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Abstract
In this article, the fractional Schrödinger–Hirota equation which is a generalization of 
the standard Schrödinger equation which, in particular, explain how soliton transmission 
behaves on fiber optic systems in physics when data is transmitted over long distances with 
a wide bandwidth. A collection of comprehensive soliton structures are developed to study 
the behaviour of the governing model with the aid of some efficient explicit strategies 
namely the exp(−�(� ))-expansion method and the Sardar sub-equation method. By trans-
forming the original equation into a system of ordinary differential equations, it becomes 
possible to obtain explicit solutions with a high degree of accuracy. These solutions incor-
porate dark soliton and trigonometric function solutions, dark singular solition plane wave, 
singular solition, opposite singular solition, smooth, bell shaped, w-shaped periodic, bright, 
anti kink, singular bell shaped solitons and traveling wave structures.
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1 Introduction

The importance of the nonlinear phenomena has grown in a number of newly established 
categories, including fiber optic interactions and ionised physics. A particular kind of 
nonlinear partial differential equations that deal with optical soliton fields are nonlinear 
Schrödinger equations (NLSE). These include transmission of optical solitons, ultrashort 
waves, and light waves in fibre optics. The transmission of optical soliton is significantly 
impacted by the high dispersion. Many scientific disciplines, including biological assess-
ment, plasma, life sciences, image processing, power technology, and electrical trans-
mission, can benefit from the implementation of the dynamical model. The fractional 
Schrödinger–Hirota equation (FSHE) is an extension of the well-known NLSE that arises 
in the study of integrable systems and mathematical physics which describes the behav-
ior of quantum mechanical systems (Jaradat and Alquran 2020, 2022; Ali et al. 2022; Ala 
2022; Ala and Shaikhova 2022). The FSHE exhibits several key properties and charac-
teristics that distinguish it from the standard Schrödinger equation. One of the most nota-
ble features is the presence of fractional derivatives, which introduce memory effects and 
long-range interactions into the system dynamics. These non-local effects play a crucial 
role in describing phenomena such as anomalous diffusion and sub-diffusion, which are 
prevalent in complex physical systems. Additionally, the nonlinear nature of the governing 
model gives rise to rich dynamical behavior, including soliton solutions and other coherent 
structures. The inclusion of fractional derivatives enables us a more accurate description 
of wave propagation in complex media with memory effects. Furthermore, the equation 
has implications for understanding anomalous diffusion processes in classical and quan-
tum systems, offering insights into phenomena such as sub-diffusion and super-diffusion 
(Ozdemir et al. 2022; Alquran 2022; Alhami and Alquran 2022).

In literature, different approaches can be apply on this model such as finite differences 
method (Li and Zeng 2012), the improved tanh function method (Zhang and Xia 2008), 
the improved complex tanh-function method (Abdusalam 2005), the simplified Hirota’s 
method (Wazwaz and El-Tantawy 2017), the unified transform method (Fokas 1997), the 
Jacobi elliptic function expansion method (Zhang 2007), the Adomian Pade technique 
(Dehghan et al. 2007), the (G�∕G)-expansion method (Kudryashov 2010) and many others.

This paper contributes to advancing our understanding of nonlinear wave equations and 
their applications in various scientific disciplines. Its findings have implications for both 
theoretical developments in mathematical physics and practical applications in fields such 
as quantum mechanics, optics, and fluid dynamics. The study provides insights into the 
dynamics and solutions of this nonlinear equation, shedding light on its unique charac-
teristics and implications for physical systems. In comparing the effectiveness of applied 
strategies to the governing model, it is evident that both approaches offer valuable tools for 
obtaining analytical solutions and understanding the behavior of complex physical systems. 
The Sardar sub-equation method (Alsharidi and Bekir 2023; Rezazadeh et al. 2020) excels 
in transforming fractional differential equations into manageable systems of ordinary dif-
ferential equations, while the exp(−�(� ))-expansion method (Hassan et al. 2022; Ferdous 
et al. 2019) provides a systematic framework for obtaining explicit solutions through alge-
braic manipulation. According to the authors, these approaches have not yet been imple-
mented in the governing model in literature up to their limited knowledge.

