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Abstract
In this paper, we present an entangled state controlled semi-quantum secret sharing CSQSS 
protocol for the first time. In this scheme, with the permission of a trusted classical user, 
Bob1 , Alice, as a quantum user, can share a one-bit specific message with n classical users, 
and the secret can only be recovered by the cooperation of all classical users. Then, the 
protocol is extended where m-bit specific messages, K (k1, k2, ..., km) , can be shared with n 
classical users. The security of the proposed protocol against common attacks is analysed 
in detail, which shows that the proposed protocol is theoretically secure. Compared with 
previous SQSS protocols, the proposed protocol can achieve a lower cost because it does 
not use returning qubits for producing the secret message, uses fewer returning qubits for 
eavesdropping check, and does not perform entangled state measurement. Moreover, the 
proposed protocol has the highest qubit efficiency among the previous SQSS schemes.

Keywords Semi-quantum secret sharing · Semi-quantum secret sharing · Entangled state · 
Efficiency

1 Introduction

The Quantum Internet (QI) consists of a quantum network that enables quantum com-
munication between distant quantum devices. Quantum communication provides robust 
security (Ekert 1991; Sasaki et al. 2014; Yin et al. 2016) within the QI. Unlike classical 
cryptography, which is based on computational complexity problems, the security of quan-
tum cryptography is based on fundamental laws of quantum mechanics. In 1984, Bennett 
and Brassard (1984a) proposed the first quantum cryptography protocol. Many interesting 
and valuable applications have been presented, such as quantum key distribution (QKD) 
(Li et al. 2008; Zhang et al. 2014; Xu et al. 2020), quantum secure direct communication 
(QSDC) (Bin et al. 2011; Hassanpour and Houshmand 2015; Zhou et al. 2020), quantum 
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teleportation (QT) (Saha and Panigrahi 2012; Hassanpour and Houshmand 2016; Yuan and 
Pan 2020), quantum secret sharing (QSS) (Hillery et al. 1999; Zhang et al. 2005; Markham 
and Sanders 2008; Yang and Tsai 2020; Liao et al. 2021; Li et al. 2022; Khorrampanah and 
Houshmand 2022; Khorrampanah et al. 2022), and so on.

Secret sharing is a technique in the field of computation which is proposed by Shamir 
(1979) and Blakley (1979) in 1979. In the classical secret sharing scheme, some encrypted 
messages are shared among n parties in such a way that certain subsets of the parties can 
reconstruct the original secret message from their shares, but parties that are not in the sub-
set cannot reveal any partial information about the secret. Classical secret sharing cannot 
address the problem of a malicious party, but features of quantum mechanics, such as the 
no-cloning theorem (Wootters and Zurek 1982) and multiparticle entanglement, prevent 
the action of a dishonest party. QSS allows a secret to be shared among multiple partici-
pants, and the secret can be recovered when all participants collaborate together. A pio-
neering QSS protocol based on a multi-particle Greenberger–Horne–Zeilinger (GHZ) state 
was first proposed by Hillery et al. in 1999 Hillery et al. (1999). Following the proposal of 
this scheme, several QSS protocols have been proposed from different perspectives (Zhang 
et al. 2005; Markham and Sanders 2008; Yang and Tsai 2020; Liao et al. 2021; Li et al. 
2022; Khorrampanah and Houshmand 2022; Khorrampanah et al. 2022). However, while 
the quantum cryptography protocols have security advantages, their cost is too high due 
to the need to implement them with quantum resources. Therefore, the concept of semi-
quantum cryptography (Boyer et al. 2007) has been promptly introduced to use few quan-
tum resources. In the semi-quantum cryptography protocols, only one participant needs 
to have full quantum capabilities, and the other participants are classical participants with 
limited quantum capabilities. Among the semi-quantum cryptographic protocols, semi-
quantum secret sharing (SQSS) (Li et al. 2010; Wang et al. 2012; Li et al. 2013; Yang and 
Hwang 2013; Xie et al. 2015; Yin and Fu 2016; Gao et al. 2017; Yin and Chen 2021) is 
an important application. SQSS is a fundamental quantum cryptography protocol for the 
future quantum internet, which promises secure communication.

Li et al. (2010) proposed two novel SQSS protocols with GHZ-like states in 2010. Using 
Bell states, Wang et al. (2012) presented a SQSS in 2012. Li et al. (2013) proposed a SQSS 
protocol using two-particle product states in 2013. Then, Yang and Hwang (2013) sug-
gested a novel key construction method to improve the qubit efficiency. Xie et al. (2015) 
designed a SQSS protocol based on GHZ-like states, where a quantum party can share 
a specific message with two classical parties instead of a random message. Yin and Fu 
(2016) proved that Xie et al.’s protocol suffers from a dishonest party attack, and proposed 
an improvement. Later, Gao et  al. (2017) pointed out that Yin and Fu’s protocol is not 
semi-quantum and they presented an improved protocol accordingly.

