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Abstract
The human body is a complex system, and the energy consumption in sports activities 
is influenced by many factors, making it challenging to accurately predict the degree of 
sports fatigue. Therefore, this article aims to use spectral sensors and machine learning 
algorithms to predict the level of sports fatigue among athletes. Spectral sensors capture 
biological signals inside the athlete’s body and convert them into digital signals. Multiple 
optical parameters are selected as input features to reflect the physiological state and meta-
bolic activities inside the athlete’s body. After the data collection is completed, machine 
learning algorithms are used to analyze and process the data collected by the sensors, learn 
the patterns and patterns of the data, and make predictions based on these patterns and 
patterns. The results indicate that spectral sensors and machine learning algorithms can 
effectively predict the level of sports fatigue among athletes. The high correlation between 
the predicted results and the actual test results proves the reliability and accuracy of the 
proposed method. This method can provide timely and accurate fatigue monitoring for 
coaches and athletes, thereby helping to optimize training plans and avoid the occurrence 
of sports injuries.

Keywords Spectral sensor · Machine learning · Sports fatigue level · Prediction system

1 Introduction

During physical exercise, appropriate exercise is beneficial as it can reduce the burden on 
the body and help the body burn calories better. But excessive exercise can cause harm to 
the body, including muscle and bone damage, overtraining syndrome, atrial fibrillation, and 
more. Therefore, it is very important to grasp the training load, as overtraining may lead to 
physical fatigue and even endanger life safety (Halson 2014). When formulating a personal 
exercise plan, it is necessary to determine the appropriate exercise intensity, frequency, and 
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duration based on physical condition and exercise goals. It is not advisable to blindly pursue 
high-intensity and long-term exercise, but to gradually increase the exercise intensity and 
duration according to one’s own physical condition and ability. A scientifically reasonable 
training load can maintain a balance between energy intake and consumption in the human 
body, improve overall physical fitness, and enhance physical health. However, it is often 
difficult for people to judge their fatigue state during exercise. Excessive exercise intensity 
can lead to the body entering a state of excessive fatigue, and even lead to related sports 
injuries, affecting people’s physical health. Therefore, a scientific and reasonable training 
load is crucial for maintaining a balance between energy intake and consumption, improv-
ing overall physical fitness, and enhancing physical health. Traditional fatigue detection 
methods usually only rely on muscle fatigue or subjective feelings for judgment, making 
it difficult to accurately determine the degree of fatigue, which limits the development of 
training plans and increases the risk of sports injury to a certain extent. Therefore, it is 
necessary to develop an accurate and effective fatigue degree prediction system. Therefore, 
this article designs an intelligent sports fatigue degree prediction system based on spectral 
sensors and machine learning algorithms, which can effectively solve the problems exist-
ing in traditional fatigue detection methods (Chen and Su 2022). The system collects bio-
logical signal data during exercise through spectral sensors installed on the body, such as 
electrocardiogram signals, muscle electrical signals, skin temperature, blood oxygen and 
other biological change indicators. Then, the data is processed and analyzed, and machine 
learning algorithms are used to analyze and predict fatigue status. Finally, the evaluation 
results of athletes’ fatigue status are output. This prediction system can not only provide 
more accurate fatigue state evaluation results, but also provide personalized and scientific 
training plans for athletes based on this result, thereby better achieving training objectives. 
This prediction system has the advantages of convenient data collection, high real-time 
performance, and high evaluation accuracy. It has certain significance for scientific control 
and adjustment of training load, prevention of excessive exercise, improvement of training 
effectiveness, and promotion of physical health. It also provides new ideas and approaches 
for the development of intelligent sports monitoring equipment.

