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Abstract
Analytical solutions of the generalized nonlinear Schrödinger with four powers of nonlin-
earity for description of propagating pulses in optical fiber are presented. Optical solitons 
corresponding to the mathematical model are given. Conservation laws of the generalized 
model for propagation pulses with four powers of nonlinearity are written. To the best of 
our knowledge, the conservation laws obtained have not yet been presented in literature. 
The equation investigated generalizes several well-known models, which allows us to 
evaluate the influence of various processes on pulse propagation. Conservative quantities 
for the bright optical soliton, corresponding to its power, momentum and energy, are cal-
culated. The analytical expressions for conservative quantities obtained can be applied to 
check whether numerical schemes for the explored equation are conservative.

Keywords Generalized model · Conservation law · Optical soliton · Conservative quantity

1 Introduction

In this paper we study the equation in the form (Kudryashov 2019)

where q(x, t) is a complex function, i2 = −1 , n ∈ ℤ, a, b1 , b2 , b3 and b4 are parameters of 
Eq. (1). n ≠ −1 (if b1 ≠ 0 ), n ≠ −2 (if b2 ≠ 0 ), n ≠ 2 (if b3 ≠ 0 ), n ≠ 1 (if b4 ≠ 0).

Equation (1) has been proposed by Kudryashov in (2019) and it is known as the 
Kudryashov model (Biswas et  al. 2020d; Raheel et  al. 2023; Sonmezoglu et  al. 2022; 

(1)i qt + a qxx +
(
b1 |q|2n + b2 |q|n + b3 |q|−n + b4 |q|−2n

)
q = 0,
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Yıldırım et al. 2020; Zayed et al. 2020a, 2020c). Equation (1) does not pass the Pain-
levé test (Kudryashov 2019) and the Cauchy problem for this equation cannot be solved 
by the inverse scattering transform. However, taking into account the traveling wave 
reduction (for more recent examples of the search for soliton solutions of PDEs see, for 
instance, Biswas et  al. 2018; Triki et  al. 2022a, 2022b; Yıldırım 2019a, 2019b, 2021; 
Yıldırım and Yaşar 2017) one can find periodic and solitary wave solutions of Eq. (1) in 
the form of optical solitons, which have recently been found in a number of papers (see, 
for example, Arnous et al. 2021; Arshed and Arif 2020; Arshed et al. 2021, 2022; Bis-
was et al. 2019, 2020a, 2020b, 2020e; Hu and Yin 2022; Kai and Li 2023; Kudryashov 
2020b, 2020d, 2020f, 2021d, 2021e; Kudryashov and Antonova 2020; Kumar et  al. 
2020; Li and Wang 2022; Raheel et al. 2022a; Raza et al. 2021; Zayed and Alngar 2021; 
Zayed et  al. 2020d, 2021b, 2021e). Without stopping at a detailed analysis of optical 
solitons, which are solutions of Eq. (1), we note that Eq. (1) generalizes a number of 
well-known equations used to describe impulses in optical media. It is obvious that Eq. 
(1) at n = 1 , b2 = 0 , b3 = 0 and b4 = 0 is the famous non-linear Schrödinger equation, 
which was the first mathematical model that was proposed to describe the optical soli-
tons (Hasegawa and Tappert 1973a, b; Tai et al. 1986).

As we have previously mentioned, optical soliton solutions described by Eq. (1) are 
currently well-investigated. However, to the best of our knowledge, conservation laws 
corresponding to Eq. (1) have not been studied yet to date. Conservative quantities of 
partial differential equations are often applied to check whether numerical schemes used 
for solving partial differential equations are conservative (see, for example, Bayramukov 
and Kudryashov (2024). To analytically calculate conservative quantities for the soli-
tary wave one must first find an explicit expression for the solitary wave solution and 
the conservation law of the equation, therefore we also present them in this work. The 
aforementioned discussion explains why it is significant to look for conservation laws 
of the proposed equation. Thus, the main purpose of this paper is to present conserva-
tion laws of Eq. (1) by means of direct calculations and find conserved quantities cor-
responding to its soliton solution.