A semi-quantum secret sharing (SQSS) protocol allowing more than two classical users 
was presented by Gao et al. (2016) in 2016. Subsequently, Yu et al. (2017) proposed an 
MSQSS protocol based on n-particle GHZ-like states. Li et al. (2020) proposed an MSQSS 
scheme using Bell states. Recently, Ye et  al. (2021) implemented an MSQSS protocol 
based on GHZ states and used measured and reflected qubits as the secret keys instead of 
just the measured qubits.

In this paper, we first proposed a controlled semi-quantum secret sharing (CSQS) pro-
tocol in which Alice, as the sender, can share a one-bit specific message with n classical 
parties (Bobi, i = 1, ..., n) . Bob1 , is also considered a trusted classical user, acts as a control-
ler. CSQS is an extension of the semi-quantum secret sharing protocol. The idea is to allow 
one party to control the successful completion of the secret sharing process. The property 
of CSQS can be useful in secure quantum communication networks, where the controller 
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decides when the encrypted secret information should be executed. We then extended the 
proposed CSQSS protocol, where Alice can share m messages with n classical parties 
simultaneously. Also, no qubits carrying secret information are transmitted in the quantum 
channel, and only single state measurement is used to design this protocol.

The rest of the paper is structured as follows. In Sect. 2, the preliminary for this study 
is presented. Sections 3 and 4 illustrate the proposed CSQSS protocol and the extension, 
respectively. Then, in Sect. 5, the security of the proposed protocols is analysed. Next, in 
Sect. 6, the comparison between the proposed CSQSS protocol and other existing SQSS 
protocols is made. Finally, a conclusion is given in Sect. 7.

2  Preliminary

Before introducing the protocol, it is essential to introduce the basic concepts of quantum 
computation and information.

2.1  Qubits and unitary operations

A quantum bit (qubit) can be expressed as a linear combination of the two basis states as 
follows:

where �0⟩, �1⟩ and �+⟩, �−⟩ are eigenvectors of Pauli operators �z and �x respectively which 
are defined as Eq. (2).

2.2  No‑cloning theorem

One of the main differences between classical and quantum communication is no-cloning 
theorem (Nielsen and Chuang 2002). The no-cloning theorem states that it is not possible 
to perfectly clone an unknown qubit as a consequence of the laws of quantum mechan-
ics. This theorem is the basis of many quantum cryptography protocols, such as quantum 
money (Wiesner 1983) and quantum key distribution (Bennett and Brassard 1984a).

2.3  The semi‑quantum model

The definition of a semi-quantum implies that one or more parties have only classical abili-
ties. More specifically, on the one hand, a classical party has the following abilities: generat-
ing quantum states with the Z basis measurement, measuring quantum states with the Z basis 

(1)
��⟩ = ��0⟩ + ��1⟩ = � + �

√
2

�+⟩ + � − �
√
2

�−⟩,

���2 + ���2 = 1,

(2)

I = �0⟩⟨0� + �1⟩⟨1�,
�x = �0⟩⟨1� + �1⟩⟨0�,
i�y = �0⟩⟨1� − �1⟩⟨0�,
�z = �0⟩⟨0� − �1⟩⟨1�.
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measurement, applying a limited number of unitary operation (only X operation or I opera-
tion), reflecting and reordering quantum states. A quantum party, on the other hand, has access 
to a quantum memory to store a quantum state, generates any arbitrary quantum states and 
measures in any basis. One of the remarkable aspects of the semi-quantum protocol is the 
reduction in quantum resource consumption. In the proposed protocols, the n − 1 classical par-
ties do not need to have the ability to generate, reflect, reorder the quantum states, and apply 
unitary operations, while they are only able to measure in the Z basis measurement. Thus, 
from a practical point of view, the classical parties require fewer capabilities compared to the 
existing counterparts.

3  The proposed CMSQSS protocol

In this section, a CSQSS protocol is presented. Alice, who is a quantum user, wants to share 
a one-bit specific message with n classical users, Bob1,Bob2, ...,Bobn . Alice as a quantum 
user, has full quantum capabilities, n − 1 classical users, Bob2, ...,Bobn only measures in the Z 
basis, and one trusted classical user, Bob1 has only limited quantum capabilities, such as apply-
ing X or I unitary operations and performing the Z basis measurement on qubits. To make the 
following analysis manageable, we assume that the quantum channel is insecure and that there 
is an eavesdropper who has full quantum capabilities but can eavesdrop on an authenticated 
classical channel without altering the information. The CSQSS protocol is described as fol-
lows. The framework of the CSQSS is given in Fig. 1.

