the stability and solitonic behavior of water waves in 
a variety of physical systems. The VP equation has numerous applications in various fields 
of science. It is an essential tool for simulating long surface water waves in oceanography 
and fluid dynamics, offering insights into wave behavior in many aquatic environments. 
The equation is used by environmental scientists to comprehend how waves affect coastal 
ecosystems and regions. The equation generalizes the KdV equation to the domain of soli-
tons and nonlinear waves, allowing for the investigation of solitary wave solutions and their 
consequences in various physical systems. It is a useful model in mathematical physics 
to investigate the mathematical characteristics of nonlinear partial differential equations. 
Studying wave dynamics in geological settings, such as tsunami propagation, is useful to 
geophysicists. In numerical analysis and simulation, the equation also acts as a benchmark 
problem, enabling researchers to evaluate the precision and effectiveness of algorithms cre-
ated to solve nonlinear partial differential equations. In general, the VP equation is essen-
tial to the advancement of wave phenomena research in many other fields of science.

There has been a significant amount of work done in the field of mathematics to 
investigate the various aspects of the solutions to the VP equation, such as their exist-
ence and uniqueness and their asymptotic behavior. VP equation has been explored 
by the modified exponential function method (Yel and Aktürk 2020), the exp(−�(�))
-expansion method (Roshid et  al. 2014), Kudrayashov method (Ibrahim et  al. 2019), 
Hirota’s bilinear method (Wazwaz 2019) and generalized Kudryashov method (Kumar 
and Mann 2022). In 2022, Khater et  al. (2022) Khater et  al. studied VP equation by 
Khater II method. In 2022, Kumar and Mann (2022) Kumar et al. studied VP equation 
by applying three different schemes. In 2014, Roshid et al. (2014) Roshid et al. investi-
gated solitary wave solutions of VP equation via two novel techniques.

In this work, the wave dynamics of the VP equation is explored using two reliable 
analytical techniques. The proposed techniques, namely, the extended ( G

�

G2
)-expansion 

and the modified auxiliary equation (Akram et  al. 2023a, b) methods, are applied to 
examine the considered VP equation for the first time in this work. The obtained trave-
ling wave solutions not only confirm the previously reported wave behavior for VP 
equation in the literature but also produce some novel results. A comparison of the pre-
sented results with the previous studies available in the literature is carried out to high-
light the novel and interesting outcomes of this study.

The extended ( G
�

G2
)-expansion and the modified auxiliary equation methods are mod-

ern and reliable expansion methods which have been successfully utilized to construct 
the traveling wave solutions of a large class of NLPDEs arising in mathematical physics 
in a number of recent studies. The proposed techniques are straight-forward, efficient 
and usually provide a variety of traveling wave solutions, including solitary waves and 
solitons. The effectiveness of the proposed methodologies to study the considered VP 
equation is established through the comparison of the obtained results with the previous 
literature.

The remaining paper is organized as follows: Sect. 2 presents the conversion of the VP 
equation into an a reduced equation using traveling wave hypothesis. Section 3 provides 
a brief overview of the proposed methods. The traveling wave solutions are constructed 
in Sect. 4. The obtained results are illustrated and discussed in Sect. 5. The conclusion is 
presented in Sect. 6.

(1.2)uuxxt − uxuxt + u2ut = 0.
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2 � Mathematical analysis

The following change of variables is introduced according to the traveling wave hypothesis 
to obtain the exact solutions of Eq. (1.2)

Substitution of Eq. (2.1) into Eq. (1.2), reduces it into an equation with ordinary deriva-
tives, as:

Integration of Eq. (2.2) with respect to � yields

where the constant of integration is taken as zero.

3 � Description of methods

The mathematical procedure for finding the traveling wave solutions of the VP equation 
using the two proposed techniques is briefly described as follows:

3.1 � Extended ( G
�

G2
)‑expansion method

According to the extended ( G
�

G2
)-expansion approach, the solution of Eq. (2.3) can be writ-

ten, as:

where U = U(�) satisfies

for � ≠ 0 and � ≠ 1 . The following considerations represent the solution for Eq. (3.2).
If 𝜇𝜌 > 0 , then

If 𝜇𝜌 < 0 , then

If � ≠ 0 and � = 0 , then

(2.1)u(x, t) = U(�), � = x − wt.