It is well known that we say there exists the conservation law corresponding to Eq. 
(1), if we can write this equation in the form

where T ≡ Tj(u, ux, ut,… , x, t) is the density and Xj ≡ X(u, ux, ut,… , x, t) is the flux.
Integrating Eq. (2) with respect to x, we get the conservative quantity of the density 

as follows  (Alshehri et  al. 2022a, Alshehri et  al. 2022b; Alshehri and Biswas 2022; 
Arnous et  al. 2022; Biswas et  al. 2020c, 2021a, 2021b; Kivshar and Agrawal 2003; 
Kivshar and Malomed 1989; Kivshar and Pelinovsky 2000; Kudryashov et  al. 2022; 
Olver 1993; Serkin and Belyaeva 2018; Vega-Guzman et al. 2021; Yıldırım et al. 2021; 
Zayed et al. 2020b, 2021a, 2021c 2021d, 2021f) 

One can see that Ij is the conservative quantity for the solution q(x, t).
This paper is organized as follows. Periodic and solitary wave solutions of Eq. (1) are 

given in Sect. 2. Bifurcations of phase portraits of the traveling wave reduction of Eq.(1) 

(2)
�Tj

�t
+

�Xj

�x
= 0, (j = 1, 2, 3),

(3)Ij = ∫
∞

−∞

Tj dx = Constant.
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are presented in Sect. 3. In Sects. 4, 5 and 6 we obtain conservation laws corresponding 
to Eq. (1). In Sect. 7 conservative quantities of optical soliton of Eq. (1) are calculated.

2  Optical solitons of equation

The Cauchy problem for Eq. (1) cannot be soled by the inverse scattering transform 
(Kudryashov 2019). However the optical soliton of Eq. (1) can be found using the traveling 
wave solutions. These solutions can be found using special methods (see, for example, (Alo-
taibi 2021; Biswas et al. 2021c, 2022; Ege 2022; Ekici 2022; Eldidamony et al. 2022a, 2022b; 
González-Gaxiola 2022; Kudryashov 1990, 1991, 2005, 2009, 2012, 2020a,  2020c, 2020e, 
2021a, 2021b, 2021c, 2022a,2022b, 2022c;  Ozisik et al. 2022; Raheel et al. 2022b; Vitanov 
2010, 2011a, 2011b; Vitanov and Dimitrova 2010; Vitanov et al. 2010; Wang 2022a, 2022b; 
Zayed et al. 2022).

We take into account traveling wave solutions in the form

where y(z), �(z) are new functions and z = x − C0 t.
Substituting (4) into Eq. (1), we obtain the system of equations for imaginary and real part 

as the following (Kudryashov 2019)

and

Equation (5) can be integrated after being multiplyed by y(z). We have

where C1 is an arbitrary constant.
Substituting �z into (6), we get the second-order differential equation for y(z) in the form

Multiplying Eq. (8) by yz and integrating the resulting expression with respect to z, we have 
at n ≠ −1 , n ≠ −2 , n ≠ 1 and n ≠ 2 the first integral as follows (Kudryashov 2019)

(4)q(x, t) = y(z) ei (�(z)−� t),

(5)2 a yz �z + a y�zz − C0 yz = 0

(6)
� y + C0 �z y + a yzz − a y�2

z

+ b1 y
2 n+1 + b2 y

n+1 + b3 y
1−n + b4 y

1−2 n = 0.