Step 1 (preparation): Alice generates a sufficiently large number (L) of n + 2 ( n = 2k, 
where k is a positive integer) entangled particle states, denoted by Eq. (3),

(3)
�𝜑⟩a1a2b1⋯bn

=
1

2
[�000⟩�0⟩⊗(n−1) + �010⟩�1⟩⊗(n−1)

+ �101⟩�0⟩⊗(n−1) + �111⟩�1⟩⊗(n−1)]a1a2b1⋯bn
,

Fig. 1  The framework of CMSQSS
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where a1a2b1...bn represent the n + 2 qubits in an n + 2 entangled particle state. These 
entangled particle states can be defined in L groups as [P1

a1a2b1...bn
,P2

a1a2b1...bn
, ...,PL

a1a2b1...bn
] . 

Alice chooses some groups at random to check the security of the quantum channel. She 
then divides the series of entangled particle states into n + 1 sequences. For each entangled 
state, Alice holds the first and second qubits in her hands and randomly performs two uni-
tary operations (H operation or I operation) on every particles of the selected groups. Alice 
then sends SB1

, SB2
, ..., SBn

 to Bob1,Bob2, ... and Bobn respectively.

Step 2 (Security check): when all users have reported that they have received the sequences, 
Alice declares the order of the particles by an authenticated classical channel. According 
to Alice’s declaration, Bobi selects these particles and then, Bob2,Bob3, ...,Bobn measure 
their particle in the Z basis. Then, Bob1 randomly chooses either to measure the particle in 
the Z basis, or to reflect it back to Alice without any modification. After Alice receives the 
particles from Bob1 , she measures the particles that depends on her choices. If she applied 
I operation on the particles in the preparation phase, she will measure her particles and 
the received particles with the Z basis; otherwise she will measure the particles with the X 
basis. According to Table 1, the measurement results of all users should be correlated. If 
there is no eavesdropper, proceed to the next step; otherwise, if the error rate exceeds the 
predefined threshold, abort the protocol.

Step 3 (encryption): after the eavesdropping check, Alice determines her specific 
message and measures her two qubits. According to her results, she asks Bob1 as a con-
troller to perform a proper unitary operation, defined in Table 2, on his qubit.

SA = (P1

a1
P1

a2
,P2

a1
P2

a2
, ...,PL

a1
PL
a2
)

SB1
= (P1

b1
,P2

b1
, ...,PL

b1
)

SB2
= (P1

b2
,P2

b2
, ...,PL

b2
)

⋮

SBn
= (P1

bn
,P2

bn
, ...,PL

bn
)

Table 1  The corresponding measurement results

R Received particle from Bob1 to Alice, M measure, REF reflect

Bob1’s,..., Bob
n
 ’s states Bob1 ’s operation Alice’s 

operation
Alice’s basis Alice’s state ( a1a2R)

�0⟩�0⟩⊗(n−1) M(REF) Z I �00⟩(�0⟩)
�0⟩�1⟩⊗(n−1) M(REF) Z I �01⟩(�0⟩)
�1⟩�0⟩⊗(n−1) M(REF) Z I �10⟩(�1⟩)
�1⟩�1⟩⊗(n−1) M(REF) Z I �11⟩(�1⟩)
�0⟩⊗(n) or �1⟩⊗(n) M X H �++⟩
�0⟩⊗(n) or �1⟩⊗(n) M X H �+−⟩
�0⟩⊗(n) or �1⟩⊗(n) M X H �−+⟩
�0⟩⊗(n) or �1⟩⊗(n) M X H �−−⟩
�0⟩⊗(n−1) or �1⟩⊗(n−1) REF X H �++⟩�+⟩
�0⟩⊗(n−1) or �1⟩⊗(n−1) REF X H �+−⟩�+⟩
�0⟩⊗(n−1) or �1⟩⊗(n−1) REF X H �−+⟩�−⟩
�0⟩⊗(n−1) or �1⟩⊗(n−1) REF X H �−−⟩�−⟩
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Step 4 (decryption): all users, Bob1 , Bob2,..., Bobn measure their qubits and publish 
their results on an authenticated classical channel. Finally, the users can recover Alice’s 
secret by performing an exclusive OR operation on their results only if they cooperate.