We arrange the article as follows: In the Sect.  2, the governing model is introduced 
while in Sect. 3, the conformable fractional derivative is defined whereas the detail about 
the applied strategies are elaborated in Sect. 4. The Sect. 5, deals with the application of 
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analytical techniques while in Sect. 6, the graphical description of solutions is discussed. 
The conclusions have been drawn at the end.

2  The governing model

The fractional Schrödinger Hirota equation (Du et al. 2023) is given by:

where O(x, t) is the complex envelope of the optical field, � is a real parameter representing 
the nonlinearity strength, and and denote the partial derivatives with respect to time t and 
space x, respectively. The fractional derivative term accounts for the dispersive effects in 
the system (Akram et al. 2023).

The FSHE can be derived from the standard nonlinear Schrödinger equation by con-
sidering higher-order dispersion effects which provides a more accurate description of the 
dynamics of dispersive optical solitons in certain physical systems where higher-order dis-
persion terms become significant. The study of dispersive optical solitons of the fractional 
Schrödinger–Hirota equation involves investigating their existence, stability, and propaga-
tion characteristics. One important aspect of dispersive optical solitons is their ability to 
exhibit different types of behavior depending on the value of the nonlinearity parameter � . 
For 𝛽 > 0 , bright solitons can exist, which are characterized by a localized intensity peak 
surrounded by a background field. These solitons can propagate without changing their 
shape due to a balance between self-focusing nonlinearity and dispersive effects. On the 
other hand, for 𝛽 < 0 , dark solitons can exist, which are characterized by a localized inten-
sity dip surrounded by a higher-intensity background. These solitons can also propagate 
without changing their shape due to a balance between self-defocusing nonlinearity and 
dispersive effects (Hirota 2004; Sulaiman et al. 2019).

3  The conformable fractional derivative

Traditional fractional differential equations often require specialized numerical methods 
that can be computationally expensive and prone to instability. Conformable fractional 
derivatives, being defined in a more consistent and well-behaved manner, can be discre-
tized using standard numerical techniques, such as finite difference or finite element meth-
ods, leading to more efficient and stable algorithms in dealing many complex dynamical 
models (Machado et al. 2011; Zhao and Luo 2017; Balcı et al. 2019; Gao and Chi 2020). In 
literature, a variety of fractional derivatives are devised to characterize many crucial physi-
cal phenomena, For instance, the modified Riemann–Liouville derivative of Jumarie, for 
Riemann–Liouville derivative (Podlubny 1999), the conformable derivative of Atangana 
(Wu et al. 2020), their Caputo derivative (Almeida 2017) or the Beta-derivative (Gurefe 
2020), have been used in many applications in different fields of contemporary science and 
engineering; fractional-order derivatives provide a more suitable illustration (Bekir et al. 
2021). Let O : [0,∞) → R , The conformable derivative fractional O of an order � is defined

(1)iO𝛾

t
+

1

2
Oxx + |O|2O + i𝛽Oxxx, t≥0, 0 < 𝛾 ≤ 1 =0,
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for each x > 0 and � ∈ (0, 1) . Additionally, a few characteristics of conformable fractional 
derivatives are provided

4  Methodology

In this section, a couple of analytical techniques namely the Sardar sub-equation method 
and the exp(−�(� ))-expansion method are introduced. One of the key advantages of the 
Sardar sub-equation method is its ability to handle a wide range of nonlinear fractional 
differential equations, including the governing model efficiently. By converting the origi-
nal equation into a system of ordinary differential equations, it becomes feasible to obtain 
exact analytical solutions or approximate solutions with high accuracy.

4.1  The exp(−Ã(�))‑expansion method

Consider we have a solution

in this equation, �(� ) satisfies the given given ordinary differential equation

where ℏ and � are constants. Following cases are applying on Eq. (2)
Case 1 When ℏ ≠ 0 and 𝜚2 − 4� > 0 , then

Case 2 When ℏ ≠ 0 and 𝜚2 − 4� < 0 , then

Case 3 When ℏ = 0 , � ≠ 0 and 𝜚2 − 4� > 0 , then

O
�

x
(x) = lim

�→0

O
(
�x1−� + x

)
−O(x)

�
,

O
�

x
(x� ) = �x�−� , ∀� ∈ R,

O
�

x
(�(x) + �(x)) = O

�

x
�(x) +O

�

x
�(x),

O
�

x
(�o�)(x) = x1−� �(x�−1)��(t)O�

x
(�(x))|x=�(x).

