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Abstract
This work simulates the (1+1)-dimensional nonlinear perturbed Schrödinger model 
( NLPSM ). Hydrodynamics, elastic media, nonlinear optical fiber communication, and 
plasma physics are just a few of this model’s mathematical physics and engineering appli-
cations. The study aims to accomplish two main objectives. First, it seeks to find unique 
soliton solutions such as solitary, dark, periodic, and plane wave solutions that haven’t been 
found in the literature before using the modified Sardar sub-equation approach ( MSSEA ). 
Second, a novel approach to analysis called bifurcation analysis is used to investigate the 
dynamic behavior of the model. Physical compatibility findings are supported by den-
sity, 3-D, and 2-D illustrations made with parametric variables. The analysis shows that 
the approach used to quickly acquire complete and typical answers was successful. This 
approach works well for solving challenging problems in physics, engineering, mathemat-
ics and fiber optic phenomena.

Keywords  (1+1)-dimensional nonlinear perturbed Schrödinger model · Modified Sardar 
sub-equation approach · Soliton solutions · Phase portrait analysis

1  Introduction

The analysis of nonlinear events that arise in a range of models across many domains has 
made nonlinear partial differential equations ( NLPDEs ) an indispensable tool. In a wide 
range of scientific domains, such as dynamics, physics, geochemistry, fluid mechanics, 
geophysics, plasma physics, optical fibers, and many more, the NLPDEs are crucial in 
characterizing the physical behavior of actual objects and dynamical processes. In today’s 
cutting-edge scientific period, nonlinear phenomena are one of the most exciting subjects 
for analysts, because of their significant role in the knowledge of the actual aspects of 
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the systems, finding the exact or analytical solutions has been a research area of interest 
Rehman et al. (2021, 2022). It has become increasingly vital for academics to find exact 
answers to challenging algebraic computations using efficient computing methods. Wave 
theory in mathematical physics has a special place for determining the precise answers Xu 
and Pruess (2001). These NLPDEs solutions provide improved support for the physical 
structures. To acquire the precise solution for nonlinear physical models, several robust 
and efficient techniques Rehman et al. (2023); Zulfiqar et al. (2022), were established, and 
these techniques are the Hirota bilinear technique Li et al. (2023), the F-expansion tech-
nique Sumantha and Suresha (2023), the sinh-Gordon function technique Wang (2023), 
the Darboux transformation technique Almusawa et  al. (2021), new �6-model expansion 
approach Shahzad et al. (2023), the modified extended tanh-function technique Ghanbari 
and Kuo (2019), Boulaaras et al. (2023), the sin-cosine technique Fahad et al. (2023) and 
several others. More recently, several approaches have also been considered for various 
lump solutions Ghanbari (2019), Rehman et al. (2023). The modified Sardar sub-equation 
approach Ghanbari and Gómez-Aguilar (2019); Rehman et al. (2022) is a relatively new 
mathematical method, that has been applied to a range of NLPDEs . Below is a summary 
of some of the most significant works that have used this approach: Using the modified 
Sardar sub-equation technique, wave solutions for the doubly dispersive equation are found 
by Rashida et al. Rasool et al. (2023), exploration of novel solitons in photonic media with 
more complex dispersive and nonlinear properties. This work investigates the innova-
tive soliton solution and dynamical phase portrait analysis of (1+1)-dimensional NLPSM 
using the modified Sardar sub-equation approach and bifurcation analysis Rehman et  al. 
(2022, 2023), respectively. The authors in Maghsoudi-Khouzani and Kurt (2024), discuss 
the numerical techniques. The authors in Kurt and Bektas (2023); Yalçnkaya et al. (2022); 
Özkan and Ali (2022); Durur et al. (2020); Tasbozan et al. (2019), study the analytical and 
numerical techniques and employed these techniques to NLPDEs to acquire multiple types 
of soliton solutions. Extensive research on the NLPSM has yielded important theoretical 
and experimental insights into the behavior of nonlinear waves in a variety of physical sys-
tems. Among other applications, the NLPSM has been used to study the behavior of plasma 
waves in fusion reactors and the dynamics of optical pulses in fiber optic communications. 
Investigations have also been conducted on soliton in the NLPSM , which has important 
applications in optical fiber communications and other fields. In a nonlocal NLPSM , the 
dynamics of dark solitons were investigated by Ozisik (2022); Turbiner (2016). They found 
that it would be possible to use the dark solitons to create long-lasting oscillations in the 
wave field, which might be useful for information processing and storage.