As an example of this CSQSS protocol, suppose Alice wants to send “1” as a 
specific message. When the result of her measurement is �11⟩ , she asks Bob1 to per-
form an X operation on the corresponding particle in his hand. Then, all the clas-
sical users perform a Z basis measurement on their particles. In this way, all clas-
sical users can cooperate to obtain the shared secret message mA by calculating 
mA = rB1

⊕ rB2
⊕⋯⊕ rBn

= 0⊕ 1⊕⋯⊕ 1 = 1

4  The extension of the proposed CSQSS

In this section, we propose an improvement to the proposed CSQSS protocol in which Alice, 
as a quantum user can send m-bit specific messages K(k1, k2, ..., km) to n classical users.

Step 1 (preparation): Alice prepares a sufficiently large number (L) of m(n + 2) ( n = 2k, 
where k is a positive integer) entangled particle pairs to exchange messages as in Eq. (4),

(4)

�𝜑⟩a1
1
a1
2
a2
1
a2
2
...am

1
am
2
b1
1
b1
2
...b1

n
b2
1
b2
2
...b2

n
...bm

1
bm
2
...bm

n

=
1

2
2m

2

�
�0⟩⊗2m�0⟩⊗(m−1)n�0⟩⊗n + �0⟩⊗(2m−1)�1⟩�0⟩⊗(m−1)n�0⟩�1⟩⊗(n−1)

+ �0⟩⊗(2m−2)�10⟩�0⟩⊗(m−1)n�1⟩�0⟩⊗(n−1) + �0⟩⊗(2m−2)�11⟩�0⟩⊗(m−1)n�1⟩⊗n

+ �0⟩⊗(2m−3)�100⟩�0⟩⊗(m−2)n�0⟩�1⟩⊗(n−1)�0⟩⊗n

+ �0⟩⊗(2m−3)�101⟩�0⟩⊗(m−2)n�0⟩�1⟩⊗(n−1)�0⟩�1⟩⊗(n−1)

+ �0⟩⊗(2m−3)�110⟩�0⟩⊗(m−2)n�0⟩�1⟩⊗(n−1)�1⟩�0⟩⊗(n−1)

+ �0⟩⊗(2m−3)�111⟩�0⟩⊗(m−2)n�0⟩�1⟩⊗(n−1)�1⟩⊗n

+ ⋯ + �1⟩⊗(2m−2)�00⟩�1⟩⊗(m−1)n�0⟩⊗n + �1⟩⊗(2m−2)�01⟩�1⟩⊗(m−1)n�0⟩�1⟩⊗(n−1)

+ �1⟩⊗(2m−1)�0⟩�1⟩⊗(m−1)n�1⟩�0⟩⊗(n−1) + �1⟩⊗2m�1⟩⊗(m−1)n�1⟩⊗(n)

�
,

Table 2  Relation between the 
secret, measurement results, and 
Bob1 ’s operation

Secret Alice’s result Bob1 ’s result Bob2’s,..., 
Bob

n
 ’s results

Bob1 ’s 
opera-
tion

0 �00⟩ �0⟩ �0⟩⊗(n−1) I

0 �01⟩ �0⟩ �1⟩⊗(n−1) �
x

0 �10⟩ �1⟩ �0⟩⊗(n−1) �
x

0 �11⟩ �1⟩ �1⟩⊗(n−1) I

1 �00⟩ �0⟩ �0⟩⊗(n−1) �
x

1 �01⟩ �0⟩ �1⟩⊗(n−1) I

1 �10⟩ �1⟩ �0⟩⊗(n−1) I

1 �11⟩ �1⟩ �1⟩⊗(n−1) �
x
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where a1
1
a1
2
a2
1
a2
2
...am

1
am
2
b1
1
b1
2
...b1

n
b2
1
b2
2
...b2

n
...bm

1
bm
2
...bm

n
 represent the 2m + mn qubits in a 

2m + mn entangled particle state as a quantum channel. The channel has 4m terms. The first 
2m qubits indicate the order of Alice’s possible secret messages, which take values from 0 
to 22m−1 , respectively. The remaining mn qubits are divided into m groups of n qubits. Each 
n-qubit group takes one of four possible states ( �0⟩�0⟩⊗(n−1), �0⟩�1⟩⊗(n−1), �1⟩�0⟩⊗(n−1) and 
�1⟩�1⟩⊗(n−1) ). There are 4m possibilities for ordering these states for n classical users which 
are related to b1

1
b1
2
...b1

n
b2
1
b2
2
...b2

n
...bm

1
bm
2
...bm

n
.