(2)V(� ) =

N∑
i=0

Bi(exp(−�(� )))i,

(3)� �(� ) =e−�(� ) + ℏe�(� ) + �,

(4)�(� ) = ln

⎛⎜⎜⎜⎝
−

√
�2 − 4ℏ tanh

�√
�2−4ℏ

2
(F + � )

�
+ �

2ℏ

⎞⎟⎟⎟⎠
,

(5)�(� ) = ln

⎛⎜⎜⎜⎝

√
4ℏ − �2 tan

�√
4ℏ−�2

2
(F + � )

�
− �

2ℏ

⎞⎟⎟⎟⎠
,
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Case 4 When ℏ ≠ 0 , � ≠ 0 and �2 − 4ℏ = 0 , then

Case 5 When ℏ = 0 , � = 0 and �2 − 4ℏ = 0 , then

where F is a constant of integration.

4.2  The Sardar sub‑equation method

Let us consider the solution

in this above equation B0,B1,… ,Bn are real parameters. Also �(� ) satisfied the ordinary 
differential equation, which is

from the Eq. (10), we obtained the following results:
Case 1 When 𝜚2 > 0 and �1 = 0,

Case 2 When 𝜚2 < 0 and �1 = 0,

Case 3 When 𝜚2 < 0 and �1 =
�2
2

4
,

(6)�(� ) = − ln

(
�

cosh(�(F + � )) + sinh(�(F + � )) − 1

)
,

(7)�(� ) = ln

(
−
−2(�(F + � ) + 2)

�2(F + � )

)
,

(8)�(� ) = ln(F + � ),

(9)V(� ) =

N∑
i=0

Bi�(� )i, Bn ≠ 0,

(10)� �(� )2 =�1 + �2�(� )2 + �3�(� )4,

(11)
�±

1
(� ) = ±

√
−fg�2 sec hfg(

√
�2� ),

�±

2
(� ) = ±

√
fg�2 csc hfg(

√
�2� ),

(12)
�±

3
(� ) = ±

√
−fg�2 secfg(

√
−�2� ),

�±

4
(� ) = ±

√
−fg�2 cscfg(

√
−�2� ),
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Case 4 When 𝜚2 > 0 and �1 =
�2
2

4
,

where

in these above equations f and g are real constant.

5  Soliton development

Consider the wave transformation

by putting Eq. (15) in Eq. (1) then we obtained the ordinary differential equation

(13)

�±

5
(� ) = ±

�
−�2

2
tan hfg

��
−�2

2
�

�
,

�±

6
(� ) = ±

�
−�2

2
cot hfg

��
−�2

2
�

�
,

�±

7
(� ) = ±

�
−�2

2

�
tan hfg(

√
−2�2� ) + i

√
ef sec hfg(

√
−2�2)

�
,

�±

8
(� ) = ±

�
−�2

2

�
cot hfg(

√
−2�2� ) +

√
ef csc hfg(

√
−2�2)

�
,

�±

9
(� ) = ±

�
−�2

8

�
cot hfg

��
−�2

8
�

�
+ tan hfg

��
−�2

8
�

��
,

(14)

�±

10
(� ) = ±

�
�2

2
tanfg

��2
2
�

�
,

�±

11
(� ) = ±

�
�2

2
cotfg

��2
2
�

�
,

�±

12
(� ) = ±

�
�2

2

�
tanfg

�√
2�2�

�
+
√
fg sec hfg

�√
2�2�

��
,

�±

13
(� ) = ±

�
�2

2

�
cotfg

�√
2�2�

�
+
√
fg csc hfg

�√
2�2�

��
,

�±

14
(� ) = ±

�
�2

2

�
tanfg

��
�2

8
�

�
+ cotfg

��
�2

8
�

��
,

sec hfg =
2

fe�+ge−�
, csc hfg =

2

fe�−ge−�
,

secfg =
2

fei�+ge−i�
, cscfg =

2i

fei�−ge−i�
,

tan hfg =
fe�−ge−�

fe�+ge−�
, cot hfg =

fe�+ge−�

fe�−ge−�
,

tanfg = − i
fei�−ge−i�

fei�+ge−i�
, cotfg =

fei�+ge−i�

fei�−ge−i�
.

