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Abstract
In this paper, the (2 + 1)-dimensional variable coefficients equation which describes the 
thermophoric wave motion of wrinkles in graphene sheets (2D-vGS) is studied, where it 
has many applications in 2D optics, nanophotonic, and nanoelectronics. A direct simplified 
Hirota’s bilinear method is generalized to find the bilinear form of the 2D-vGS equation. 
Accordingly, one, two, and three soliton wave solutions indicate that our studied equation 
is fully integrable and has n-soliton solutions. Moreover, we have focused on the study of 
two and three solitons interactions, this leads to the identification of two distinct solution 
types, the Y-shape soliton and fork- shape soliton, which can be clearly distinguished from 
the 3D plots and density plots. These solutions are characterized by a rich spectrum of col-
lision dynamics and encompassing phenomena such as fusion and fission. The nonlinear 
properties of the two and three soliton solutions could be useful for farther applications in 
2D optics like metamaterials with exotic optical properties and ultra-compact and efficient 
photonic devices.
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1  Introduction

Graphene is a material made of pure carbon and created from graphite. It is a 2D material 
with fascinating electrical, thermal, mechanical, chemical, and optical properties, so it is 
called “material of the future”. As a 2D material in optics, graphene shows many extraor-
dinary properties such as a broadband ultrafast optical response, strong material anisotropy 
and large optical nonlinearities. These have empowered a lot of new photonic devices that 
are basically different from those based on traditional bulk materials. Therefore, it has a 
wide range of uses in manufacture of smartphones, batteries, electronic circuits to the con-
struction of solar panels (Cui et al. 2021; Fan et al. 2019; Grigorenko et al. 2012; Wu et al. 
2021).

Thermophoretic motion is the movement of microscopic particles due to a temperature 
gradient. In the context of graphene, thermophoretic motion refers to the movement of gra-
phene sheets or particles adsorbed on graphene due to a temperature gradient (Luo et al. 
2023; Usman et al. 2023).

There are two main mechanisms of thermophoretic motion in graphene. The first is the 
Conventional thermophoresis which based on the interaction between the graphene and the 
surrounding fluid molecules. When there is a temperature gradient, the fluid molecules near 
the hot side move faster than those near the cold side. This difference in velocity creates a 
drag force on the graphene, which causes it to move towards the cold side(Ramachandran 
et al. 2020). Where the second type is the ballistic thermophoresis which is specific to gra-
phene and other two-dimensional (2D) materials. It is caused by the ballistic transport of 
heat through the graphene sheet. Ballistic heat transport refers to the propagation of heat 
waves without collisions. In graphene, heat waves are carried by flexural phonons, which 
are vibrations of the graphene sheet. When a flexural phonon scatters off an adsorbed parti-
cle, it can transfer momentum to the particle, causing it to move (Bae et al. 2013; Han et al. 
2016).

Solitons are localized wave packets that can propagate through a medium without los-
ing their shape. They can be found in various systems, including graphene wrinkles. So it 
was found that the KdV-type equations can be adapted to model the thermophoretic motion 
of single wrinkles (Guo and Guo 2012). Recently, Abdel-Gawad et al. (2021) have driven 
a new (2 + 1)-dimensional nonlinear equation using the kp operator on the KdV model 
which could be used to describe the thermophoretic motion in graphene sheets (GS) as a 
2D material

where v = v(t, x, y) is the thermophoretic moving variable and t,  x,y are time, longitudi-
nal displacement, lateral displacement respectively with a(t), b as the thermal conductivity 
coefficients where �(t) is the coefficient of the lateral dispersion. When �(t) = 0 , Eq.  (1) 
reduces to the one dimensional thermophoretic equation with a variable heat transmission 
which was solved by many authors (Gaballah and El-Shiekh 2024; Guo and Guo 2012; 
Javid et al. 2019) where different structure of wave solutions like lump and solitary waves 
were found. Equation (1) is called the variable coefficients (2 + 1)-dimensional graphene 
sheets (2D-vGS) equation and it used to describe the thermophoretic waves transmission 
in (2 + 1)-dimentional graphene sheets, as wrinkles in graphene when heated, the hotter 
regions of the wrinkle experience a force pushing them towards the colder regions, caus-
ing the wrinkle move. However, in graphene, this motion occurs within the solid material 
itself, not in a surrounding fluid. Equation (1) was solved by the extended unified method 

(1)vxt + (vvx + vxxx + (a(t) + b)vx)x + �(t)vyy = 0,
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and many types of polynomial and rational solutions were obtained (Abdel-Gawad et al. 
2021).