(2.2)uu�� − u�u�� + u2u� = 0.

(2.3)3uu�� − 3(u�)2 + u3 = 0,

(3.1)U(�) = a0 +

N∑
k=1

[
ak

(
G�

G2

)k

+ bk

(
G�

G2

)−k
]
,

(3.2)
(
G�

G2

)�

= � + �

(
G�

G2

)2

,

(3.3)
G�

G2
=

�
�

�

�
E cos(

√
���) + F sin(

√
���)

F cos(
√
���) − E sin(

√
���)

�
.

(3.4)
G�

G2
= −

√����
�

�
E cosh(2

√�����) + E sinh(2
√�����) + F

E cosh(2
√�����) + E sinh(2

√�����) − F

�
.
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where E and F are constants that can be assigned arbitrary values.

3.2 � Modified auxiliary equation method

According to this approach, the solution of Eq. (2.3) can be written, as:

where ci ’s and bi ’s are constants. Moreover,

where � , � , � , and k are arbitrary constants with k > 0 , k ≠ 1 . The function kf (�) has the fol-
lowing values.

If 𝜏2 − 4𝜀𝜎 < 0 and � ≠ 0 , then

If 𝜏2 − 4𝜀𝜎 > 0 and � ≠ 0 , then

If �2 − 4�� = 0 and � ≠ 0 , then

4 � Construction of traveling wave solutions

4.1 � Results using extended ( G
�

G2
)‑expansion method

The exact traveling wave solutions of Eq. (1.2) are determined as follows:
Implementation of homogeneous balancing principle on the terms uu′′ and u3 of 

Eq. (2.3) gives N = 2 and Eq. (3.1) becomes

(3.5)
G�

G2
= −

E

�(E� + F)
,

(3.6)U(�) = c0 +

N∑
i=1

[ci(k
f )i + di(k

f )−i],

(3.7)f �(�) =
� + �k−f + �kf

ln(k)
,

(3.8)
kf (�) =

−� +
√
4�� − �2 tan

�√
4��−�2�

2

�

2�
or kf (�) = −

� +
√
4�� − �2 cot

�√
4��−�2�

2

�

2�
.

(3.9)
kf (�) = −

� +
√
�2 − 4�� tanh

�√
�2−4���

2

�

2�
or kf (�) = −

� +
√
�2 − 4�� coth

�√
�2−4���

2

�

2�
.

(3.10)kf (�) = −
2 + ��

2��
.

(4.1)U(�) = a0 + a1

(
G�

G2

)
+ b1

(
G�

G2

)−1

+ a2

(
G�

G2

)2

+ b2

(
G�

G2

)−2

.
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A polynomial equation in 
(

G′

G2

)
 is determined by using Eq.  (4.1) and Eq.  (2.3). The 

following equations are obtained by equating the coefficients of 
(

G′

G2

)
 on both sides.

By simultaneously resolving the system of algebraic equations, the following values of 
unknown constants are obtained.
Set 1:

Set 2:

Using the values given in Sets 1 and 2 accordingly, the following families of solutions are 
attained.

Family 1: For 𝜇𝜌 > 0 , the trigonometric function solution to the VP Eq. (1.2) is

(4.2)