2 Related work

The literature proposes a method for identifying leg muscle fatigue, which uses steps such 
as signal acquisition, preprocessing, Short Time Fourier Transform (STFT), and model con-
struction to process the recognition of leg muscle fatigue signals (Hemmings et al. 2017). 
By doing so, one can find the most accurate fatigue prediction model and use it to predict the 
degree of leg muscle fatigue. The literature utilized different machine learning algorithms to 
construct three fatigue prediction models, which were then validated using cross validation 
tools (Su et al. 2019). The results indicate that the model constructed by the random forest 
algorithm performs best. The score of this model reaches 0.958, close to 1, indicating high 
prediction accuracy. For ease of use, the literature has transplanted this model to a portable 
digital signal processing platform, thereby improving the construction of the entire system, 
which can be easily applied in daily training. The portable digital signal processing plat-
form has high efficiency and practicality in the process of data acquisition and processing, 
thus effectively improving the efficiency of the system (Chang et al. 2015). The literature 
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proposed a universal rule for determining muscle fatigue level, and based on this, a portable 
intelligent leg sports fatigue level prediction system was designed, including hardware and 
software parts (Zadeh et al. 2021). In terms of hardware, the literature has designed and 
produced a wireless muscle sound signal collector and a portable digital signal processing 
platform (Hung et al. 2014). The signal collector can collect EMG signals and muscle ten-
sion data during leg muscle movements, and transmit the data to a digital signal processing 
platform through wireless transmission technology. The digital signal processing platform 
integrates multiple processing and analysis algorithms for preprocessing and processing the 
collected data, extracting useful feature signals, and providing a data foundation for subse-
quent operations. In terms of software, the literature uses a leg muscle fatigue recognition 
method to predict muscle fatigue status, and the predicted results are displayed in real-time 
through a graphical user interface (Wang et al. 2020). This fatigue identification method 
adopts traditional signal processing algorithms and machine learning algorithms. Through 
steps such as signal preprocessing, feature extraction, STFT analysis, PCA dimensional-
ity reduction, and using algorithms such as SVM classification and decision tree, multiple 
fatigue degree determination rules are designed and integrated into the system. According 
to the experimental results in the literature, this method can predict more accurate results 
under various muscle fatigue states. The literature proposes a body fatigue classification 
method based on heart rate variability, which can classify the degree of fatigue in the human 
body and help professionals in sports training, fitness, and other fields accurately evaluate 
the fatigue status of individuals, thus taking corresponding measures for regulation and 
management (Dong et al. 2014). The literature calculated 24 heart rate variability features 
from electrocardiogram signals. Heart rate variability refers to the amplitude of variability 
in heart rate over different time intervals (Sacha 2014). These features can comprehensively 
reflect the activity level of the human autonomic nervous system. By calculating these fea-
tures, detailed information about the activity of the human autonomic nervous system can 
be obtained, providing a data basis for subsequent classification. The literature proposes a 
joint analysis method of electromyography and gait signals, which can help identify muscle 
fatigue status and predict gait (Papagiannis et al. 2019). A classification model for muscle 
fatigue status was designed using machine learning methods, and a gait prediction model 
was designed using deep learning methods. The literature collects and preprocesses elec-
tromyographic signals and gait signals for subsequent analysis. The literature adopts com-
mon preprocessing methods, such as denoising, filtering, normalization, etc., to enable the 
signal to be better processed and analyzed. The literature used machine learning methods 
to design a classification model for muscle fatigue status, extracted time-domain and fre-
quency-domain features of electromyography signals, and used these features as input data 
(Wang et al. 2021). Machine learning algorithms such as support vector machines were used 
to train classifiers to achieve classification of muscle fatigue status. The literature extracts 
useful features from gait signals and trains gait prediction models (Chen et al. 2020). This 
prediction model can predict changes in gait over a certain period of time in the future, such 
as predicting people’s walking speed, stride length, and other information, providing sup-
port for rehabilitation treatment, health monitoring, and other aspects.
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3 Spectral sensor signal processing and simulation

3.1 Working principle of spectral sensors

Compared with single band sensors, multispectral imaging systems have higher data acqui-
sition speed, larger spectral range, higher spectral resolution, and better image quality. As 
shown in Fig. 1, the detector responds to infrared radiation and converts it into an electrical 
signal. The commonly used detectors include infrared focal plane detectors (FPAs) and lin-
ear array detectors (LWIR/MWIR). The display system displays digital signals for users to 
observe and analyze data The signal processing system processes digital signals to complete 
various complex tasks, such as object detection, classification, and recognition.

The imaging quality is usually determined by the characteristics of the lens and the clar-
ity of the imaging plane. For different application scenarios, different optical system design 
schemes can be selected, such as using different design forms such as lens groups or reflec-
tor groups. The requirement for spectral resolution can be achieved by selecting different 
filters, prisms, or dispersion elements. In terms of detector systems, the main factors to con-
sider include imaging sensitivity, response time, and signal-to-noise ratio. Different types 
of detectors have different characteristics and advantages and disadvantages. For example, 

Fig. 1 Schematic diagram of 
multispectral sensor
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InSb detectors have advantages such as high sensitivity and fast response, but are expensive; 
InGaAs detectors, on the other hand, have advantages such as low cost and wide spectral 
response range, but their response time is longer.