From the previous background about thermophoretic motion in graphene and with 
Eq.  (1) which can be considered as a model to describe that motion with a wide range 
of possible applications in nanodevices, purifying water, developing new lab-on-a-chip 
devices and studying the behavior of biological systems. Therefore, we have decided to 
study the 2D-vGS Eq. (1) to find new n-soliton wave solutions for it using the direct bilin-
ear method.

This paper contains five sections, the first one is the introduction which reflects the 
importance of the 2D-vGS equation, and the second section gives a brief description for 
the direct technique presented by Hereman and Nuseir (1997) to find both the Hirota bilin-
ear form and n-soliton wave solutions for nonlinear partial differential equations (Hereman 
and Nuseir 1997; Wazwaz 2007). Where in the third section, we have generalized the direct 
bilinear method by using suitable variable coefficient transformation to find the bilinear 
form of the 2D-vGS equation and the n-soliton wave solutions of that equation. In section 
four, a discussion of the two and three solitons behavior affected with different choices of 
the thermal conductivity is given with the physical importance of the obtained solutions in 
the 2D optics and the dynamic interactions. Finally, the fifth section contains the important 
conclusion remarks obtained from our study with future possible applications.

2 � Simplified direct Hirota’s method

Recently, many different new techniques were developed and investigated to solve varia-
ble coefficients nonlinear partial differential equations like B äcklund transformation, Lie 
group analysis, symmetry techniques, Jacobi expansion method, trial equation method...
etc (Abdel-Gawad and Osman 2013; Baskonus et al. 2021; Boakye et al. 2024; El-Shiekh 
et  al. 2022; El-Shiekh 2021; El-Shiekh and Al-Nowehy 2022; El-Shiekh and Gabal-
lah 2020a, b, 2021a, b, c, 2022, 2023a, b, 2024; El-Shiekh and Hamdy 2023; Fahim 
et al. 2022; Gaballah et al. 2023, 2022; Gaballah and El-Shiekh 2023; Ganie et al. 2024; 
Khater 2022a, b, c, d, e, f, 2023a, b, c,  d, e, f, g, h, i, j, k,  l, m; Kumar et  al. 2020; 
Osman et al. 2018; Rehman et al. 2024; Tarla et al. 2022; Tarla et al. 2022). Hirota bilin-
ear method still considered as the most attractive method for finding soliton wave solu-
tions (Fan and Bao 2024; Yuan and Ghanbari 2024).

Since Hirota’s bilinear method is so complicated with higher order nonlinear partial dif-
ferential equations. In Hereman and Nuseir (1997) presented a simple and direct algorithm 
of the Hirota’s method as follows:

For a nonlinear partial differential equation

assume that v takes a solution in the form

where R is a constant can be determined by finishing the linear and nonlinear terms and k 
is a positive integer can be found from the balance procedure between linear and nonlinear 

(2)P(vx, vy, vt, vxt, vxy, ...) = 0,

(3)v(x, y, t) = R

k∑
i=1

�
i
ℏ

�xi
,
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coefficients in Eq. (2). ℏ = ℏ(x, y, t) arbitrary function. After find the form of the solution 
(3), we can use the Hirota bilinear differential operator

where f and g two differentiable functions. Than we can rewrite Eq. (2) in the bilinear form 
but not all integrable equations can be written in this form, so Hereman and Nuseir find 
another way to rewrite Eq. (2) after substituting with Eq. (3) as a combination of both lin-
ear L and nonlinear N terms in ℏ

Then to fined soliton wave solution assume that

where � is not a small parameter it is a book-keeping parameter. Substitute from Eq.  (6) 
into Eq. (5) and equate the coefficients of � to zero, we get:

For the one soliton solution

and for the two solitons

and so on.

3 � N‑soliton for the 2D‑vGS equation

In order to find the Hirota’s bilinear form of the 2D-vGS equation, we use assumption (3) with 
the balance technique between the terms 

(
vvx

)
x
 and vxxxx. Therefore, k = 2 and R = 12. So, 

Eq. (3) can be rewritten as:

(4)Dm
t
Dn

x
(fg) =

(
�

�t
−

�

�t�

)m(
�

�x
−

�

�x�

)n

f (x, t)g
(
x�, t�

)||||x=x� ,t=t� .