�
G�

G2

�−1

∶ − 6�2b1b2 + 6��a0b1 + 54��a1b2 + 24�2a2b1 + 3a2
0
b1 + 6a0a1b2

+ 3a1b
2
1
+ 6a2b1b2 = 0,�

G�

G2

�−2

∶ − 6�2b2
2
+ 24��a0b2 + 12�2a1b1 + 48�2a2b2 + 3a2

0
b2 + 3a0b

2
1

6a1b1b2 + 3a2b
2
2
= 0,�

G�

G2

�−3

∶ 6��b1b2 + 6�2a0b1 + 30�2a1b2 + 6a0b1b2 + 3a1b
2
2
+ b3

1
= 0,�

G�

G2

�−4

∶ 18�2a0b2 + 3�2b2
1
+ 3a0b

2
2
+ 3b2

1
b2 = 0,�

G�

G2

�−5

∶ 12�2b1b2 + 3b1b
2
2
= 0,�

G�

G2

�−6

∶ 6�2b2
2
+ b3

2
= 0,�

G�

G2

�1

∶ 24�2a1b2 + 6��a0a1 + 54��a2b1 − 6�2a1a2 + 3a2
0
a1 + 6a0a2b1

+ 3a2
1
b1 + 6a1a2b2 = 0,�

G�

G2

�2

∶ 12�2a1b1 + 48�2a2b2 + 24��a0a2 − 6�2a2
2
+ 3a2

0
a2 + 3a0a

2
1

+ 6a1a2b1 + 3a2
2
b2 = 0,�

G�

G2

�3

∶ 6�2a0a1 + 30�2a2b1 + 6��a1a2 + 6a0a1a2 + a3
1
+ 3a2

2
b1 = 0,�

G�

G2

�4

∶ 18�2a0a2 + 3�2a2
1
+ 3a0a

2
2
+ 3a2

1
a2 = 0,�

G�

G2

�5

∶ 12�2a1a2 + 3a1a
2
2
= 0,�

G�

G2

�6

∶ 6�2a2
2
+ a3

2
= 0,�

G�

G2

�0

∶ 6b2�
2a0 − 3b2

1
�2 + 24�a1b1� + 96��a2b2 + 6�2a2a0 − 3�2a2

1
+ a3

0

+ 6a0a1b1 + 6a0a2b2 + 3a2
1
b2 + 3b2

1
a2 = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

a0 = −6��, a2 = −6�2, a1 = 0, b1 = 0, b2 = 0.

a0 = −12��, a1 = 0, a2 = −6�2, b1 = 0, b2 = −6�2.

(4.3)u1(x, t) = −6�� −
6��

�
E cos[

√
��(x − wt)] + F sin[

√
��(x − wt)]

�2
�
E cos[

√
��(x − wt)] − F sin[

√
��(x − wt)]

�2 .
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For 𝜇𝜌 < 0 , then the hyperbolic solution to VP Eq. (1.2) can be written, as:

When � ≠ 0 and � = 0 , the rational function solution to VP Eq. (1.2) is retrieved, as:

Family 2: For 𝜇𝜌 > 0 , the trigonometric function solution to the VP Eq. (1.2) is

For 𝜇𝜌 < 0 , then the hyperbolic solution to VP Eq. (1.2) can be written, as:

When � ≠ 0 and � = 0 , the rational function solution to VP Eq. (1.2) is determined, as:

4.2 � Results using modified auxiliary equation method

The proposed method is used to attain the exact solutions of Eq. (1.2) as follows:
Implementation of homogeneous balancing principle on the terms uu′′ and u3 of Eq. (2.3) 

gives N = 2 and Eq. (3.6) becomes

A polynomial equation in kf  is obtained by placing Eq. (4.9) into Eq. (2.3). Balancing all 
the coefficients of kf  to zero gives the following system.

(4.4)

u2(x, t) = −6�� −

6����
�
E cosh[2

√����(x − wt)] + E sinh[2
√����(x − wt)] + F

�2

�
E cosh[2

√����(x − wt)] + E sinh[2
√����(x − wt)] − F

�2
.

(4.5)u3(x, t) = −6�� −
6�2E2

�(E� + F)2
.

(4.6)

u4(x, t) = − 12�� −
6��

�
E cos[

√
��(x − wt)] + F sin[

√
��(x − wt)]

�2
�
E cos[

√
��(x − wt)] − F sin[

√
��(x − wt)

�2

−
6��

�
E cos[

√
��(x − wt)] − F sin[

√
��(x − wt)]

�2
�
E cos[

√
��(x − wt)] + F sin[

√
��(x − wt)]

�2 .

(4.7)

u5(x, t) = − 12�� −

6����
�
E cosh[2

√����(x − wt)] + E sinh[2
√����(x − wt) + F

�2

�
E cosh[2

√����(x − wt)] + E sinh[2
√����(x − wt)] − F

�2

−

6�2�2
�
E cosh[2

√����(x − wt)] + E sinh[2
√����(x − wt)] − F

�2

����
�
E cosh[2

√����(x − wt)] + E sinh[2
√����(x − wt)] + F

�2
.