(7)�z =
C0

2 a
−

C1

a y2
,

(8)
a yzz +

(
� +

C2

0

4 a

)
y −

C2

1

a y3
+ b1 y

2 n+1 + b2 y
n+1+

+ b3 y
1−n + b4 y

1−2 n = 0

(9)
y2
z
+

(
�

a
+

C2

0

4 a2

)
y2 +

b1

a (n + 1)
y2 n+2 +

2 b2

a (n + 2)
yn+2−

−
2 b3

a (n − 2)
y2−n −

b4

a (n − 1)
y2−2 n +

C2

1

a2 y2
= C2.
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Some partial cases of Eq. (9) were considered in the paper by Kudryashov in 2019). 
Here, let us consider Eq. (9) at C1 = 0 and C2 = 0 using the new variable in the form 
(Kudryashov 2019)

Substituting the expression (4) into Eq. (9), we have the equation

where � , � , � , � and � are determined as follows

The general solution of Eq. (11) is expressed via the Jacobi elliptic sine in the form 
(Kudryashov 2020b, 2020d, 2020f, 2021d, 2021e)

where

and V1 , V2 , V3 and V4 are roots of the following algebraic equation

These real roots satisfy the following constraints

Taking into account (4), (10) and (13), we get the periodic solution of Eq. (1) in the form

(10)y(z) = V(z)
1

n

(11)V2

z
− � + � V − � V2 + � V3 − � V4 = 0,

(12)
� =

2 b3 n
2

a(2 − n)
, � =

2 b2 n
2

a (n + 2)
, � = −

� n2

a
−

C2

0
n2

4 a2
,

� = −
b1 n

2

a(n + 1)
, � =

b4 n
2

a(n − 1)
.

(13)V(z) = V3 +
(V4 − V3)(V3 − V1)

V3 − V1 + (V1 − V4) sn
2
�√

�(z − z1);S
� ,

(14)� =
�

4
(V3 − V1)(V4 − V2), S2 =

(V1 − V4)(V2 − V3)

(V2 − V4)(V1 − V3)

(15)� V4 − � V3 + � V2 − � V + � = 0.

(16)V1 V2 V3 V4 =
�

�
,

(17)V1 V2 V3 + V1 V2 V4 + V1 V3 V4 + V2 V3 V4 =
�

�

(18)V1 V2 + V1 V3 + V1 V4 + V2 V3 + V2 V4 + V3 V4 =
�

�
,

(19)V1 + V2 + V3 + V4 =
�

�
.

(20)q(x, t) =

�
V3 +

(V4 − V3)(V3 − V1)

V3 − V1 + (V1 − V4) sn
2
�√

�(x − C0t − z1);S
�

� 1

n

ei (�(z)−� t),
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In the case of V1 = V2 , we have S2 = 1 and the elliptic sine is reduced to the hyperbolic tan-
gent. From the solution (13) we obtain the solitary wave solution in the form

Using (4), (10) and (21), we have the bright and dark soliton of Eq. (1) as follows

In particular, the optical soliton of Eq. (1) can be found by looking for the solution of Eq. 
(9) at b3 = b4 = C1 = C2 = 0 in the form (see E_{{{\text{MP}}}} 2020c, 2020e, 2021c, 
2022a)

where z0 is a constant and parameters � , � and � are determined by (12). Some other optical 
solitons have been obtained in the paper by Kudryashov in (2019).

3  Bifurcations of phase portraits of the system (8)

In this section we plot several partial cases of phase portraits of the studied system (8). In 
rewrite it as

Let us observe the first partial case. We write the equation explored at n = 1 , C1 = 0 and 
b4 = 0

The first integral of the system (25) is written in a following way

Equilibrium points of Eq. (25) are located on the v axis and with the coordinate defined by 
the following cubic equation

(21)V(z) = V3 +
(V4 − V3)(V3 − V1)

V3 − V1 + (V1 − V4) tanh
2
�√

�(z − z1)
� .

(22)q(x, t) =

�
V3 +

(V4 − V3)(V3 − V1)

V3 − V1 + (V1 − V4) tanh
2
�√

�(x − C0t − z1)
�

� 1

n

ei (�(z)−� t).

(23)q(x, t) =

�
4�

2 � + (�2 − 4� �) e−
√
�(x−C0t−z0) + e

√
�(x−C0t−z0)

� 1

n

ei (�(z)−� t),

(24)

yz = v, vz = −
b1

a
y2n+1 −

b2

a
yn+1 −

(
� +

C2

0

4a

)
y −

C1

a

1

y3
−

b3

a

1

yn+1
−

b4

a

1

y2n+1
.