(15)O(x, t) = V(� )e−i�, � = x −
2n

�
t� , � = nx +

K

�
t� ,
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5.1  Applications of the exp(−Ã(�))‑expansion method

Step 1 By the help of balancing principle, we attained the homogenous balance N = 1 , Eq. (2) 
reduces to

Step 2 Plugging Eq. (17) along Eq. (3) in Eq. (16) and then expand. After expanding, we 
collect the coefficient of similar power and skip the ei�(� ).

Step 3 We gained the system of algebraic equations, which are

Step 4 To solve these system of algebraic equations with Mathematica, and attained the 
values of unknowns.

putting these unknowns along Eq. (15) in Eq. (17) then
Case 1 When ℏ ≠ 0 and 𝜚2 − 4� > 0 , then for reducing lengthy equation, we use

by using here

Case 2 When ℏ ≠ 0 and 𝜚2 − 4� < 0 , then

(16)
3

2
V
��(� ) + V(� )3 −

(
K +

5

54�

)
V(� ) =0,

(17)V(� ) = B0 + B1e
�(� ).

−
5B0

54�
− B0K +

3

2
B1�ℏ + B3

0
= 0,

−
5B1

54�
− B1K +

3B1�
2

2
+ 3B1ℏ + 3B2

0
B1 = 0,

9B1�

2
+ 3B0B

2
1
= 0,

B1 = i
√
3, � = −

2iB0√
3
, ℏ =

−54�B2
0
+54�K+5

162�
,

(18)

�1 =

�
−
2
�
−54�B2

0
+ 54�K + 5

�
81�

−
1

3
4B2

0
,

O1(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝
B0 −

i
�
−54�B2

0
+ 54�K + 5

�

27
√
3�

�
�1 tanh

�
1

2
�1

�
−

2nt�

�
+ S + x

��
−

2iB0√
3

�
⎞
⎟⎟⎟⎠
,

�2 =

�
−
(−54�B2

0
+54�K+5)2

26244�2
−

8iB0√
3
, �3 =

(−54�B2
0
+54�K+5)

�
−

2nt�

�
+S+x

�

162�
,

(19)O2(x, t) =e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝
B0 +

4B0

−
−54�B2

0
+54�K+5

162�
+ �2 tan

�
1

2
�2

�
−

2nt�

�
+ S + x

��
⎞⎟⎟⎟⎠
,
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Case 3 When ℏ = 0 , � ≠ 0 and 𝜚2 − 4� > 0 , then

Case 4 When ℏ ≠ 0 , � ≠ 0 and �2 − 4ℏ = 0 , then

Case 5 When ℏ = 0 , � = 0 and �2 − 4ℏ = 0 , then

5.2  Applications of the Sardar sub‑equation method

Step 1 We find the homogenous balance which is N = 1 and put in Eq. (9) then we gained

putting Eq. (23) along Eq. (24) in Eq. (16).
Step 2 We collect the expanding terms with power of � i(� ) the we get system of algebraic 

equations.

Step 3 By the Mathematica software, we solve these equations and got the values of 
unknowns.

putting these unknowns along Eq. (15) in Eq. (23) then
Case 1 When 𝜚2 > 0 and �1 = 0 , substituting

(20)O3(x, t) =e
−i
�

Kt�

�
+nx

��
B0 +

162i
√
3�

�
sinh

�
�3
�
+ cosh

�
�3
�
− 1

�

−54�B2
0
+ 54�K + 5

�
,

(21)O4(x, t) =e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝
B0 −

i
�
−54�B2

0
+ 54�K + 5

�
2
�
−

2nt�

�
+ S + x

�

17496
√
3�2

�
�3 + 2

�
⎞
⎟⎟⎟⎠
,

(22)O5(x, t) =e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎝
B0 +

i
√
3

−
2nt�

�
+ S + x

⎞⎟⎟⎠
.