(4.8)u6(x, t) = −12�� −
6�2E2

�(E(x − wt) + F)2
−

6�2�(E(x − wt) + F)2

E2
.

(4.9)U(�) = c0 + c1(k
f ) + d1(k

f )−1 + c2(k
f )2 + d2(k

f )−2.
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By simultaneously resolving the system of algebraic equations, the following values of 
unknown constants are obtained.

Set 1:

The following family of solutions of Eq. (1.2) is obtained using the values from Set 1.
Family 1:
When 𝜏2 − 4𝜀𝜎 < 0 , � ≠ 0 , then the trigonometric function solution is obtained

(4.10)

(kf )1 ∶ 6c0d1c2 + 6c1c2d2 − 3c2
1
�� − 6c1�

2c2 + 24c1�
2d2 + 27d1�

2c2
+ 3c1�

2c0 + 18c2��c0 + 24c1��d1 + 54d1��c2 + 96��c2d2
+ 6��c1c0 + 3c2

0
c1 + 3c2

1
d1 = 0,

(kf )2 ∶ 6c1d1c2 + 12c1d1�
2 + 48c2d2�

2 + 12c2c0�
2 − 6c2

2
�2 + 24c2��c0

− 3c1c2�� + 57d1c2�� + 9c1c0�� + 3c0c
2
1
+ 3c2

0
c2 + 3c2

2
d2 = 0,

(kf )3 ∶ 6c0c1c2 + 3c2
1
�� + 3c1c2�

2 + 30d1�
2c2 − 6c2

2
�� + 6c1c0�

2

+ 30c2c0�� + 6c1c2�� + c3
1
+ 3c2

2
d1 = 0,

(kf )4 ∶ 18c2c0�
2 + 3c2

1
�2 + 15c1c2�� + 3c0c

2
2
+ 3c2

1
c2 = 0,

(kf )5 ∶ 12c1c2�
2 + 6c2

2
�� + 3c1c

2
2
= 0,

(kf )6 ∶ 6c2
2
�2 + c3

2
= 0,

(kf )0 ∶ 12c1�
2d1 + 24c1��d1 + 48c2�

2d2 + 3c1c0�� + 3d1��c0 + 6c2c0�
2

+ 6d2c0�
2 + c3

0
+ 51c1d2�� + 51d1c2�� + 96c2d2�� − 3c2

1
�2 − 3d2

1
�2

+ 6c0c2d2 + 6c0c1d1 + 3c2
1
d2 + 3c2d

2
1
= 0,

(kf )−1 ∶ 6c0c1d2 + 6d1c2d2 + 27c1d2�
2 − 3d2

1
�� + 24d1c2�

2 − 6d1d2�
2

+ 3d1c0�
2 + 6d1c0�� + 18d2c0�� + 24c1d1�� + 54c1d2��

+ 96c2d2�� + 3c2
0
d1 + 3c1d

2
1
= 0,

(kf )−2 ∶ 6c1d1d2 + 12c1d1�
2 + 48c2d2�

2 + 12d2c0�
2 − 6d2

2
�2 + 9d1c0��

+ 24d2c0�� + 57c1d2�� − 3d1d2�� + 3c0d
2
1
+ 3c2

0
d2 + 3c2d

2
2
= 0,

(kf )−3 ∶ 6c0d1d2 + 30c1d2�
2 + 3d2

1
�� + 3d1d2�

2 − 6d2
2
�� + 6d1c0�

2

+ 30c0d2�� + 6d1d2�� + d3
1
+ 3c1d

2
2
= 0,

(kf )−4 ∶ 18d2c0�
2 + 3d2

1
�2 + 15d1d2�� + 3c0d

2
2
+ 3d2

1
d2 = 0,

(kf )−5 ∶ 12d1d2�
2 + 6d2

2
�� + 3d1d

2
2
= 0,

(kf )−6 ∶ 6d2
2
�2 + d3

2
= 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

c0 = −6��, c1 = −6��, c2 = −6�2, d1 = 0, d2 = 0.
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When 𝜏2 − 4𝜀𝜎 > 0 , � ≠ 0 , then the hyperbolic function solution is obtained

When �2 − 4�� = 0 , � ≠ 0 , the rational function solution is attained

Set 2:

(4.11)
u7(x, t) = − 6�� − 3�

�
−� +

√
4�� − �2 tan

�
1

2

√
4�� − �2�

��

−
3

2

�
−� +

√
4�� − �2 tan

�
1

2

√
4�� − �2�

��2
.