(25)yz = v, vz = −
b1

a
y3 −

b2

a
y2 −

(
�

a
+

C2

0

4a

)
y −

b3

a
≡ f1(y).

(26)H1(y, v) =
v2

2
+

b1

a

y4

4
+

b2

a

y3

3
+

(
�

a
+

C2

0

4a

)
y2

2
+

b3

a
y.

(27)
b1

a
y3 +

b2

a
y2 +

(
�

a
+

C2

0

4a

)
y +

b3

a
≡ −f1(y) = 0
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Equation (27) may have at most three roots. Let us denote them as y1s, y2s, y3s . Pro-
vided that the root yis is real, the stability of an equilibrium point (yis, 0) is determined by 
the eigenvalues of the following matrix

The eigenvalues of (28) are as follows

Thus, if f1(y) increases at the point yis , then an equilibrium is a saddle, if it decreases at that 
point, then it is a center, otherwise it is a degenerate equilibrium. Having said that, we can 
propose the following classification of equilibria, depending on the parameter values and 
the sign of the discriminant D1 of Eq. (27): 

1. D1 > 0, −b1∕a > 0 . Equation (25) has three equilibria on the v axis with coordinates 
y1 s, y2 s, y3 s (we assume y1 s < y2 s < y3 s ), out of which left and right equilibria are 
saddles and the middle one is a center (Fig. 1a-b).

2. D1 > 0, −b1∕a < 0 . Equation (25) has three equilibria on the v axis with coordinates 
y1 s, y2 s, y3 s (we assume y1 s < y2 s < y3 s ), out of which left and right equilibria are 
centers and the middle one is a saddle.

3. D1 < 0, −b1∕a > 0 . Equation (25) has one equilibrium on the v axis with the coordinate 
y1s , which is a saddle.

4. D1 < 0, −b1∕a < 0 . Equation (25) has one equilibrium on the v axis with the coordinate 
y1s , which is a center.

5. D1 = 0, −b1∕a > 0 . Equation (25) has two equilibria y1s and y2s out of which one is a 
saddle and one is degenerate. On the curve D1 = 0 in the parameter space a pitchfork 
bifurcation occurs, where two equilibria of Eq. (25) either appear or vanish.

6. D1 = 0, −b1∕a < 0 . Equation (25) has two equilibria y1s and y2s out of which one is a 
center and one is degenerate. On the curve D1 = 0 in the parameter space a pitchfork 
bifurcation occurs, where two equilibria of Eq. (25) either appear or vanish.

The phase portraits for the above cases are shown in Figs. 1-2. The pitchfork bifurcationw 
occur in the last two instances of the phase portraits.

Next, we write the equation studied for n = 1 , C1 = 0 , b2 = 0 and b3 = 0

The right hand side of the system of Eq. (30) is not continuous at y = 0 . To get the regu-
lar system associated to (30), we use the following variable transformation

Therefore, the regular system assosiated with (30) is written as follows

(28)

(
0 1

−
df1

dy
||yis 0

)
, i = 1..3.

(29)�1,2 = ±

√
df

dy

|||yis
, i = 1..3.

(30)yz = v, vz = −
b1

a
y3 −

(
�

a
+

C2

0

4a

)
y −

b4

ay
.

(31)dz = ayd�.



Analytical solutions and conservation laws of the generalized…

1 3

Page 7 of 21 1110

Fig. 1  Phase portraits for the first case
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Fig. 2  Phase portraits for the first case
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Systems of equations (30) and (32) have the same first integral

therefore their orbits are topologically the same, with the exception of the line y = 0 . Thus, 
we can investigate the stability of equilibria of (32), which will match the stability of equi-
libria of (30). Every equilibrium of (32) is located on the v axis with the coordinate deter-
mined by the following equation

This equation can have at most four roots. Let us denote them as y1s, y2s, y3s, y4s . Provided 
that the root is real, the stability of an equilibrium point (yis, 0) is determined by the eigen-
values of the matrix