The design of a multispectral imaging system aims to capture spectral information of dif-
ferent wavelengths reflected or radiated by an object, in order to generate images or spectra 
at different wavelengths. Multi spectral sensors have more spectral resolution and can pro-
vide more detailed and accurate spectral information. When designing a multispectral imag-
ing system, the common path design involves introducing light of different wavelengths into 
the detector through the same optical channel, while the split path design involves separat-
ing spectra of different wavelengths before the optical path, and then introducing detectors 
in different optical channels. Both of these design methods can achieve multispectral imag-
ing, but each has its advantages and disadvantages. The design of a common optical path 
can greatly reduce the size and weight of the imaging system, reduce costs, and reduce the 
number of optical components and the stability of the imaging system. However, in the 
common optical path, different wavelengths of light may have dispersion or color difference 
issues in the optical path, so it may be necessary to adopt a combination of multiple optical 
components to solve such problems. The design of the splitter can eliminate cross interfer-
ence between spectral signals in different bands, thereby improving the signal-to-noise ratio 
of the detector. But the cost of splitting the optical path is to introduce more optical compo-
nents, increasing the complexity and manufacturing cost of the imaging system. In order to 
achieve continuous narrow spectral radiation imaging of objects in different wavelengths, 
special spectroscopic devices are needed.

3.2 Signal processing algorithms

A multispectral imaging system is a microscope system used to obtain spectral informa-
tion of target objects reflected and emitted at different wavelengths. The preamplifier is 
equivalent to a unidirectional or bidirectional resistance capacitance low-pass filter, which 
performs frequency domain filtering and gain control on the input electrical signal. In the 
imaging system, the signal processing circuit mainly introduces the influence of low-pass 
filtering and control transfer function gain, which affects its imaging effect. The transmis-
sion characteristics of imaging systems are important indicators for evaluating and opti-
mizing system performance. In the time-frequency domain, the transfer characteristics of 
imaging systems can be represented by transfer functions. The transfer function H (f, t) of 
the system represents the size and phase of the output signal obtained from the input signal 
passing through the system at frequency f and time t. In general, the transfer function of a 
system can be decomposed into two parts: frequency response and time domain response. 
For the transfer characteristics of an infrared imaging system, formula (Halson 2014) can 
be used to represent:

 

MTFlow =
1√

1 + (ft/fl0)2n  (1)

Among them, f is the frequency and t is the time. The conversion relationship is shown in 
formula (Chen and Su 2022).
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 ft = ωfs (2)

For staring array imaging, the scanning angular velocity can be calculated using formula 
(Hemmings et al. 2017).

 
ω =

ftsp
f

 (3)

During the transmission process, due to the impact of CCD transfer efficiency, the signal 
cannot be fully transmitted and will be subject to certain attenuation. Therefore, for CCD 
transfer in infrared imaging systems, it can be represented by a transfer function, i.e. for-
mula (Su et al. 2019).

 
MTFtrans = exp

{
−N(1 − η)

[
1 − cos

(
π

ft
fts

)]}
 (4)

By calculating the transfer function, the signal transmission efficiency and loss in infrared 
imaging systems can be evaluated, system performance can be optimized, and image qual-
ity can be improved. In digital image processing, noise is common. In order to analyze and 
simulate the noise characteristics of detectors, a three-dimensional noise model can be used 
to describe and represent it as a spatiotemporal random process. The mathematical expres-
sion of the three-dimensional noise model is shown in formula (Chang et al. 2015):

 
σsys =

√
σ2

tvh + σ2
tv + σ2

th + σ2
t + σ2

vh + σ2
v + σ2

h (5)

Among them, v and h represent the coordinates of the detector in two-dimensional space, 
t represents the frame order in the time domain, used to represent time dependence. The 
three-dimensional noise model can connect the spatial noise distribution with the temporal 
noise changes. Due to the random distribution of noise, a probability density function can 
be used to describe its amplitude distribution. The common noise distribution is a Gauss-
ian distribution, so in a three-dimensional noise model, the amplitude distribution can be 
represented by the Gaussian probability density function P, as shown in formula (Zadeh et 
al. 2021).