These 2m + mn entangled particle states can be defined in L groups as:

Alice chooses some groups at random to check the security of the quantum channel. She 
then divides the series of entangled particle states into n + 1 sequences. For each entangled 
state, Alice takes all the first 2m qubits in her hands and performs two unitary operations 
(X operation and I operation) at random on the other particles of the selected groups. Then, 
she transmits SB1

, SB2
, ..., SBn

 to Bob1,Bob2, ... and Bobn , respectively as follows:

Step 2 (security check): this step is the same as Step 2 in Sect. 3.
Step 3 (encryption): after the eavesdropping check, Alice determines her m-bit spe-

cific messages and measures her 2m qubits based on the Z basis. Based on her results 
and secrets, she asks Bob1 as a controller to perform an appropriate unitary operation on 
his particles, as follows:

where Rj
ai
 are the measurement results in the Z basis of the qubits Pj

ai
 , and k′

j
 refers to an 

appropriate unitary operation, U
b
j

1

 . According to Eq. (5), k′
j
 is specified by Alice. The opera-

tor applied to the jth qubit is equal to Xk′
j , that is, if k�

j
= 0 or k�

j
= 1 , the corresponding Bob1 

must apply U
b
j

1

= I or U
b
j

1

= �x on his particles, respectively. Table 3 shows the results in 
more detail.

Step 4 (decryption): finally, all classical users cooperate to recover the secret K 
(k1, k2, ..., km) by

[P1

a1
1
a1
2
a2
1
a2
2
...am

1
am
2
b1
1
b1
2
...b1

n
b2
1
b2
2
...b2

n
...bm

1
bm
2
...bm

n

,

P2

a1
1
a1
2
a2
1
a2
2
...am

1
am
2
b1
1
b1
2
...b1

n
b2
1
b2
2
...b2

n
...bm

1
bm
2
...bm

n

, ...,

PL

a1
1
a1
2
a2
1
a2
2
...am

1
am
2
b1
1
b1
2
...b1

n
b2
1
b2
2
...b2

n
...bm

1
bm
2
...bm

n

].

SA = (P1

a1
P1

a2
...P2m

a1
P2m
a2
,P2

a1
P2

a2
...P2m

a1
P2m
a2
, ...,PL

a1
PL
a2
...P2m

a1
P2m
a2
)

SB1
= (P1

b1
...Pm

b1
,P2

b1
...Pm

b1
...PL

b1
...Pm

b1
)

SB2
= (P1

b2
...Pm

b2
,P2

b2
...Pm

b2
, ...,PL

b2
...Pm

b2
)

⋮

SBn
= (P1

bn
...Pm

bn
,P2

bn
...Pm

bn
, ...,PL

bn
...Pm

bn
)

(5)

k1 =R
1

a1
⊕ R1

a2
⊕ k�

1

k2 =R
2

a1
⊕ R2

a2
⊕ k�

2

⋮

km =Rm
a1
⊕ Rm

a2
⊕ k�

m
,
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where Rj

bi
 is the measurement results in the Z basis of qubits Pj

bi
 . For example, suppose 

Alice wants to send “110” as 3-bit specific messages. When the results of her measure-
ments become �000010⟩ ; she asks Bob1 to perform X operation on the corresponding parti-
cles in his hand. Then, all the classical users perform a Z basis measurement on their parti-
cles. In this way, all users ( Bob1 , Bob2,..., Bobn ) can cooperate together to obtain the 
common secret message K(k1, k2, k3) by calculating

(6)

k1 =R
1

b1
⊕ R1

b2
⊕⋯⊕ R1

bn

k2 =R
2

b1
⊕ R2

b2
⊕⋯⊕ R2

bn

⋮

km =Rm
b1
⊕ Rm

b2
⊕⋯⊕ Rm

bn
,

k1 = Rb1
1

⊕ Rb1
2

⊕⋯⊕ Rb1
n
= 1⊕ 0⊕⋯⊕ 0 = 1

k2 = Rb2
1

⊕ Rb2
2

⊕⋯⊕ Rb2
n
= 1⊕ 0⊕⋯⊕ 0 = 1

k3 = Rb3
1

⊕ Rb3
2

⊕⋯⊕ Rb3
n
= 0⊕ 0⊕⋯⊕ 0 = 0

Table 3  Relation between the secrets, classical users’s measurement results, and Bob1 ’s operations

Secrets Alice’s results Bob1 ’s results Bob2’s,..., Bob
n
 ’s results Bob1 ’s operations