The main objective of the article is to find the novel soliton solutions of the given below 
(1+1)-dimensional nonlinear perturbed Schrödinger model Tariq et al. (2022), by using a 
modified Sardar sub-equation approach.

where i represents the imaginary unit, B represents the amplitude envelope, (x) is spatial 
terms and t is temporal term, � , �1, �2, �3 and �4 are real constant. In many physical 
systems, such as optics, plasma physics, Bose-Einstein condensates, and water waves, 
the dynamics of nonlinear waves are represented by the (1+1)-dimensional NLPSM . The 
(1+1)-dimensional NLPSM is used to describe nonlinear wave propagation among other 
scientific phenomena. A few particular uses are as follows. The model is applied to the 
study of light behavior in planar waveguides and nonlinear optical fibers, where nonlinear 
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effects are important. It behaves nonlinearly in the domain of ultracold atomic gases, rep-
resented by NLPSM , including perturbed versions such as the NLPSM . The model aids in 
the comprehension of soliton dynamics, in which solitons are self-reinforcing lone waves 
that continue to propagate at the same speed and form. It can be used to examine how wave 
functions behave under perturbations in a single spatial dimension in quantum systems. 
Based on the observation that many physical systems exhibit nonlinear behavior, which 
results in complex and frequently unanticipated events emerging from interactions among 
system components, Eq. (1) is included. This paper, supported by earlier studies, seeks 
to provide common, practical, and widely compatible solutions for the model, advanc-
ing a better comprehension of the fundamental ideas. The paper’s following sections are 
arranged as follows: Presented is the mathematical analysis in Sect. 2. In Sect. 3, the model 
described in Eq. (1) is applied, and figures and solutions are produced using the MSSEA 
approach. Section  4 provides a full explanation of the bifurcation analysis, and Sec.  5 
includes the results and comments. A summary of the study’s conclusions and next steps is 
provided in Sect. 6.

2 � General description of modified Sardar sub‑equation approach

This approach has been successfully used for the solution of NLPDEs in mathematics and sci-
ence several times. Let’s assume the general form of NLPDEs:

Step-1. Apply the wave transformation

into Eq. (2), the nonlinear ordinary differential equations (NLODEs) is obtained as,

Step 2. The given assertion, using the given technique, clarifies the general solution for Eq. 
(4).

where R = R(�) , and �i is constant which assures

where �0 ≠ 1 , �1 and �2 ≠ 0 are integers. Calculating the constants �0 and �1 and addition-
ally, it is invertible for �i to be zero. Determined the value of J using the balance principle. 
Following are the Clusters to Eq. (6) satisfying the Eq. (6) with q is integration constant. 
Cluster-1: If 𝛿0 = 0, 𝛿1 > 0 and 𝛿2 ≠ 0 , we get

(2)K(B, Bx, Bt, Bxx, Bxt, ...) = 0.

(3)B = R(�)ei�, � = x − �t � = �2t − �1x,

(4)K(R, R
�

, R
��

, ...) = 0.
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Cluster-2:
For constants k1 and k2 , If 𝛿0 = 0, 𝛿1 > 0 and �2 = +4k1k2 , we get
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For constants E1 and E2 , If 𝛿0 =
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1

4𝛿2
, 𝛿1 < 0 and 𝛿2 > 0 , we get
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Cluster-5:
If 𝛿0 =

𝛿2
1

4𝛿2
, 𝛿1 > 0 and 𝛿2 > 0 and  E2

1
− E2

2
> 0 , we get

Cluster-6:
If 𝛿0 = 0, 𝛿1 > 0, we get

Cluster-7:
If 𝛿0 = 0, 𝛿1 = 0 and 𝛿2 > 0 , we get

(17)U11(�) =

�
−
�1

�2
csc

�√
−�1(� + q)

�
.

(18)U12(�) =

√
�1

2�2
tan

(√
�1

2
(� + q)

)
,

(19)U13(�) = −

√
�1

2�2
cot

(√
�1

2
(� + q)

)
,

(20)U14(�) = −

�
�1

2�2

�
tan

�√
2�1(� + q)

�
− sec

�√
2�1(� + q)

��
,

(21)U15(�) =

√
�1

8�2

(
tan

(√
�1

8
(� + q)

)
− cot

(√
�1

8
(� + q)

))
,

(22)U16(�) =

�
�1

2�2

��
E2
1
− E2

2
− E1 cos

�√
2�1(� + q)

��

E2 + E1 sin

�√
2�1(� + q)

� ,

(23)U17(�) =

�
�1

2�2
cos

�√
2�1(� + q)

�

sin

�√
2�1(� + q)

�
− 1

.