(23)V(� ) = B0 + B1�(� ),

(24)� �(� )2 = �1 + �2�(� )2 + �3�(� )4,

−
5B0

54�
− B0K + B3

0
= 0,

−
5B1

54�
− B1K +

3B1�2

2
+ 3B1B

2
0
= 0,

3B1�3 + B3
1
= 0,

B0 =
i
√
−54�K−5

3
√
6
√
�

, B1 = i
√
3
√
�3, �2 = −

2(54�K+5)

81�
,



On the solitonic structures for the fractional Schrödinger–…

1 3

Page 9 of 23 848

Case 2 When 𝜚2 < 0 and �1 = 0,

Case 3 When 𝜚2 < 0 and �1 =
�2
2

4
,

(25)

�1 = e
1

9

√
2
√

−
54�K+5

�

�
x−

2nt�

�

�
,

O6(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

2i

�
2

3

√
�3

�
−

fg(54�K+5)

�

3(fe�1 + ge−�1 )
+

i
√
−54�K − 5

3
√
6
√
�

⎞
⎟⎟⎟⎠
,

(26)O7(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

4i
√
�3

�
−

54�K+5

�

�√
fg
�
x −

2nt�

�

�

27
√
3(fe�1 − ge−�1 )

+
i
√
−54�K − 5

3
√
6
√
�

⎞⎟⎟⎟⎠
.

(27)

�2 =
1

9
i
√
2

�
54�K + 5

�

�
x −

2nt�

�

�
,

O8(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

2i

�
2

3

√
�3

�
fg(54�K+5)

�

3(fe�2 + ge−�2 )
+

i
√
−54�K − 5

3
√
6
√
�

⎞
⎟⎟⎟⎠
,

(28)O9(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

i
√
−54�K − 5

3
√
6
√
�

−

2

�
2

3

√
�3

�
fg(54�K+5)

�

3(fe�2 − ge−�2 )

⎞⎟⎟⎟⎠
.

(29)

�3 =

�
54�K+5

�

�
x −

2nt�

�

�

9
√
2

, �4 =
2

9

�
54�K + 5

�

�
x −

2nt�

�

�
,

O10(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

i
√
�3

�
54�K+5

�
(fe�3 − ge−�3 )

3
√
6(fe�3 + ge−�3 )

+
i
√
−54�K − 5

3
√
6
√
�

⎞
⎟⎟⎟⎠
,

(30)O11(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

i
√
�3

�
54�K+5

�
(fe�3 + ge−�3 )

3
√
6(fe�3 − ge−�3 )

+
i
√
−54�K − 5

3
√
6
√
�

⎞⎟⎟⎟⎠
,

(31)

O12(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

i
√
�3

�
54�K+5

�

�
fe�4−ge−�4

fe�4+ge−�4
+

2i
√
fg

fe�4+ge−�4

�

3
√
6

+
i
√
−54�K − 5

3
√
6
√
�

⎞⎟⎟⎟⎠
,



 F. Badshah et al.

1 3

848 Page 10 of 23

Case 4 When 𝜚2 > 0 and �1 =
�2
2

4
,

(32)

O13(x, t) = e
−i
�

Kt�

�
+nx

�⎛⎜⎜⎜⎝

i
√
�3

�
54�K+5

�

�
fe�4+ge−�4

fe�4−ge−�4
+

2i
√
fg

fe�4−ge−�4

�

3
√
6

+
i
√
−54�K − 5

3
√
6
√
�

⎞
⎟⎟⎟⎠
,

(33)O14(x, t) = e
−i
�

Kt�

�
+nx

��
54�K + 5

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i
√
�3

⎛
⎜⎜⎝
fe

1
4 +ge

−
1
4

fe
1
4 −ge

−
1
4

+
i
√
fg

�
fe

1
4 −ge

−
1
4

�

fe
1
4 +ge

−
1
4

⎞
⎟⎟⎠

6
√
3

−
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6  Discussion and results

By applying the Sardar sub-equation method and the exp(−�(� ))-expansion method to the 
fractional Schrödinger–Hirota equation, researchers have obtained valuable insights into 
the behavior of the system. By employing these mathematical techniques, exact solutions 
can be derived, shedding light on the dynamics and properties of the underlying physi-
cal phenomena. The resulting solutions provide a deeper understanding of the interplay 
between nonlinearity, fractional derivatives, and other relevant parameters in the equa-
tion. Furthermore, the application of these methods allows for the identification of specific 
regimes or parameter ranges where interesting phenomena such as solitons, periodic waves, 
or other nonlinear structures emerge. This contributes to the broader theoretical frame-
work for studying complex wave dynamics in physical systems governed by fractional 
Schrödinger–Hirota equations. The physics of the fractional Schrödinger–Hirota equation 
encompasses concepts from fractional calculus, nonlinear dynamics, soliton theory, disper-
sion phenomena, and quantum mechanics. Understanding these aspects provides valuable 
insights into the behavior of physical systems described by this mathematical model.