Accordingly, if f2(y) increases at the point ys and ys > 0 , or decreases at the point ys and 
ys < 0 , then an equilibrium is a saddle; if f2(y) decreases at ys and ys > 0 , or f2(y) increases 
at ys and ys < 0 , then it is a center, otherwise it is a degenerate equilibrium (this works for 
a > 0 , in the case of a < 0 the situation is reversed). Thus, we present the following classi-
fication for equilibrium points in this case (in all the cases we assume that the discriminant 
of Eq. (34) is nonnegative D2 ≥ 0 , except for the last one) 

 1. b1 > 0, b4 > 0, 𝜔 + C2

0
∕4 ≥ 0 . Equation (32) has no equilibria (Fig. 3a).

 2. b1 > 0, b4 > 0, 𝜔 + C2

0
∕4 < 0 . Equation (32) has four equilibria in a sequence: 

(center, saddle, saddle, center) (Fig. 3b).
 3. b1 > 0, b4 < 0 . Equation (32) has two center equilibria (Fig. 3c).
 4. b1 < 0, b4 > 0 . Equation (32) has two saddle equilibria (Fig. 3d).
 5. b1 < 0, b4 < 0, 𝜔 + C2

0
∕4 > 0 . Equation (32) has four equilibria in a sequence: (sad-

dle, center, center, saddle) (Fig. 3e).
 6. b1 < 0, b4 < 0, 𝜔 + C2

0
∕4 < 0 . Equation (32) has no equilibria (Fig. 3f).

 7. b1 ⋅ (𝜔 + C2

0
∕4) > 0, b4 = 0 . Equation (32) has a degenerate zero equilibrium (Fig. 4a-

b).
 8. b1 > 0, 𝜔 + C2

0
∕4 < 0, b4 = 0 . Equation (32) has three equilibria in a sequence: 

(center, degenerate, center) (Fig. 4c).
 9. b1 < 0, 𝜔 + C2

0
∕4 > 0, b4 = 0 . Equation (32) has three equilibria in a sequnce: (sad-

dle, degenerate, saddle) (Fig. 4d).
 10. b1 ⋅ (𝜔 + C2

0
∕4) < 0, D2 = 0 . Equation (32) has two degenerate equilibria (Fig. 4e).

(32)y� = ayv, v� = −b1y
4 −

(
� +

C2

0

4

)
y2 − b4 ≡ f2(y)

(33)H2(y, v) =
v2

2
+

b1

a

y4

4
+

(
�

a
+

C2

0

4a

)
y2

2
+

b4

a
ln y,

(34)b1y
4 +

(
� +

C2

0

4

)
y2 + b4 = −f2(y) = 0.

(35)

(
0 ayis

−
df2

dy
||yis 0

)
, i = 1..3.
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Fig. 3  Phase portraits for the second case
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Fig. 4  Phase portraits for the second case
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4  The first conservation law corresponding to Eq. (1)

Let us write Eq. (1) as the system of equations in the form

and

Multiplying Eq. (36) by q∗ and Eq. (37) by −q and adding the resulting expressions, we 
obtain the equation

Equation (38) can be presented in the form

where T1 and X1 take the form

From Eq. (39) follows the conservative quantity

The conservative quantity (41) correspons to the impulse power.

5  The second conservation law corresponding to Eq. (1)

The second conservation law can be found by multiplying Eq. (36) by q∗
x
 and Eq. (37) by qx 

and adding the resulting equations. We get

Taking into account the following formulas

(36)i qt + a qxx +
(
b1 |q|2n + b2 |q|n + b3 |q|−n + b4 |q|−2n

)
q = 0,

(37)−i q∗
t
+ a q∗

xx
+
(
b1 |q|2n + b2 |q|n + b3 |q|−n + b4 |q|−2n

)
q∗ = 0.

(38)i (q∗ qt + q q∗
t
) + a (q∗qxx − q q∗

xx
) = 0.

(39)
�T1

�t
+

�X1

�x
= 0.

(40)T1 = i |q|2, X1 = a (q∗qx − q q∗
x
).