(24)U18(�) =
4�1e

√
�1(�+q)

e2
√
�1(�+q) − 4�1�2

,

(25)U19(�) =
4�1e

√
�1(�+q)

1 − 4�1�2e
2
√
�1(�+q)

.



	 S. Javed et al.

1 3

1013  Page 6 of 18

Step 3. A polynomial written in terms of the power of U(�) is obtained by combining Eq. 
(5) with Eq. (1), using Eq. (6), and the second-order derivatives needed for Eq. (4).

Step 4. Using the same powers, collect all of the U(�) coefficients, then set them all to 
zero. After this procedure, the algebraic system for �0, �n     (n = 1, 2, 3, ... ) is obtained.

Step 5. Lastly, use Wolfram Mathematica to solve the algebraic equation systems and 
get the values of the parameters. The solutions for Eq. (1) are obtained by substituting 
these values into Eq. (4). Accurate solutions to NLPDEs , such as the (1+1)-dimensional 
NLPSM , may be obtained with efficiency using the MSSEA.

3 � Implementation

For an exact solution, take into consideration using Eq. (1). The corresponding NLODEs 
is obtained by replacing an wave transformation Eq. (3) with Eq. (1).

where R(�) is complex valued function, � , �1, �2, �3, �3, �4, �1 are all constants and 
�2 is wave speed. Using Eq. (5) and the homogeneous balance principle, we determine that 
J = 1 by finding a balance between the terms R3(�) and R��(�).

Calculate the derivative Eq. (9). After doubling over and taking into account Eq. (6), we 
obtain

A polynomial to the power of U(�) may be obtained by inserting Eqs. (9) and (10) into 
Eq. (7). After gathering all the coefficients with identical powers of the U(�) , set all 
of the coefficients to zero. The resulting algebraic equation system is as follows for 
�0, ��1, ��1 and �1.

Following the algebraic system of equations solution, we determined that family 1 is
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Use the above family-1 and find the following novel soliton solutions of Eq. (1).
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+ i

�

×

�
−
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(42)

B1,10(x, t) =

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠
sec

�√
−�1(q − �t + x)

�

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

×

�
−
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(43)

B1,11(x, t) =

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠
csc

�√
−�1(q − �t + x)

�

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

×

�
−
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(44)
B1,12(x, t) =

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠
tan

�√
�1(q−�t+x)√

2

�

√
2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

×

�
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(45)
B1,13(x, t) =

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠
cot

�√
�1(q−�t+x)√

2

�

√
2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

×

�
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,



	 S. Javed et al.

1 3

1013  Page 10 of 18

(46)

B1,14(x, t) = −

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠

�
tan

�√
2
√
�1(q − �t + x)

��

√
2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

− sec
�√

2
√
�1(q − �t + x)

�

×

�
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(47)

B1,15(x, t) =

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠

�
tan

�√
�1(q−�t+x)

2
√
2

��

2
√
2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

− cot

�√
�1(q − �t + x)

2
√
2

�

×

�
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(48)

B1,16(x, t) =

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠

��
E2
1
− E2

2
− E1 cos

�√
2
√
�1(q − �t + x)

��

√
2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

�
E1 sin

�√
2
√
�1(q − �t + x)

�
+ E2

�

×

�
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(49)
B1,17(x, t) =

exp

⎛
⎜⎜⎝
i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠
cot

�√
2
√
�1(q − �t + x)

�

√
2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

×

�
�1

�2

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,
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4 � Bifurcation analysis

We shall now analyze the phase portraits of bifurcation analysis using Eq. (28). Equa-
tion (28) yields the first-order differential equations, from which the dynamical system is 
obtained as below:

(50)
B1,18(x, t) =

exp

⎛
⎜⎜⎝
√
�1(q − �t + x) + i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠�

�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

�
e2

√
�1(q−�t+x) − 4�1�2

�

× 4�1

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(51)
B1,19(x, t) =

exp

⎛
⎜⎜⎝
√
�1(q − �t + x) + i

⎛
⎜⎜⎝
�2t −

x

�√
4�4(�1�4−�2)+�

2
1
−�1

�

2�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠�

�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�

�
1 − 4�1�2e

2
√
�1(q−�t+x)

�

× 4�1

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�
,

(52)

B1,20(x, t) =

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�

√
�2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�(q − �t + x)

× exp

⎛⎜⎜⎜⎜⎝
i

⎛⎜⎜⎜⎜⎝
�2t −

x

��
4�4

�
�1�4 − �2

�
+ �2

1
− �1

�

2�4

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠
,

(53)