0...00 �0⟩⊗2m

a
1

1
a
1

2
a
2

1
a
2

2
...am

1
a
m

2

�0⟩⊗m

b
1

1
b
2

1
...bm

1

�0⟩⊗m(n−1)

b
1

2
...b1

n
...bm

2
...bm

n

I⊗ ...⊗ I⊗ I

0...00 �0⟩⊗(2m−1)�1⟩ �0⟩⊗m �0⟩⊗(n−1)�1⟩⊗(m−1)(n−1) I⊗ ...⊗ I⊗ 𝜎
x

.. .. .. .. ..
0...00 �1⟩⊗2m �1⟩⊗m �1⟩⊗m(n−1) I⊗ ...⊗ I⊗ I

0...01 �0⟩⊗2m �0⟩⊗m �0⟩⊗m(n−1) I⊗ ...⊗ I⊗ 𝜎
x

0...01 �0⟩⊗(2m−1)�1⟩ �0⟩⊗m �0⟩⊗(n−1)�1⟩⊗(m−1)(n−1) I⊗ ...⊗ I⊗ I

.. .. .. .. ..
0...01 �1⟩⊗2m �1⟩⊗m �1⟩⊗m(n−1) I⊗ ...⊗ I⊗ 𝜎

x

0...10 �0⟩⊗2m �0⟩⊗m �0⟩⊗m(n−1) I⊗ ...⊗ 𝜎
x
⊗ I

0...10 �0⟩⊗(2m−1)�1⟩ �0⟩⊗m �0⟩⊗(n−1)�1⟩⊗(m−1)(n−1) I⊗ ...⊗ 𝜎
x
⊗ 𝜎

x

.. .. .. .. ..
0...10 �1⟩⊗2m �1⟩⊗m �1⟩⊗m(n−1) I⊗ ...⊗ 𝜎

x
⊗ I

.. .. .. .. ..

.. .. .. .. ..

.. .. .. .. ..
1...11 �0⟩⊗2m �0⟩⊗m �0⟩⊗m(n−1) 𝜎

x
⊗ ...⊗ 𝜎

x
⊗ 𝜎

x

1...11 �0⟩⊗(2m−1)�1⟩ �0⟩⊗m �0⟩⊗(n−1)�1⟩⊗(m−1)(n−1) 𝜎
x
⊗ ...⊗ 𝜎

x
⊗ I

.. .. .. .. ..
1...11 �1⟩⊗2m �1⟩⊗m �1⟩⊗m(n−1) 𝜎

x
⊗ ...⊗ 𝜎

x
⊗ 𝜎

x
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5  Security analysis

The security of the proposed CSQSS protocol is discussed in this section. In general, two 
types of attackers, external and internal attackers, need to be considered in the security 
analysis of the CSQSS protocol. We show that the proposed CSQSS protocol is secure 
against both types of attacks.

5.1  External attack

In this type of attack, the goal of an external attacker, Eve, is to eavesdrop on the specific 
messages K (k1, k2, ..., km) . If Eve does not attack the particle sequences, she cannot obtain 
any useful information. Since the particle sequences are only transmitted once in the pro-
posed protocol, Eve must attack the transmission of the particle sequences SB1

, ..., SBn
 in 

Step 1. In the security checking phase, in Step 2, Eve’s attack will be detected by Alice. 
Therefore, the presented CSQSS protocol can protect against external attacks. In the fol-
lowing, two types of Eve’s attacks that may utilize in the preparation phase are analyzed.

5.1.1  Intercept‑and‑resend attack

In this type of attack, since Eve does not know Alice’s chosen unitary operation on the par-
ticles in the preparation phase, she randomly intercepts and measures the transmitting par-
ticles in the Z or X basis and sends the fake particles to the users. The following scenarios 
could occur: 

(1) If Eve chooses the Z basis, while Alice applied the I operation, according to Eq. (3), 
Eve’s attack would not be detected.

(2) If Eve chooses the X basis while Alice’s operation was H, according to Eq. (7), her 
attack will not be detected. 

(3) If Eve’s basis is X and Alice’s operation was I, her attack will be detected with prob-
ability equal to 1

2n
 . The reason is that, suppose n = 2 , according to Eq. (8), if Eve obtains 

�++⟩ and Alice’s measurement result is �00⟩ , since the state that Eve sends to the users is 
�+⟩ , there are four possible combinations of the user’s results, and according to Eq. (3), 
the only results that will be accepted by the users is the case where both users, Bob1 , 
and Bob2 , obtain �0⟩ based on their measurements. So, with a probability of 1

22
 , Eve will 

not be detected. 

(7)
�𝜑1⟩a1a2b1...bn =

1

2
[�+ + +⟩�+⟩⊗(n−1) + �+ − +⟩�−⟩⊗(n−1)

+ �− + −⟩�+⟩⊗(n−1) + �− − −⟩�−⟩⊗(n−1)]a1a2b1...bn .