 
P (x) = (2PR)−1/2exp

[
−(x − M)2/

(
2R2)] (6)

In a three-dimensional noise model, the total noise mean square error of a staring detector 
can be calculated based on its characteristics and operating state. According to the three-
dimensional noise theory, the total noise mean square error of staring detectors can be rep-
resented by formula (Hung et al. 2014):

 σsys =
√

σTVH
2 + σVH

2  (7)
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3.3 Spectral data fidelity criteria

In the field of image processing, fidelity criteria are usually used to evaluate the effective-
ness of data compression to determine whether there is information loss after compression. 
This article extends the objective fidelity criterion of two-dimensional data to hyperspectral 
data and applies it to the quality evaluation of hyperspectral images. Assuming a (x, y, z) 
represents the input image of the sensor, and s (x, y, z) represents the output image after 
simulation by the sensor model, where x, y, and z represent the coordinates of the hyper-
spectral image in spatial and wavelength dimensions, respectively. The error e (x, y, z) is 
defined as the difference between image a and s, and its calculation method is shown in 
formula (Wang et al. 2020).

 e(x, y, z) = s(x, y, z) − a(x, y, z) (8)

In hyperspectral images, the error e (x, y, z) of each pixel at all wavelengths can be calcu-
lated, and then the overall error can be obtained, represented by formula (Dong et al. 2014).

 

M−1∑

x=0

N−1∑

y=0

Q−1∑

z=0

[s( x, y, z) − a(x, y, z )] (9)

The fidelity evaluation of hyperspectral data is often described by the mean square signal-
to-noise ratio of the input-output image. The output of the system without distortion can be 
regarded as a useful signal, and its signal-to-noise ratio can be calculated to evaluate the 
fidelity of hyperspectral images. Usually, there is an error e (x, y, z) between the input signal 
a (x, y, z) and the output signal s (x, y, z). According to the definition of signal-to-noise ratio, 
formula (Sacha 2014) can be used to calculate the mean square signal-to-noise ratio:

 
SNRrms =

∑M−1
x=0

∑N−1
y=0

∑Q−1
z=0 a(x, y, z)2

∑M−1
x=0

∑N−1
y=0

∑Q−1
z=0 [s( x, y, z) − a(x, y, z)]2

 (10)

According to formula (Sacha 2014), if the error is small, then the mean square signal-to-
noise ratio will be large, indicating high fidelity. The fidelity index calculated using the 
mean square signal-to-noise ratio is usually expressed in decibels (dB). The mean square 
signal-to-noise ratio can be converted to fidelity Q using formula (Papagiannis et al. 2019):

 Q = 10log10 (SNRrms) (11)

Apply the mean square signal-to-noise ratio and fidelity formulas to evaluate the simulation 
systems of dispersive and interferometric sensors. Table 1 lists the fidelity evaluation results 
of each subsystem and overall for these two types of sensors.

When comparing the fidelity evaluation results of dispersion type sensors and interfer-
ence type sensors in Table 1, it can be found that the electronic circuit model and system 
noise model of both parts are the same, so the fidelity of these two parts is the same. For 
the optical system and detector sub modules, the fidelity of interferometric sensors is higher 
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than that of dispersive sensors, which proves the superiority of interferometric sensors in 
terms of optical system and detector performance. Interferometric sensors use the prin-
ciple of interference to separate and measure spectral lines, and their optical path design 
is relatively simple. However, achieving high spectral resolution requires high-quality and 
high-precision spectroscopic components, such as Michelson interferometers and Fresnel 
prisms. The dispersion type sensor achieves the separation and measurement of spectral 
lines through the dispersion principle, and its optical path design is relatively complex. 
However, the structure of the splitter components (such as gratings) is simple, and the man-
ufacturing cost is relatively low. From the fidelity evaluation results, it can be seen that the 
optical system and detector performance of interferometric sensors are higher than those of 
dispersive sensors, indicating that interferometric sensors have higher accuracy and reli-
ability in hyperspectral data collection and analysis.

3.4 Simulation results of various waveband images

During the process of radiation passing through a multispectral sensor in four bands, non-
uniformity, blind elements, and noise are introduced, which all affect the characteristics of 
the image, thereby affecting the collection and analysis performance of the sensor. Before 
analyzing the characteristics of each band, it is necessary to preprocess the image, including 
denoising, non-uniformity correction, and blind element correction, to improve the acquisi-
tion and analysis accuracy of the sensor system.