(41)P = ∫
∞

−∞

|q|2 dx = Const.

(42)

i (q∗
x
qt − qx q

∗
t
) + a (q∗

x
qxx + qx q

∗
xx
) + b1 |q|2n (q∗x q + qx q

∗)+

+ b2 |q|n (q∗x q + qx q
∗) + b3 |q|−n (q∗x q + qx q

∗) + b4 |q|−2n (q∗x q + qx q
∗) = 0.

(43)q∗
x
qt − qx q

∗
t
=

1

2

�

�t
(q∗

x
q − q∗qx) −

1

2

�

�x
(q∗

t
q − q∗qt),

(44)q∗
x
q + q∗qx =

�

�x
(|q|2),

(45)q∗
x
qxx + q∗

xx
qx =

�

�x
(|qx|2),
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we can write Eq. (42) in the form

The last equation can be presented as the conservation law

where T2 and X2 are determined by formulas

From Eq. (47) we obtain the conservative quantity in the form

Conservative quantity (50) corresponds to the conservation of the momentum of the solu-
tion q(x, t).

6  The third conservation law corresponding to Eq. (1)

At the first step we multiply Eq. (36) by |q|2n q∗ and Eq. (37) by −|q|2n q . After that we 
add the equations obtained. As a result we have the following equation

We also have the following equation after multiplying Eq. (36) by |q|n q∗ and Eq. (37) by 
−|q|n q and then adding them. We get

The two following equations can be obtained by multiplying Eq. (36) by |q|−n q∗ and by 
|q|−2n q∗ , consequently, and Eq. (37) by −|q|−n q , and bt −|q|−2n q . Adding these expres-
sions yields two following equations

(46)

i

2

�

�t
(q∗

x
q − q∗qx) −

i

2

�

�x
(q∗

t
q − q∗qt) + a

�

�x
(|qx|2)+

+
2b1

2n + 2

�

�x
|q|2n+2 +

2b2

n + 2

�

�x
|q|n+2+

+
2b3

2 − n

�

�x
|q|2−n +

2b4

2 − 2n

�

�x
|q|2−2n.

(47)
�T2

�t
+

�X2

�x
= 0,

(48)T2 =
i

2
(q∗

x
q − q∗qx),

(49)
X2 =

i

2
(q∗qt − q∗

t
q) + a |qx|2 +

2b1

2n + 2
|q|2n+2 +

2b2

n + 2
|q|n+2

+
2b3

2 − n
|q|2−n +

2b4

2 − 2n
|q|2−2n.

(50)M =
i

2 ∫
∞

−∞

(
q∗
x
q − q∗qx

)
= Const.

(51)2 i

2n + 2

� |q|2n+2

�t
+ a |q|2n (q∗ qxx − q q∗

xx
) = 0.

(52)2 i

n + 2

� |q|n+2

�t
+ a |q|n (q∗ qxx − q q∗

xx
) = 0.
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and

From Eqs. (51)–(54) one can see that we need other equations to find the third conservation 
law of Eq. (1). At the second step, first of all, we multiply Eq. (36) by q∗

xx
 and Eq. (37) by 

−qxx . Adding the expressions obtained, we have the equation

At the third step, we, first of all, multiply Eqs. (51), (52), (53) and (54) by b1 , b2 , b3 and b4 , 
respectively. Then, Eq. (55) is multiplied by a. Adding five equations obtained yields the 
equation in the form

The last equation can be written as the conservation law

where T3 and X3 take the form

and

From (57) we obtain the conservative quantity in the form

Expression (60) corresponds to the conservation of energy for the optical soliton of Eq. (1).

(53)2 i

2 − n

� |q|2−n

�t
+ a |q|−n (q∗ qxx − q q∗

xx
) = 0

(54)2 i

2 − 2n

� |q|2−2n

�t
+ a |q|−2n (q∗ qxx − q q∗

xx
) = 0.

(55)
i
�

�x

(
q∗
x
qt + qx q

∗
t

)
− i

� |qx|2

�t
+
(
q q∗

xx
− qxx q

∗
)
(b1 |q|2n+

+ b2 |q|n + b3 |q|−n + b4 |q|−2n) = 0.