B1,21(x, t) =

i

�
−�2�4

�
�2

��
4�4

�
�1�4 − �2

�
+ �2

1
+ �1

�
+ 2��4

�

√
−�2

�
�2
2

�
�2 − �1�4

�
+ �4�

2 + �1�2�(q − �t + x)

× exp

⎛
⎜⎜⎜⎜⎝
i

⎛⎜⎜⎜⎜⎝
�2t −

x

��
4�4

�
�1�4 − �2

�
+ �2

1
− �1

�

2�4

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠
.
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where H1 =
�4�

2
1
+�1�1+�2

�4

 and H2 =
�−�2�1

�4

.
Case (i): H1 < 0 and H2 < 0 . By using �4 = 2,�1 = −0.7, �2 = 0.7 and �1 = 0.7 , 

the equilibrium points q1 = (0, 0), q2 = (
√

2, 0), q3 = (−
√

2, 0) have been retrieved from system 
(54) shown in Fig.  7. It is observed, by the phase portrait, that H2 shows center points, 
whereas H1 is a cuspidal point.

Case (ii): H1 > 0 and H2 < 0 . By using �4 = 1.4, �1 = 0.7,�2 = 0.7 and �1 = 0.7 , 
there exists only one real equilibrium point H1 = (0, 0) , which has been obtained from sys-
tem (54) and shown in Fig. 7. It is observed that H1 is a cuspidal point.

Case (iii): H1 > 0 and H2 > 0 . By using �4 = 1.2, �2 = −0.7, �1 = −0.7 and 
�1 = 0.7 , there exists only one real equilibrium point H1 = (0, 0) , which has been obtained 
from system (54) and shown in Fig. 7. It is observed that H1 is a saddle point.

Case (iv): H1 < 0 and H2 > 0 . By using �4 = 1.2, �2 = −0.7, �1 = −0.7 and 
�1 = 0.7 , there exists only one complex equilibrium point H1 = (0, 0) , which has been 
obtained from system (54) and shown in Fig. 7. It is observed that H1 is a center point.

5 � Results and discussions

The thorough comparison of the obtained results with the previously appraised result in 
this section demonstrates the originality of this work. The governing model’s solutions 
were obtained by utilizing GREFT. This study was modified by our research to exam-
ine other techniques. This part’s unique contribution to the research is demonstrated by 
a detailed contrast of the assessed findings with the previously calculated results. The 
authors in Tariq et al. (2022), study the (1+1)-dimensional NLPSM , by using different 
analytical techniques to find exact solutions. Our inquiry synthesized this research to 
apply more effective techniques. The modified Sardar sub-equation approach and bifur-
cation analysis to a wide range of fields in mathematics, physics, and engineering. It 
may provide solutions with physical interpretations and analytic properties. This makes 
it a helpful tool for understanding the behavior of complex nonlinear systems as well as 
for drawing new theoretical conclusions and experimental predictions. Comparing our 
achievements to their findings reveals the uniqueness of our calculated results, which 
have never been obtained in published literature previously. The evaluation’s findings 
are fresh and original, and they have the potential to greatly further the field of applied 
mathematics research. We just wanted to let you know that the obtained solutions may 
be of tremendous use for future studies of higher-order NLPDEs . This research analy-
ses solutions of the rational type, periodic solutions, dark solutions, and singular soli-
tons. In mathematics, a non-singular solution is one in which there are no singularities 
anywhere in its domain. This is important because mathematical equations may break 
down due to singularities. Contour plots represent a 3-dimensional surface by plotting 
constant z slices, known as contours, on a 2-dimensional plane. These plots display rela-
tionships between two independent variables (X and Y) and an outcome (Z), with each 
contour line representing points of equal value to the outcome variable Z. In contrast, 
density plots show the distribution of data in a 2-dimensional space, often representing 

(54)