Table 2 lists the information entropy, local entropy, and harmonic entropy of infrared 
images in different bands. Information entropy is a measure of the grayscale distribution in 
an image, reflecting the complexity and texture information of the image. Table 2 is divided 
into two sets of data, one is a partial common path system, and the other is a common path 
system. Partial common path system and common path system are two different infrared 
imaging systems, with different optical device designs, resulting in different image informa-
tion entropy.

Type 1.4˜1.9 2.6˜3.0 4.1˜4.5 8˜9
Partial com-
mon path 
system

Global entropy 1.9881 2.5009 2.7194 3.7188
Local entropy 1.5958 1.7120 1.9411 2.2060
Harmonic 
entropy

1.7536 2.0129 2.2560 2.7421

Common 
light path 
system

Global entropy 1.6193 2.4854 2.6973 3.7418
Local entropy 1.1840 1.6607 1.9454 2.1823
Harmonic 
entropy

1.3650 1.9874 2.2369 2.7527

Table 2 Information entropy, 
local entropy, and harmonic 
entropy of four band images

 

Type Dispersion sensor Interference sensor
optical system 18.1196 71.0791
detector 13.0847 65.6051
electronic circuit 12.7272 12.8330
noise 27.8219 27.7665
totality 9.7576 12.6677

Table 1 Fidelity of Dispersive 
and Interferometric Sensors
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From Table 2, it can be seen that among the four bands, the long band image has the best 
detail expression ability and the most abundant detail information. This is related to the 
characteristics of infrared imaging technology. Long wave infrared radiation has a longer 
wavelength, stronger penetration, and stronger absorption ability of target surface materials, 
thus being able to express more detailed information.

4 Basic principles of machine learning algorithms

4.1 Random forest model

Random forest regression is an ensemble learning algorithm based on Bagging technol-
ogy, which combines a large number of decision trees and improves prediction accuracy 
by averaging the results of each decision tree. In random forest regression, each decision 
tree corresponds to a randomly selected dataset, which is autonomously sampled and gen-
erated from the original dataset. By randomly selecting data samples and feature subsets, 
the random forest model avoids the problem of overfitting a single decision tree, thereby 
improving the generalization ability of the algorithm. Random forest regression uses Bag-
ging technology to randomly resample raw data to generate training data. In bag training 
data is used to construct each decision tree, while out of bag validation data is used to test 
learning performance. The random forest model has stronger regression prediction ability 
because it contains multiple decision trees and is trained using Bagging technology. During 
the construction process of each decision tree, the randomly selected training dataset makes 
each decision tree have a certain degree of difference, preventing overfitting and improving 
the model’s generalization ability. Out of pocket validation data refers to data samples that 
have not been randomly selected during the training process, which are used to detect the 
model’s generalization ability on different datasets. By using out of bag samples to validate 
the model, the predictive accuracy of the model can be better evaluated and a better under-
standing of how the model predicts new data can be gained.

The total learning error is calculated using formulas such as (Wang et al. 2021) and 
(Chen et al. 2020):

 

−
Yi (Xi) =

1
M

M∑

m=1

−ym (12)

 

−ye =
1
n

n∑

i=1

(
−
Yi − Yi

)2

 (13)

Bayesian optimization algorithm is used for hyperparameter optimization of machine learn-
ing methods, which can solve some difficult functions and is also an effective strategy for 
finding the optimal value of the objective function. The Bayesian optimization algorithm is 
based on Bayesian rules, which use prior knowledge to calculate the posterior probability 
of optimization. The Bayesian optimization algorithm obtains the minimum or maximum 
value of the objective function by selecting as few points as possible in the search space. In 
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each iteration, the algorithm establishes a probability model by using a Gaussian process 
(GP) representing the objective function.

 
p(w | D) =

p(D | w)p (w)
p (D)

 (14)

This Gaussian process includes a mean function and a covariance function. In this way, 
GP can be used to predict the performance of the objective function at any unexplored 
point. The detailed theoretical background and equation of Bayesian optimization method 
are shown in formula (15), where the Gaussian process on function f (x) is specified by the 
mean function (m) and covariance function (k).

 f (x) ∼ GP (m (x) , k (xi, xj))  (15)

In each iteration, the algorithm uses the GP of known points to calculate the probability of 
each candidate point in this iteration, and selects the point with the highest probability for 
evaluation. The algorithm then updates its Gaussian process model and continues to search 
for the minimum or maximum value of the objective function.