(5)ℏL(ℏ) + N(ℏ,ℏ) = 0,

(6)ℏ(x, y, t) = 1 +

∞∑
n=1

�
n
ℏ
(n)(x, y, t),

(7)O(�1) ∶ Lℏ
(1) = 0,

(8)O(�2) ∶ Lℏ
(2) = −N(ℏ(1),ℏ(1)),

(9)O(�3) ∶ Lℏ
(3) = −ℏ(1)

Lℏ
(2) − N(ℏ(1),ℏ(2)) − N(ℏ(2),ℏ(1)),

(10)

.

.

O(�n) ∶ Lℏ
(n) = −

n−1∑
j=1

[ℏj
Lℏ

(n−j) + N(ℏ(j),ℏ(n−j))].

(11)ℏ(x, y, t) = 1 + �ℏ
(1),

(12)ℏ(x, y, t) = 1 + �ℏ
(1) + �

2
ℏ
(2).

(13)v = 12(ln(ℏ(x, y, t)))xx.



Bilinear form and n‑soliton thermophoric waves for the variable…

1 3

Page 5 of 13  872

Now, substitute from Eq. (13) into Eq. (1):

By integration twice for Eq. (14) with respect to x we get:

where

Substitute from Eq. (16) in Eq. (15), yields

From the Hirota’s D-operator defined by Eq. (4), we get

So, Eq. (17) has the following bilinear form

Also, Eq. (17) is equivalent to

Comparing Eq. (20) with Eq. (7), the linear operator £ and the nonlinear operator N can be 
defined as:

The n-soliton solutions can be considered in the form

where �i = kix + liy − �i(t) − mit, ki, li,mi are arbitrary constants this suggestion of the �i 
is used to make us able to find n-solitons for variable coefficient equations, where i is an 

(14)
(lnℏ)xxxt +

(
12(lnℏ)xx(lnℏ)xxx + (lnℏ)xxxxx + (a(t) + b)(lnℏ)xxx

)
x
+ �(t)(lnℏ)xxyy = 0.

(15)(lnℏ)xt +
(
6((lnℏ)xx)

2 + (lnℏ)xxxx + (a(t) + b)(lnℏ)xx
)
+ �(t)(lnℏ)yy = 0,

(16)
(lnℏ)xt =

ℏxtℏ − ℏxℏt

h2
, (lnℏ)xx =

ℏxxℏ − ℏ
2
x

ℏ2
, (lnℏ)yy =

ℏyyℏ − ℏ2
y

ℏ2
,

(lnℏ)xxxx =
ℏxxxxℏ − 4ℏxxxℏx + 3ℏ2

xx

ℏ2
−

6
(
ℏxxℏ − ℏ

2
x

)2
ℏ4

.

(17)

(
ℏxtℏ − ℏxℏt

)
+ (a(t) + b)

(
ℏxxℏ − ℏ

2
x

)
+ �(t)

(
ℏyyℏ − ℏ

2
y

)
+
(
ℏxxxxℏ − 4ℏxxxℏx + 3ℏ2

xx

)
= 0.

(18)
DxDtℏ =2(ℏℏxt − ℏxℏt), D

2
x
ℏ = 2

(
ℏxxℏ − ℏ

2
x

)
, D2

y
ℏ = 2

(
ℏyyℏ − ℏ

2
y

)
,

D4
x
ℏ =2

(
ℏxxxxℏ − 4ℏxxxℏx + 3ℏ2

xx

)
.

(19)[DxDt + (a(t) + b)D2
x
+ �(t)D2

y
+ D4

x
]ℏ.ℏ = 0.

(20)
ℏ
(
ℏxt + (a(t) + b)ℏxx + �(t)ℏyy + ℏxxxx

)
−

(
ℏxℏt + (a(t) + b)ℏ2

x
+ �(t)ℏ2

y
+ 4ℏxxxℏx − 3ℏ2

xx

)
= 0.

(21)L(ℏ) =

(
�
2

�x�t
+ (a(t) + b)

�
2

�x2
+ �(t)

�
2

�y2
+

�
4

�x4

)
ℏ,

(22)N(ℏ,ℏ) = −

(
ℏxℏt + (a(t) + b)ℏ2

x
+ �(t)ℏ2

y
+ 4ℏxxxℏx − 3ℏ2

xx

)
.