(4.12)
u8(x, t) = − 6�� + 3�

�
� +

√
−4�� + �2 tanh

�
1

2

√
−4�� + �2

��

−
3

2

�
� +

√
−4�� + �2 tanh

�
1

2

√
−4�� + �2�

��2
.

(4.13)u9(x, t) = − 6�� +
3�(�� + 2)

�
−

3

2

(�� + 2)2

�2
.

c0 = −6��, c1 = 0, c2 = 0, d1 = −6��, d2 = −6�2.

Fig. 2   Graphical depiction of u
2
(x, t)
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The family of solutions of Eq. (1.2) is obtained using the values from Set 2.
Family 2:
When 𝜏2 − 4𝜀𝜎 < 0 , � ≠ 0 , then the following trigonometric function solution is obtained

When 𝜏2 − 4𝜀𝜎 > 0 , � ≠ 0 , the following hyperbolic function solution is attained

(4.14)

u10(x, t) = − 6�� −
12���

−� +
√
4�� − �2 tan

�
1

2

√
4�� − �2�

�

24�2�2

�
−� +

√
4�� − �2 tan

�
1

2

√
4�� − �2�

��2 .

(4.15)

u11(x, t) = − 6�� +
12���

� +
√
−4�� + �2 tanh

�
1

2

√
−4�� + �2�

�

−
24�2�2

�
� +

√
−4�� + �2 tanh

�
1

2

√
−4�� + �2�

��2 .

Fig. 3   Graphical depiction of u
3
(x, t)
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When �2 − 4�� = 0 , � ≠ 0 , the rational function solution is yielded

5 � Results and discussion

In this part of the paper, graphical behavior of the obtained solutions of the VP equation is 
discussed. In order to illustrate the dynamical behavior of the wave phenomena governed 
by the VP equation, 3D and 2D graphical simulations are generated. The parametric values 
are suitably selected in accordance with the proposed methodologies such that well-defined 
solution expressions are obtained. The 3D surface graph highlights the shape of the trave-
ling wave or soliton whereas the contour graph illustrates the structure of the constructed 
wave through plots of level curves. The 2D line graphs of the solutions are also plotted for 
increasing values of time to illustrate the progression of the wave along x-axis. In each fig-
ure, (a) depicts the 3D-surface plot, whereas (b) the corresponding 2D contour. Part (c) of 
each figure depicts how the wave travels along x-axis.

(4.16)u12(x, t) = − 6�� +
12����

�� + 2
−

24�2�2�2

(��+)2
.

Fig. 4   Graphical depiction of u
4
(x, t)
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The results obtained through the extended ( G
�

G2
)-expansion method are graphically 

expressed in Figs. 1, 2, 3, 4, 5, and 6. Figure 1 shows the behavior of periodic wave solu-
tion corresponding to u1(x, t) for � = 4 , � = 6 , E = 1 , F = 1 and w = 2 . The corresponding 
line plot is drawn at t = 1, 2 and 3. Figure  2 depicts the dark-singular soliton expressed 
by u2(x, t) taking � = 3 , � = −5 , E = 1 , F = 1 and w = 3 . Figure 3 shows a dark-singular 
soliton solution u3(x, t) at � = 2 , � = 0 , E = 1 , F = 1 and w = 2 . The line graph is plotted at 
t = 1, 2 and 3. Figure 4 shows the behavior of periodic traveling wave given by u4(x, t) for 
the parametric values � = 2 , � = 3 , E = 1 , F = 1 and w = 2 . Figure 5 shows the behavior 
of kink soliton corresponding to u5(x, t) . The parameters are assigned the values � = 2 , 
� = −3 , E = 1 , F = 1 and w = 1 . Figure 6 shows the behavior of dark-singular soliton cor-
responding to the solution u6(x, t) at � = 2 , � = −3 , E = 1 , F = 1 and w = 1.