(8)

��2⟩a1a2b1...bn =
1

22
[(�00⟩ + �01⟩ + �10⟩ + �11⟩)a1a2 �+⟩b1 �+⟩b2

+ (�00⟩ − �01⟩ + �10⟩ − �11⟩)a1a2 �+⟩b1 �−⟩b2
+ (�00⟩ + �01⟩ − �10⟩ − �11⟩)a1a2 �−⟩b1 �+⟩b2
+ (�00⟩ − �01⟩ − �10⟩ + �11⟩)a1a2 �−⟩b1 �−⟩b2 ].
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(4) If Eve’s basis is Z and Alice’s operation was H, her attack will be detected with prob-
ability 1/2 only if Bob1 decided to reflect the particle. Consider the case where n = 2 , 
Eve obtains �00⟩ and Alice’s measurement result is �00⟩ . If Bob1 reflects the state, Alice 
may obtain �−⟩ with probability of 1

2
 , because the reflected particle is �0⟩ and accord-

ing to Eq. (9) there is no correlation between the measurement results of Alice and all 
users. So, Eve will be detected with probability of 1

2
 . 

Therefore, the total probability of not detecting Eve is 1

2

(
1

2

(
1

2n

)
+

1

2
(0)

)
+

1

2

(
1

2

)

(
1

2
+

1

2
(0)

)
=

1

8

(
1

2n−1
+ 1

)
 . As the number of users goes to infinity, the probability of not 

detecting Eve will be 1
8
 , and if the number of the selected groups for the security check is � , 

the probability of detecting Eve will be 1 −
(

1

8

)�

 . So, if the number of the selected group is 
large enough, the probability of detecting Eve will be close to one and the communication 
is secure.

We also obtain the probability of detecting Eve’s attack if Eve chooses only Z basis 
measurement, regardless of whether Alice’s operation is I or H, Eve’s attack will be 

detected with probability equal to 1 −
(

3

4

)�

.

5.1.2  Entangle‑and‑measure attack

In this attack, Eve tries to recover the specific messages by preparing some auxiliary parti-
cles �Ei⟩ and entangling them with the sequences SBi

 . Eve uses the unitary operation, U, on 
the pair of particles Pj

bi
 and her particle �Ei⟩ . It can be described as Eq. (10)

where �eij⟩ indicates the ancillary state of Eve. The unitary operation, U, is described as 
Eq. (11)

After Eve performed unitary operation (for instance on Bob1 particle), the state of the 
whole system is described as follows:

(9)
�𝜑3⟩a1a2b1...bn =

1√
2n+1

[�+ + +⟩(�0⟩ + �1⟩)⊗(n−1) + �+ − +⟩(�0⟩ − �1⟩)⊗(n−1)

+ �− + −⟩(�0⟩ + �1⟩)⊗(n−1) + �− − −⟩(�0⟩ − �1⟩)⊗(n−1)]a1a2b1...bn .

(10)

U�0⟩�Ei⟩ =��0⟩�e00⟩ + ��1⟩�e01⟩,
U�1⟩�Ei⟩ =��0⟩�e10⟩ + ��1⟩�e11⟩,

U�+⟩�Ei⟩ =
1

2
[�+⟩(��e00⟩ + ��e01⟩ + ��e10⟩ + ��e11⟩)

+ �−⟩(��e00⟩ − ��e01⟩ + ��e10⟩ − ��e11⟩)],

U�−⟩�Ei⟩ =
1

2
[�+⟩(��e00⟩ + ��e01⟩ − ��e10⟩ − ��e11⟩)

+ �−⟩(��e00⟩ − ��e01⟩ − ��e10⟩ + ��e11⟩)],

(11)
U =

[
� �

� �

]
,

|�|2 + |�|2 = |�|2 + |�|2 = 1.



An efficient controlled semi‑quantum secret sharing protocol…

1 3

Page 11 of 14 759

According to Eq.  (12) and Table 1, the Eve’s existence can be detected with probability 
equal to 1

2
{|�|2 + |�|2} probability if the measurement basis is Z.

5.2  Internal attack

The purpose of an internal attack is for one or more dishonest parties to try to obtain the spe-
cific messages. In the following, such an internal attack is discussed in more detail from two 
perspectives.

5.2.1  The participant attack from one dishonest party

The goal of this dishonest party is to determine the specific messages K alone. Without loss of 
generality, we can consider that Bobi , where 2 ≤ i ≤ (n − 1) , to be a dishonest party. If Bobi 
wants to get the secret alone; he can only determine Rm

bi
 by measuring his particle in the Z basis 

and does not know the results of other particle measurements. This shows that Bobi cannot 
obtain any secret. Also, in the proposed CSQSS protocol, there is no qubit transmission 
between the classical users. If Bobi wants to achieve his goal, he can try to attack the transmit-
ted particles from Alice to Bobn . However, this is the same as an external attack, and he will 
be detected by the security checking phase as discussed in Step 1 with probability equal to 

1 −

(
3

4

)�

 . If the number of groups for the security check is large enough, the probability is 
close to one and this type of attack will not be successful.