RMSE is defined as:

 
RMSE =

√√√√ 1
N

N∑

i=1

(
ypred − yi

)2  (16)

Figure 2 shows the learning curve of the Bayesian optimized random forest model, which is 
plotted by plotting the training set RMSE and test set RMSE during the training process as 
the number of samples increases.

In Fig. 2, the root mean square error of the training and testing sets varies with the 
increase of the number of training samples. When the training set only contains a small 
amount of data, the model can fit the data well, so the error on the training set starts from 0. 
As the data increases, the training set error will rise to a vertex and then gradually decrease. 

Fig. 2 Learning curve of Bayes-
ian optimized random forest 
model
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This is because with the increase of new nonlinear data, the complexity of the model also 
increases, requiring more data to generalize. When the training set contains enough non-
linear data, the generalization ability of the model is improved, and the training set error 
gradually decreases. For the test set, when there is very little training data, the error of the 
test set is large because the model cannot generalize the data well. As the model experiences 
more training data, the error of the test set will gradually decrease and be close to the error 
of the training set. When the model learning is completed, the root mean square error of the 
training and testing sets converges to a very small value, indicating that the training effect 
and generalization ability of the model are both good.

Table 3 shows the values of skeletal muscle hyperelasticity constitutive parameters pre-
dicted by the random forest model, as well as the average, standard deviation, and parameter 
range obtained through further processing. These data can provide reference for research on 
skeletal muscle tissue and practice in the medical field.

4.2 Loss function and optimization algorithm

The loss function is a measure of the difference between predicted and actual results. As 
an indicator for evaluating the quality of the model, the model is optimized by minimizing 
the loss function and seeking the best prediction results. For regression problems, there are 
two main forms of loss functions: L1 norm loss and L2 norm loss. The L1 norm reflects the 
absolute sum of each error (i.e. the difference between the predicted value and the actual 
value), calculated using the formula (17):

 
L1(ŷ, y) =

n∑

i=1

|ŷi − yi|  (17)

The L2 norm loss can reflect the sum of squares of each error, and the calculation formula 
is as follows (18):

 
L2(ŷ, y) =

n∑

i=1

(ŷi − yi)
2 (18)

The Adam algorithm update formula is as follows:

 
mt = β1mt−1 + (1 − β1) gtm̂t =

mt

1 − βt
1
 (19)

 
vt = β2vt−1 + (1 − β2) g2

t v̂t =
vt

1 − βt
2
 (20)

Parameter C10/kPa k1/MPa K2 K
µ 0.8099 0.4162 29.8466 0.2413
σ 0.0228 0.0090 0.6769 0.0040
µ + σ 0.8363 0.4283 30.6523 0.2463
µ-σ 0.7826 0.4076 29.0030 0.2360

Table 3 Prediction of Skeletal 
Muscle Constitutive Parameters 
by Random Forest Model
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θt = θt−1 −

α√
v̂t + ε

�  (21)

The Adam algorithm can adaptively adjust the learning rate and usually converges faster 
when dealing with large-scale datasets.

5 Implementation of an intelligent sports fatigue degree prediction 
system

5.1 Design of fatigue identification system scheme

As shown in Fig. 3, the intelligent sports fatigue degree prediction system is designed into 
two subsystems: a muscle sound signal acquisition subsystem and a portable digital signal 
processing subsystem. The muscle tone signal acquisition subsystem is mainly responsible 
for collecting muscle tone signals and performing some simple processing, such as filtering, 
analog-to-digital conversion, etc., and then transmitting the processed data to the portable 
digital signal processing subsystem through wireless transceiver modules. The portable 
digital signal processing subsystem is mainly responsible for preprocessing, data segmenta-
tion, STFT transformation of the received muscle tone signal, and using prediction models 
to judge the fatigue level of the processed signal. At the same time, real-time plotting of 
collected signal values and display of muscle fatigue prediction results on the LCD display 
screen.