7  Concluding remarks

In this study, we investigated the fractional Schrödinger–Hirota equation analytically which 
is a nonlinear partial differential equation that combines the fractional Schrödinger equa-
tion and the Hirota bilinear form. It provides a generalized framework for studying quan-
tum particles with nonlocal effects and memory effects. The equation supports various 
soliton solutions, including bright solitons, dark solitons, and rogue waves. Its integrabil-
ity properties have also been extensively investigated, revealing an infinite number of con-
servation laws and exact solutions. By utilising the most recent computational strategies, 
these results are confirmed. The obtained solitons are also explored graphically by using 
3D, 2D, and contour plots, for details see Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Finally, it 
is proposed that the strategies employed are extremely beneficial, credible, and simple to 
deal with many other nonlinear dynamical models of recent times. The progress in the sup-
plementary analysis of such models may lead to excel in many emerging fields of research 
such as telecommunications industry, plasma physics, quantum electronics, fluid dynamics, 
photonics, fiber optics and other relevant wave guides. The fractional model presents a rich 
landscape for future research encompassing theoretical developments, numerical analysis, 
physical applications, and interdisciplinary connections with other fields such as quantum 
mechanics and nonlinear optics. Exploring these avenues has the potential to deepen our 
understanding of fundamental wave phenomena and contribute to practical advancements 
across various scientific and engineering domains.
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Fig. 1  The behaviour of singular 
periodic solution |O1(x, t)| for 
� = 1, � = 0.3,K = 0.9, S = 0.8,

B0 = 0.1, n = 0.1
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Fig. 2  The behaviour of bell-

shaped singular soliton |O2(x, t)| 
for � = 1, � = 0.3,K = 0.9, S = 0.8,

n = 0.1,B0 = 0.5
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Fig. 3  The behaviour of solitary 

wave structure |O6(x, t)| for 
� = 1, � = 0.3,K = 0.9, S = 0.8,

n = 0.1, f = 0.2, g = 0.7, �3 = 0.8
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Fig. 4  The behaviour of solitary 

wave structure |O7(x, t)| for 
� = 1, � = 0.3,K = 0.9, S = 0.8,

n = 0.1, f = 0.2, g = 0.7, �3 = 0.8
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Fig. 5  The behaviour of 

w-shaped periodic wave 

solution |O9(x, t)| for 
� = 1, � = 1,K = 0.9, S = 0.8,

n = 0.1, f = 0.8, g = 0.03, �3 = 0.1
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Fig. 6  The behaviour of dark 

wave solution |O10(x, t)| for 
� = 1, � = 1,K = 0.9, S = 0.8,

0.1, f = 0.8, g = 0.03, �3 = 0.1
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Fig. 7  The behaviour of smooth 

bright soliton |O12(x, t)| for 

� = 1, � = 0.4,K = 0.9, S = 0.8,

n = 0.1, f = 0.8, g = 0.03, �3 = 0.1
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Fig. 8  The behaviour of anti-

kink singular soliton |O13(x, t)| 
for � = 1, � = 1,K = 0.9, S = 0.8,

n = 0.1, f = 0.8, g = 0.03, �3 = 0.1
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Fig. 9  The behaviour of 

bright soliton |O15(x, t)| for 

� = 1, � = 1,K = 0.9, S = 0.8,

n = 0.1, f = 0.8, g = 0.03, �3 = 0.1
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Fig. 10  The behaviour of anti 

kink soliton |O17(x, t)| for 

� = 1, � = 1,K = 0.9, S = 0.8,

n = 0.1, f = 0.8, g = 0.03, �3 = 0.1
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