(23)ℏ
(1) =

N∑
i=1

exp(�i),
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integer number and �i(t) are arbitrary functions of t. By substitution in (20), we get the fol-
lowing dispersion relation

Therefore,

where c is an integration constant. Now, the one soliton solution when N = 1 and � = 1 
from Eqs. (11) and (13) is

which is equivalent to

For two solitons assume that N = 2 and � = 1 , then ℏ(1) = e�1 + e�2 , and 
ℏ = 1 + e�1 + e�2 + ℏ

(2)(x, y, t) by back substitution in (8), we get ℏ(2) = e�1+�2+�12 and 

e�12 =
(k1−k2)

2

(k1+k2)
2 with condition that l1 = k1, l2 = k2 , hence the two soliton solution for the 

2D-vGS equation is given by

where

Accordingly, to find the 3-soliton wave solution we consider N = 3 in Eq.  (23), 
ℏ(1) = e�1 + e�2 + e�3 , and ℏ(2) = e(�1+�2)+�12 + e(�1+�3)+�13 + e(�2+�3)+�23 + ℏ

(3)(x, y, t) , then 

we get ℏ(3) = e(�1+�2+�3)+�123 , e�ij =
(ki−kj)

2

(ki+kj)
2 where e�123 = (k1−k2)

2(k1−k3)
2
(k2−k3)

2

(k1+k2)
2
(k1+k2)

2
(k1+k3)

2 .Therefore, the 

2D-vGS equation has the following three soliton solution

In the same way we can determine the soliton solutions for n ⪰ 4. So this emphasis that the 
2D-vGS equation is completely integrable and have any n soliton solutions.

(24)�i(t) =
1

ki ∫
(
k2
i
(a(t) + b) + l2

i
�(t)

)
dt,mi = k3

i
.

(25)�i = kix + liy −
1

ki ∫
(
k2
i
(a(t) + b) + l2

i
�(t)

)
dt − k3

i
t + c,

(26)
v
1
=

12k2
1
e
k
1
x+l

1
y−

1

k1
∫ (k2

1
(a(t)+b)+l2

1
�(t))dt−k3

1
t+c

(
1 + e

k
1
x+l

1
y−

1

k1
∫ (k2

1
(a(t)+b)+l2

1
�(t))dt−k3

1
t+c

)2
.

(27)v1 = 12k2
1
sech2

(
1

2

(
k1x + l1y −

1

k1 ∫
(
k2
1
(a(t) + b) + l2

1
�(t)

)
dt − k3

1
t + c

))
.

(28)

v2 = 12

⎡
⎢⎢⎢⎢⎣

(k2
1
e�1 + k2

2
e�2 +

�
k1 − k2

�2
e�1+�2 )�

1 + 1 + e�1 + e�2 +
(k1−k2)

2

(k1+k2)
2 e

�1+�2

� −

(k1e
�1 + k2e

�2 +
(k1−k2)

2

(k1+k2)
e�1+�2 )2

�
1 + 1 + e�1 + e�2 +

(k1−k2)
2

(k1+k2)
2 e

�1+�2

�2

⎤
⎥⎥⎥⎥⎦
,

(29)�i = ki(x + y) − ki ∫ ((a(t) + b) + �(t))dt − k3
i
t + ci, i = 1, 2

(30)

v3 = 12

(
ln

(
1 +

3∑
i=1

e�i +

3∑
1≤i≤j

(
ki − kj

)2
(
ki + kj

)2 e(�i+�j) +
(k1 − k2)

2
(
k1 − k3

)2(
k2 − k3

)2
(
k1 + k2

)2(
k1 + k2

)2(
k1 + k3

)2 e(�1+�2+�3)
))

xx
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4 � Application in 2D optics

Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, holds 
immense potential in the field of 2D optics and thermophonic due to its unique elec-
tronic and thermal properties. In this paper, we have found n-soliton wave solutions for 
the variable coefficient’s Eq.  (1) which describes the thermophoretic motion of single 
wrinkles in graphene sheets which consider as an intriguing area of research with poten-
tial applications in manipulating light at the nanoscale in 2D optics. Wrinkles can mod-
ify the optical properties of graphene where their presence can affect how light interacts 
with the material also wrinkles can influence the propagation and localization of surface 
plasmons, which are collective oscillations of electrons on the graphene surface. Plas-
mons play a crucial role in various 2D photonic devices (Deng and Berry 2016; Ogawa 
et al. 2020).