The muscle tone signal acquisition subsystem is used to collect muscle tone signal data 
generated during muscle movement, and then processed and transmitted through compo-
nents such as analog filtering circuit, analog-to-digital conversion circuit, microcontroller 
circuit, and wireless transceiver module A. The muscle tone signal acquisition sensor is a 
three-axis acceleration sensor that can fully collect the original muscle tone signal, and the 
acquisition frequency is 500 Hz, which can efficiently capture the signal data generated 

Fig. 3 Intelligent Sports Fatigue 
Degree Prediction System Block 
Diagram

 

1 3

696 Page 12 of 17

RETRACTED A
RTIC

LE



Prediction of sports fatigue degree based on spectral sensors and…

during muscle activity. This sensor is placed at the position of the athlete’s right leg rectus 
femoris muscle and can accurately sense the muscle tone signals generated during muscle 
activity. When muscle tone signals are generated during exercise, they are subject to envi-
ronmental noise interference, so it is necessary to filter and process them to eliminate the 
influence of interference signals. The passband frequency of the analog filtering circuit is 
0-125 Hz, which can fully preserve the information of the muscle sound signal and filter out 
environmental noise that is useless to the system. The analog-to-digital conversion circuit 
is mainly responsible for converting the collected analog electrical signals into digital sig-
nals, and performing amplification and filtering processing to achieve higher accuracy and 
stability. The system adopts a high-precision 20-bit analog-to-digital converter, which can 
achieve a maximum resolution of 3.14 microvolts and a conversion time of less than 1 mil-
lisecond, ensuring more accurate processing of collected data. The microcontroller circuit 
is mainly responsible for signal processing and data transmission, and can achieve vari-
ous functions such as data storage, filtering, processing, and transmission. The collection 
subsystem adopts a relatively mature single-chip machine structure and adopts the STM32 
series microcontroller, ensuring efficient data processing and stable system operation. The 
wireless transceiver module A is mainly responsible for the transmission of muscle tone 
signal data, which can transmit the processed digital signal through a 433 MHz carrier wave. 
It has functions such as fast transmission, long-distance transmission, and efficient stability. 
At the same time, the system has built-in SPI and serial interfaces, which can achieve link-
age and data transmission with other hardware components or systems, providing reliable 
data support for measuring and predicting muscle fatigue.

The portable digital signal processing subsystem is the processing core of the entire 
muscle tone fatigue monitoring system, including wireless transceiver module B, embedded 
microprocessor, data preprocessing module, data segmentation module, STFT module, and 
prediction model. The subsystem adopts digital signal processing technology throughout 
the entire process, providing strong computing power and massive storage space through 
embedded microprocessors, which can efficiently process a large amount of muscle sound 
signal data. Receive muscle tone data collected from the signal acquisition subsystem 
through wireless transceiver module B. After receiving the data, the preprocessing module 
can eliminate erroneous information from the data and reduce the interference of errors. 
By using the data segmentation module, the received muscle tone data is divided into 512 
sized packets, which is beneficial for subsequent STFT module processing. By using the 
STFT module, the time-domain conversion of muscle sound signals is carried out to the 
frequency-domain, making the signal information clearer and clearer. The basic principle 
of this module is to divide the signal into several windows of equal length, perform fast 
Fourier transform on each window, and convert the muscle sound signal in the window 
into a frequency domain representation. Through the processing of the STFT module, the 
time-domain of the muscle sound signal can be effectively transformed into the frequency-
domain, and the signal can be further analyzed and processed. Through an integrated fatigue 
prediction model, the system can predict muscle fatigue and output prediction results.

5.2 Prediction of muscle fatigue status

Taking data with a total of 9 rounds as an example, the system performs K-means cluster-
ing based on eight feature indicators. The clustering results are relatively clear, divided into 

1 3

Page 13 of 17 696

RETRACTED A
RTIC

LE



H. Yao

three distinct clusters, corresponding to the non fatigue state, non fatigue transition state, 
and fatigue state. Among them, the sample points in the non fatigue state and non fatigue 
transition state exhibit a relatively concentrated distribution, while the distribution in the 
fatigue state is relatively scattered. As shown in Fig. 4.

The K-nearest neighbor algorithm (KNN) is calculated using the following equation:

 
d(x, y) =

√√√√
N∑

k=1

(xk − yk)
2 (22)

In general, the value of K will be selected based on the size of the dataset and the distribu-
tion of samples. The output value of logistic regression is between 0 and 1, and the formula 
is as follows:

 
g
(
θTx

)
=

1
1 + e−θTx

 (23)

The accuracy is:

 
Accuracy =

TP + TN
TP + TN + FP + FN

 (24)

Recall rate refers to the proportion of true positive samples in the predicted results, which 
can be calculated using the following formula:

 
Recall =

TP
TP + FN

 (25)

Precision refers to the proportion of the predicted true positive samples to all the predicted 
positive samples in the prediction results, namely:

 
Precision =

TP
TP + FP

 (26)

Fig. 4 Results of eight-dimen-
sional sample point data agglom-
eration (the red part represents 
the non-fatigue state, the blue 
part represents the non-fatigue 
transition state, and the green 
part represents the fatigue state)
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5.3 Prediction results of muscle fatigue

The comparison chart in Fig. 5 shows the accuracy comparison of fatigue prediction using 
three methods: experimental personnel, other personnel, and model prediction during model 
construction. From Fig. 5, it can be seen that the accuracy of fatigue prediction by experi-
mental personnel during model construction is generally higher than that of other personnel, 
indicating that the universality of the model needs to be strengthened.