(56)

2 i b1

2n + 2

� |q|2n+2

�t
+

2 i b2

n + 2

� |q|n+2

�t
+

2 i b3

2 − n

� |q|2−n

�t
+

+
2 i b4

2 − 2n

� |q|2−2n

�t
− i a

� |qx|2

�t
+ i a

�

�x

(
q∗
x
qt + qx q

∗
t

)
.

(57)
� T3

�t
+

� X3

�x
= 0,

(58)T3 =
2 b1 |q|2n+2

2n + 2
+

2 b2 |q|n+2

n + 2
+

2 b3 |q|2−n

2 − n
+

2 b4 |q|2−2n

2 − 2n
− a |qx|2

(59)X3 = a
(
q∗
x
qt + qx q

∗
t

)
.

(60)
H = ∫

∞

−∞

(
2 b1

2 n + 2
|q|2n+2 +

2 b2

n + 2
|q|n+2 +

2 b3

2 − n
|q|2−n+

+
2 b4

2 − 2n
|q|2−2n − a |qx|2

)
dx = Const.
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7  Conservative quantities corresponding to the soliton (23) of Eq. (1)

Using the conservation laws we can calculate conservative quantities of solutions of Eq. 
(1). Without loss of generality, let us calculate the conservative quantities of optical soliton 
(23) corresponding to Eq. (1).

Let us note that to calculate the conservative quantity we use the following integral 
(Hammer 1953)

where B(x, y) is the beta function and F(a, b, c, z) is the Gaussian hypergeometric function, 
and 2m > k.

Substituting (23) into (41), we obtain the power of optical soliton (23) in the form

Using the new variable � =
1√
�
ln(z) , the integral (41) is reduced to the following

The conservative quantity corresponding to the momentum is found by substituting solu-
tion (23) into expression (50). As a result we have

Conservative quantity of solution (23) corresponding to Eq. (1) can be calculated by sub-
stituting solution (23) into (60) and taking into account integral (61) at b3 = 0 and b4 = 0 . 
This yields the conservative quantity in the form

(61)

Ω(�,m, k) =∫
∞

0

x2k−1

�
1 + 2 � x + x2

�2m dx

=(� −
√
�2 − 1)2 k B(4m − 2k, 2k)F(2 k, 2m, 4m,

2
√
�2 − 1)

� +
√
�2 − 1)

),

(62)P = ∫
∞

−∞

�
4�

2 � + (�2 − 4� �) e−
√
�z + e

√
�z

� 2

n

dz.

(63)

P =
(4�)

2

n

√
� ∫

∞

0

�
2

n
−1

�
�2 − 4� � + 2 � � + �2

� 2

n

d� =

=
(4�)

2

n

√
� (�2 − 4��)

1

n

Ω

�
�

√
�2 − 4� �

,
1

n
,
1

n

�
.

(64)M =
C0 (4�)

2

n

2 a
√
� (�2 − 4� �)

1

n

Ω

�
�

√
�2 − 4� �

,
1

n
,
1

n

�
.
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This conservative quantity (65) corresponds to the energy of the optical soliton (23).

8  Conclusion

In this paper we have studied the mathematical model for propagation pulses with four 
powers of nonlinearity. This nonlinear partial differential equation is the generalization of 
the nonlinear Schrödiner equation and some other well-known mathematical models for 
description of propagation pulses in optical medium, therefore it may help us evaluate the 
influence of various processes on pulse propagation. The main objective of this paper was 
to construct conservation laws of Eq. (1). There have been derived three conservation laws 
corresponding to Eq. (1) by means of direct calculations. To present analytical expressions 
of conserved quantites for the explored equation, analytical optical soliton solutions corre-
sponding to the mathematical model have also been given. Conservative quantities for the 
bright optical soliton have been calculated. We suppose that the analytical expressions for 
conservative quantities obtained can be applied to verify whether numerical schemes for 
the studied equation are conservative.
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