{
dR

d�
= W = C1,

dW

d�
= H1R − H2R

3 = C2,
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the probability density function of the data. While contour plots focus on display-
ing contours of equal values, density plots emphasize the distribution of data points 
and their relative concentrations. Contour plots are particularly useful when drawing 
in three dimensions is inconvenient, providing a clear visualization of relationships 
between variables in a 2-dimensional format. In mathematical physics, NLPSM is used 
to model and comprehend complicated processes like soliton dynamics. It is essential 
for simulating the behavior of stable, localized wave packets known as optical solitons. 
For fiber-optic communication systems to preserve signal integrity over extended dis-
tances, these solitons are crucial. NLPSM plays a role in improving our comprehen-
sion of the dynamics of nonlinear wave propagation phenomena in a variety of physi-
cal systems, including nonlinear optical fibers and Bose-Einstein condensates. These 
phenomena include solitary waves and soliton solutions. Applications of the model can 
be found in quantum physics, namely in the investigation of the behavior of quantum 
systems under nonlinear interactions and disturbances. On the other hand, density plots 
are valuable for understanding the density of data points across different regions of the 
plot. Non-singular solutions are favored since they are precisely specified and allow for 
accurate computations and forecasts. Non-singular solutions are often associated with 
wave equations because, in physics, differential equations with non-singular solutions 
may be used to explain waves. Exact solutions to nonlinear equations can be efficiently 
found using the modified Sardar-sub equation approach. It offers answers to many dif-
ferent kinds of nonlinear equations, including ones with different nonlinearities. The 
modified Sardar-sub equation strategy performs competitively when compared to other 
recent methods, such the Sardar sub-equation approach. The modified Sardar-sub equa-
tion method is effective, although it may need intricate mathematical derivations. The 
Schrödinger equation’s non-singular solution can be utilized to simulate the behavior 
of particles or wave packets in quantum physics. The (1+1)-dimensional NLPSM solu-
tions found by the MSSEA approach may find use in optical fiber communication and 
plasma physics, among other areas. The paper also draws attention to several problems 
and unanswered issues in the area, such as the impact of higher-order nonlinear factors, 
stability analysis, and generalization to different equations. The dynamics of several 
reported solutions are shown in Figs by selecting the proper parametric values Figs. 1, 
2, 3, 4, 5 and 6 as 3-D, 2-D and density plots.

Fig. 1   Graphical illustration of bright soliton solution of Eq. (33), by using appropri-
ate parameter values are �1 = 0.7, �2 = 0.8, �0 = 0, �1 = 0.1, � = 0.9,
�2 = 0.3, �3 = 0.6, �4 = 0.5, q = 0.1, �1 = 0.54 and �2 = 0.65
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Fig. 2   Graphical illustration of singular soliton solution of Eq. (34), by using appropriate parameter values are 
�1 = 0.7, �2 = 1, �0 = 0, �1 = 0.1, � = 0.9, �2 = 0.3, �3 = 0.6, �4 = 0.5, q = 0.1, �1 = 0.54 and �2 = 0.65

Fig. 3   Graphical illustration of hyperbolic soliton solution of Eq. (35), by using appropri-
ate parameter values are �1 = 0.7, �2 = 1, �0 = 0, �1 = 0.1, � = 0.9, �2 = 0.3,
�3 = 0.6, �4 = 0.5, q = 0.1, �1 = 0.54 and �2 = 0.65

Fig. 4   Graphical illustration of dark soliton solution of Eq. (36), by using appropriate parameter values are 
�1 = −0.7, �2 = 0.8, �0 = 0.3, �1 = 0.1, � = 0.9, �2 = 0.3, �3 = 0.6, �4 = 0.5, q = 0.1, �1 = 0.54 and �2 = 0.65
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6 � Conclusions

This study discusses optical physical phenomena and emphasizes the value and usefulness 
of the (1+1)-dimensional NLPSM . Even though the model’s characteristics and behavior 
have already been thoroughly examined in the literature, our approach offers fresh per-
spectives. Effective evolution of soliton solutions is achievable. Bifurcation analysis is car-
ried out by the transformation of the governing model into a dynamical system. Numerous 
diverse industries may benefit from the novel ideas presented in this study. We verified our 
findings by using Mathematica software to analyze and visually represent several wave pat-
terns with various system properties. Our solutions offer distinctiveness in contrast to tradi-
tional methods. The results of this work should spark more conversations in the nonlinear 
physical sciences. The approach is computationally efficient in finding exact wave solu-
tions. Our suggested approaches might be extended in the future to handle other nonlinear 
models. The distinct and fascinating solutions found may aid in the understanding of math-
ematical models of various domains. In the future, these findings will be improved and 

Fig. 5   Graphical illustration of periodic solution of Eq. (42), by using appropriate param-
eter values are �1 = 0.7, �2 = 0.8, �0 = 0, �1 = 0.1, � = 0.9, �2 = 0.3,
�3 = 0.6, �4 = 0.5, q = 0.1, �1 = 0.54 and �2 = 0.65

Fig. 6   Graphical illustration of rational soliton solution of Eq. (53), by using appropriate parameter values 
are �1 = 0, �2 = 0.8, �0 = 0, �1 = 0.1, � = 0.9, �2 = 0.3, �1 = 0,
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refined by further study. The soliton’s mean free velocity will be obtained by using soliton 
perturbation theory, which incorporates perturbation terms and takes into account stochas-
tic perturbation components. The (1+1)-dimensional NLPSM will also be integrated using 
a variety of integration methods.
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