This phenomenon may be due to the limited training set data used during model con-
struction, which cannot cover all situations. Due to the direct impact of the quality and 
quantity of training set data on the performance of the model, if the training set data is too 
limited or too few, it may lead to the model being unable to accurately predict unknown 
data. Therefore, when constructing a classification model, it is necessary to collect as much 
and more comprehensive data as possible to ensure the adequacy and representativeness of 
the training set.

5.4 Classification and prediction results of various algorithms

Table 4 shows the performance evaluation indicators of the predictor obtained from four 
classification algorithms (KNN, Logistic Regression, Neural Network, SVM), including 
recall (Recall), F1 score, accuracy (Accuracy), and area under curve (AUC). Among these 
four indicators, different algorithms perform more closely, but SVM algorithm performs 
better in each indicator. Therefore, it can be considered that SVM algorithm has good clas-
sification result model evaluation performance.

According to Table 5, it can be seen that the average classification accuracy results 
obtained by using five different feature sets and using five classifiers for classification.

According to Table 5, after using the fused feature set T3, the classification accuracy 
of each classifier has significantly improved compared to using T1 or T2 alone. Especially 
when using Random Forest (RF) classifiers for classification, the classification accuracy 
is much higher when using T3 feature sets than when using T1 or T2 classifiers alone. 
This indicates that the fusion of surface electromyography and gait features can better clas-
sify and identify fatigue states. When using the T4 feature set, the KNN classifier per-
forms worse than other classifiers, but the classification accuracy of the RF classifier is still 
improved compared to when using the T3 feature set. From this, it can be seen that muscle 
synergy features are also a good measure of muscle fatigue.

Fig. 5 Comparison Curve of the 
Three
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6 Conclusion

In sports training, the effectiveness of exercise does not only depend on the type and dura-
tion of exercise, but also on the muscle fatigue state during exercise, which is an important 
factor affecting the effectiveness of exercise. Therefore, understanding the state of muscle 
fatigue and arranging exercise reasonably can better achieve exercise effects. This article 
designs an intelligent sports fatigue prediction system based on spectral sensors and machine 
learning algorithms. Spectral sensors can monitor the physiological signals of athletes in 
real-time, analyze and process these signals through machine learning algorithms, accu-
rately determine the fatigue status of athletes, and provide scientific training guidance and 
adjustment suggestions. This system can enable athletes to timely understand the fatigue 
status of muscles, predict the recovery time of muscles after exercise, and better manage and 
arrange their exercise plans. Through this method, personalized training guidance can be 
provided based on the individual characteristics and actual training needs of athletes. There 
are differences in the fatigue level of athletes under different sports events and intensity, and 
personalized training guidance is more effective and scientific. Therefore, the prediction 
method of sports fatigue based on spectral sensors and machine learning algorithms has 
certain research background and practical significance, and is expected to provide scientific 
support and guidance for athletes’ training and competition, improve their competitive abil-
ity and physical health level.
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Table 4 Prediction Results of Various Algorithms
(%) No Fatigue Fatigue ALL

Recall F1-score Recall F1-score Accuracy AUC
KNN 66.3083 79.8941 86.1018 92.8768 75.9081 96.7903
Logistic Regression 67.3435 80.2501 90.4614 95.2970 78.7014 98.8040
NetWork 76.6670 86.7108 86.6238 92.6908 81.3467 97.9745
SVM 72.8303 84.3774 89.7908 94.3042 83.1064 98.4706

Feature 
set

T1 T2 T3 T4 TR

KNN 87.586% 91.489% 95.593% 74.948% 79.995%
RF 95.035% 94.354% 98.613% 99.045% 99.437%
SVM 66.521% 72.468% 77.792% 80.281% 73.909%
ADB 84.443% 82.491% 89.432% 92.155% 93.572%
DA 69.459% 77.455% 85.935% 88.781% 82.381%

Table 5 Classification Results of 
Each Feature Set
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