From the previous description of the importance of the studied equation and its pos-
sible applications in 2D optics we are interested in this section to focus on the interac-
tions of solitary waves specially on the second and third order solitons because those 
solutions are characterized by a rich spectrum of collision dynamics encompassing phe-
nomena such as fusion and fission (Yuan and Ghanbari 2024). Moreover, the one soliton 
solution which was investigated before (Abdel-Gawad et al. 2021), we have plotted 3D 
plots and density plots corresponding to three different choices for the variable coeffi-
cients a(t) and �(t) as constant functions a(t) = �(t) = 1 in figures (a), linear function of 
t like a(t) = �(t) = t in figures (b) and periodic function a(t) = �(t) = sin(0.5t) in figures 
(c) as follows (Figs. 1, 2, 3, 4).

From the previous figures, we see that the two soliton waves make a Y-shape and the 
three soliton waves show a fork-shape when k1, k2, k3 take different values but it return to 

the Y-shape if any two k’s become equal and this means that one of the e�ij = (ki−kj)
2

(ki+kj)
2 = 0 , 

and to prove this we have chosen k1 = k2 = 0, e�i2 = 0 and plotted it in Figs. 5 and 6. The 
dynamic behavior and the nonlinearity properties of the obtained two and three solu-
tions of the 2D-vGS equation could be important in 2D optic like modulation of light, 
surface plasmon resonance and thermal imaging.

Fig. 1   The 3D plot of the two soliton solution v
2
 given by Eq.  (28) where parameters are taken as: 

k
1
= 2, k

2
= b = c = 1, y = 0
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5 � Conclusion

The (2 + 1)-dimensional graphene sheets equation is a significant nonlinear model of 
2D optics that broad relevance across various domains in science and engineering. In 
this study, we have generalized the direct Hirota bilinear method given by Hereman and 
Nuseir (1997), Wazwaz (2007) to find the bilinear form of the 2D-vGS model which 
describes the thermophoric wave motion of wrinkles in graphene sheets. According 
to that, one, two and three soliton solutions were obtained which yielded the n-soliton 
solutions for the 2D-vGS. So, we can concluded that this equation is fully integrable. 
In the following some important concluding remarks about the results obtained in this 
study: 

1.	 The obtained soliton solutions specially the two and three solitons are new and didn’t 
obtained before for the 2D-vGS equation (Abdel-Gawad et al. 2021).

Fig. 2   The density plot corresponding to the two soliton solution v
2
 for the three cases plotted in Fig. 3. The 

two solitons are taken the Y-shape soliton in (a) it is like a lines but in (b) and (c) take a curve shape in the 
second branch of the Y-shape affected with values of the variable coefficients

Fig. 3   The 3D plot of the three solitons solution v
3
 given by Eq.  (30) where parameters are taken as: 

k
1
= 1, k

2
= 2, k

3
= 3, b = c

1
= c

2
= 1, y = 0
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Fig. 4   The density plot of the three solitons solution v
3
 given by Eq. (30) and plotted in 3Dn Fig. 3, it is 

clear that the three solitons take a fork shape with three lines in (a) and takes three carves in (b) and (c)

Fig. 5   The three soliton solution taken Y-shape when we assumes k
1
= k

2
= 1, k

3
= 2 with 

b = c
1
= c

2
= 1, y = 0

Fig. 6   The density plot of the three soliton solution when k
1
= k

2
= 1, k

3
= 2 with b = c

1
= c

2
= 1, y = 0 , 

the Y-shape is so clear
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2.	 The fascinating dynamic behavior of the two solitons and three solitons as Y-shape and 
fork-shape solitons which could shed light on the fission and fusion dynamics of these 
solitary waves is illustrated.

3.	 The three solitons can give both fork shape solitary wave if the k′s have different values 
but it returns to Y-shape if any two k′s are equals.

4.	 From the 3D plots and density plots we can see the effect of both variable heat transmis-
sion function a(t) and the coefficient of the lateral dispersion �(t) on the propagation of 
the two and three solitons propagation.

Finally, we hope our work would have an impact in the manufacturer applications of the 
graphene sheets as a 2D material with fascinating properties specially in 2D optics.
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