More specifically, with 1

2
 probability, Alice performs the H operation, and if Bob1 

decides to reflect the particle, since the particle that is measured by the dishonest party is 
not prepared in the X basis, then with 1

2
 probability, Alice may obtain �+⟩ or �−⟩ according to 

Eq. (13). Therefore, the measurement results are not correlated if the following cases occur: 
{�+ + −⟩a1a2R, �+ − −⟩a1a2R, �− + +⟩a1a2R, �− − +⟩a1a2R} , and the attack will be detected with 
probability 1

4
 . As a result, a dishonest party cannot obtain the specific messages without the 

help of others.

5.2.2  The participant attack by more than one dishonest parties

There is another common attack strategy where n − 1 dishonest parties collude together to 
attack the protocol. To obtain the specific messages, the dishonest parties have two options. 
First, Bob2, ...,Bobn−1 can determine Rm

b1
, ...,Rm

bn
 . The dishonest parties cannot obtain any 

(12)

�Φ⟩a1a2b1...bnE =
1

2
[𝛼(�000⟩�0⟩⊗(n−1) + �010⟩�1⟩⊗(n−1))�e00⟩

+ 𝛽(�001⟩�0⟩⊗(n−1) + �011⟩�1⟩⊗(n−1))�e01⟩
+ 𝛾(�100⟩�0⟩⊗(n−1) + �110⟩�1⟩⊗(n−1))�e01⟩
+ 𝛿(�101⟩�0⟩⊗(n−1) + �111⟩�1⟩⊗(n−1))�e11⟩]a1a2b1...bnE.

(13)
�𝜑4⟩a1a2b1...bn =

1

2
√
2

[�++⟩(�0⟩ + �1⟩)�+⟩⊗(n−1) + �+−⟩(�0⟩ + �1⟩)�−⟩⊗(n−1)

+ �−+⟩(�0⟩ − �1⟩)�+⟩⊗(n−1) + �−−⟩(�0⟩ − �1⟩)�−⟩⊗(n−1)]a1a2b1...bn .
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secrets without the help of Bob1 . Second, if the dishonest parties try to attack the transmit-
ted particles which that Alice sends to Bob1 , their attack can be detected as the external 
attacker Eve. Therefore, our proposed CSQSS protocol can protect against internal attacks.

6  Comparison and analysis

Here, we give a comparison between our proposed protocol and the existing MSQSS proto-
cols. The qubit efficiency is defined as Eq. (14),

where n and m are the total number of shared classical bits and the number of qubits, 
respectively. Table 4 shows the qubit efficiency comparison of our scheme with the existing 
MSQSS protocols.

As shown in Table 4, the qubit efficiency of our proposed protocol is higher than the 
previous MSQSS protocols.

Compared to existing MSQSS protocols, the decoy photon technology (Ben-
nett and Brassard 1984b) (each decoy photon is randomly chosen from the four states 
{�0⟩, �1⟩, �+⟩, �−⟩} ), is not used in our protocol for eavesdropping check. Also, entangled 
state measurement is not required for designing the protocol. Thus, the proposed protocol 
can be achieved at a lower cost.

7  Conclusion

In this paper, a novel controlled semi-quantum secret sharing protocol with entangled 
state is presented. In the proposed protocol, with the permission of a trusted classical 
user, Bob1 , Alice as a quantum user, can shares a one-bit specific message to n classical 
users (Bob1,Bob2, ...,Bobn) , and Alice’s secret can only be recovered by cooperation of 
all classical users. Then, the extension of the proposed CSQSS protocol is defined, where 
Alice can share m-bit specific messages K(k1, k2, ..., km) to n classical users. Furthermore, 
the analysis of the proposed CSQSS shows that the protocol is secure against external and 
internal attackers.

It is worth emphasising that the proposed protocol has the highest qubit efficiency 
among the existing MSQSS protocols. Compared with previous MSQSS protocols, the 

(14)� =
n

m
,

Table 4  Qubit efficiency 
comparison of the MSQSS 
protocols

Protocol Quantum resource Qubit efficiency

Gao et al. (2016) Bell states 1

4n

Yu et al. (2017) GHZ-like states 1

6n+4

Li et al. (2020) Bell states 1

5n

Ye et al. (2021) GHZ states 1

3n+1

Proposed protocol Entangled states 1

n+2
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proposed protocol can achieve a lower cost due to the fact that it does not use returning 
qubits to produce the secret message, uses fewer returning qubits for eavesdropping check 
and does not use entangled state measurement to design the protocol. From an experimen-
tal point of view, we hope that the proposed CSQSS protocol will be realised in the near 
future.
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