The traveling wave solutions obtained through the modifies auxiliary equation method 
are illustrated in Figs. 7, 8, 9, 10, 11, and 12. Figure 7 shows the periodic wave expressed 
by u7(x, t) for � = 1 , � = 1 , � = 2 and w = 1 . Figure 8 depicts a bright soliton for u8(x, t) 
taking � = −1 , � = 4 , � = 3 and w = 1 . Figure 9 shows the wave profile of u9(x, t) which 
can be identified as dark-singular soliton. The graphs are plotted for parametric values 
� = 1 , � = 2 , � = 1 and w = 1 . Figure  10 shows the periodic traveling wave behavior of 
u10(x, t) at � = 1 , � = 2 , � = 3 and w = 2 . Figure 11 shows the construction of dark-singular 

Fig. 5   Graphical depiction of u
5
(x, t)
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soliton with u11(x, t) for � = −1 , � = 4 , � = 3 and w = 5 . Figure 12 also shows a dark-sin-
gular soliton u12(x, t) for � = 1 , � = 2 , � = 1 and w = 1.

The graphs show the construction of many dark-singular solitons and bright solitons as 
well as periodic traveling wave. The bright soliton is characterized by a local increase in 
the wave amplitude. Bright solitons are significant due to their ability to travel over long 
distances. Due to their ability to reflect incredibly concentrated and localized events, sin-
gular solitons are valuable tools for studying extreme behavior in physical systems and are 
therefore essential in scientific research. They act as benchmarks in the subject of non-
linear dynamics, helping to comprehend and describe intricate, nonlinear phenomena that 
defy conventional linear models. Singular solitons are related to shock waves and offer 
important insights into how shock events interact and propagate across different kinds of 
materials. Also, visually displaying spatial patterns, supporting data interpretation, ena-
bling clear communication, simplifying difficult material, and boosting analytical depth, 
contour graphics improve the quality of studies. Their capacity to draw attention to abnor-
malities and provide backing for predictive modeling adds even more to the study’s overall 
resilience.

Fig. 6   Graphical depiction of u
6
(x, t)



Investigation of the dynamical structures for nonlinear…

1 3

Page 15 of 23  1072

Fig. 7   Graphical depiction of u
7
(x, t)
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Fig. 8   Graphical depiction of u
8
(x, t)
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Fig. 9   Graphical depiction of u
9
(x, t)
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Fig. 10   Graphical depiction of u
10
(x, t)
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Fig. 11   Graphical depiction of u
11
(x, t)
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The comparison of the reported results with the previous studies in the literature show 
that the presented results not only confirm some of the previously reported wave behav-
ior for the VP equation but also provide more detailed insight into the traveling waves 
described by the afore-mentioned equation. The authors of Yel and Aktürk (2020); Khater 
et al. (2022) reported bright soliton solution and periodic wave solution but failed to dis-
cuss dark-singular solitons. A few traveling wave solutions of VP equation were reported in 
Roshid et al. (2014) including bright soliton and periodic wave but no dark-singular soliton 
was reported. Only the bright soliton was constructed in Ibrahim et  al. (2019). The VP 
equation was also examined in Kumar and Mann (2022) but no bright soliton was reported. 
These comparisons and observations confirm the novelty and significance of the results 
presented in the current manuscript.

6 � Conclusion

In this paper, we studied the dynamics of VP equation using the modified auxiliary 
equation and extended G′

G2
-expansion techniques. Using these techniques, we were 

able to find traveling wave solutions of the considered equation in the form of 

Fig. 12   Graphical depiction of u
12
(x, t)
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rational, hyperbolic, and trigonometric functions. We observed dynamical features 
corresponding to the suggested solutions, such as bright and dark singular solitons and 
periodic solitary waves, by performing numerical simulations with properly selected 
parameters. Our investigation revealed that the suggested techniques were simple, 
dependable, and effective. This method’s adaptability suggested that it may be used in 
the future to solve other nonlinear partial differential equations analytically. Through 
numerical simulations, this study offered a thorough investigation of the solitary wave 
dynamics for the VP equation, providing analytical answers and insightful information. 
The importance and novelty of the obtained results was established by comparing the 
obtained results with the previous studies. Moreover, the potential physical applications 
were also described. In future, the VP equation will be studied using fractional order 
derivative to gain further interesting and useful results.
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