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Abstract
In our exploration of optical physics, the intricate resonant nonlinear Schrödinger (NLS) 
equation featuring dual-power law nonlinearity is investigated which is an equation of par-
amount importance in the field of optics. This equation serves as a key to unlocking the 
intricacies of optical phenomena, including solitons, nonlinear effects, and wave interac-
tions. Various optical solutions covering a broad variety of mathematical expressions, from 
trigonometric and hyperbolic functions to rational ones, are revealed by applying the tech-
nique of the powerful ( Ġ∕G,1∕G)-expansion analytical approach which is the main goal of 
this study. The utmost precision and reliability of our findings are rigorously confirmed via 
the robust Mathematica software. Furthermore, the dynamic visual representations includ-
ing 2D, 3D, and contour charts are presented to vividly depict various optical patterns 
such as single periodic, multi-periodic, singular soliton, and semi-bell-shaped phenomena. 
These solutions are of the utmost significance in the fields of nonlinear fiber optics and 
telecommunications, contributing to our comprehension of the fundamental physical con-
cepts underlying the equation. The adaptability and application of our new and standard-
ized technique is demonstrated by applying it to a wide range of mathematical and physical 
challenges.
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1  Introduction

Advancements in nonlinear optics have given rise to a range of NLS equations with 
broader applicability. NLS equations naturally describe the propagation of pulses in 
optical fibers, making them a fundamental tool in optics research. The universal appli-
cability of NLS equations extends their usefulness to a broad range of nonlinear physi-
cal systems in various domains, encompassing electrical engineering, mathematics, and 
optical physics (such as light transmission through optical fibers, chaos, and photon-
ics) (Baskonus et al. 2021; Kumar et al. 2020). Among the myriad NLS equations, the 
resonant NLS equation has gained renown for its apt description of nonlinear optical 
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phenomena, particularly in the realms of optical fibers and telecommunications. In the 
realm of optical fibers, the resonant NLS equation serves as a mathematical description 
for the journey of optical pulses through these systems, accommodating the influences 
of nonlinearity, dispersion, and various other factors. This equation takes the following 
form (Tozar et al. 2021; Zayed and Alurrfi 2016):

In this equation p , ( q, s, w ), and Υ = Υ(x, t) , respectively symbolize the coefficient of 
dispersion, coefficients of nonlinearity, and the normalized complex amplitude of the 
pulse confined within the optical fiber.

Tozar et  al. (2021) used the functional variable method to find a variety of soliton 
solutions with different structures for this model. In Zayed and Alurrfi (2016), the auxil-
iary equation method proposed by Sirendaoreji and Kudryashov is extended to construct 
new types of Jacobi elliptic function solutions for Eq. (1).

The resonant NLS equation, serving as a versatile model in the realm of optical phys-
ics, holds immense significance for understanding a wide spectrum of optical phenom-
ena. It unravels the mysteries of wave transmission, the formation of optical solitons, 
and the intricate nonlinear behaviors observed within optical fibers and related media. 
Esteemed by scholars, this equation delves into the dynamic behavior of optical waves 
in diverse scenarios. It paves the way for innovative optical solitons, exploration of 
intricate optical wave interactions, and scrutiny of light pulse propagation in nonlin-
ear optical materials. Researchers employ a blend of mathematical methodologies and 
numerical simulations to decode the secrets concealed within this equation, thus gaining 
profound insights into the intricate behavior of optical waves within complex optical 
systems.

Numerous scholars have developed a wide array of methodologies to extract precise 
solutions for NLS equations and other nonlinear evolution equations, employing techniques 
such as the Riccati equation method (Yomba 2005; Elsayed and Alurrfi 2015), Lie symme-
tries (Jafari et al. 2015; Hosseini et al. 2023a), the ( Ġ∕G)-expansion technic (Mohanty et al. 
2023; Naher and Abdullah 2012), the extended Jacobi elliptic function method (Hosseini 
et  al. 2023b; Wen and Lü 2009), the (G′/G2)-expansion method (Rehman et  al. 2022a), 
He’s semi-inverse scheme (Mirzazadeh 2015), the new modified simple equation method 
(Irshad et  al. 2017), the functional variable technic (Babajanov and Abdikarimov 2022; 
Bekir and San 2012), Homogeneous balance method (Wang et  al. 1996; Fan and Zhang 
1998), the fractional approach (Tandel et  al. 2022), the new auxiliary equation method 
(Islam et al. 2023; Zhang 2013), the sine–Gordon expansion scheme (Kumar et al. 2022), 
the first integral method (Taghizadeh and Mirzazadeh 2011), the tanh–function method 
(Parkes and Duffy 1996; Fan 2000), the generalized (G’/G)-expansion technique (Kaur 
2014), the tanh–coth method (Kumar and Pankaj 2015; Mamun et al. 2022), the general-
ized Kudryshov method (Habib et al. 2019; Islam et al. 2015), the exp(− φ(ξ))-expansion 
method (Roshid et al. 2014), the unified method (Fokas and Lenells 2012; Abdel-Gawad 
and Osman 2015), the first extended rational sinh-Gordon method (Rehman and Ahmad 
2023), the Galilean transformation and its bifurcation analysis (Hosseini et al. 2023c), the 
modified rational sine–cosine and sinh-cosh methods (Rehman et al. 2023), and other dif-
ferent techniques (Akram et al. 2023; Islam et al. 2024; Ahmad et al. 2023; Rehman et al. 
2022b; Boakye et al. 2024; Ma 2023; El-Sherif et  al. 2005; Ma et al. 2010; Fetoh et al. 
2019; Abdel-Gawad and Osman 2013; Ganie et al. 2024).
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The double ( Ġ∕G,1∕G)-expansion method is a highly valuable analytical technique used to 
solve nonlinear partial differential equations featuring variable coefficients. It relies on repre-
senting solutions as power series with coefficients figured out by two variables (G and 1/G), 
and it derives these coefficients by substituting the series into the equation and matching coef-
ficients of like terms. This method finds extensive application in uncovering solitary and opti-
cal wave solutions within a range of NLS equations. A number of investigators (Iqbal et al. 
2023; Chowdhury et al. 2023) have utilized this technique to reveal solutions for NLS equa-
tions. As of now, there has been no exploration of optical solutions for the resonant NLS equa-
tion using the double ( Ġ∕G,1∕G)-expansion method. The aim of this research is to acquire 
optical soliton solutions for this nonlinear equation through the application of this method. 
The paper follows the following structure: (i) Sect. 2 elucidates the methodology employed. 
(ii) In Sect. 3, we apply the aforementioned method to the Resonant NLS equation and obtain 
the requisite solutions. (iii) Sect. 4 is dedicated to the exploration of dynamic representations, 
visually illustrating the captivating behaviors of various solitons using 2D, 3D, and contour 
graphs. (iv) Sect. 5 offers concluding remarks.

2 � Methodology

Within this discussion, we provide a comprehensive overview of the essential steps required 
for the application of the ( Ġ∕G,1∕G)-expansion method, a technique introduced by some 
researchers (Iqbal et  al. 2023; Chowdhury et  al. 2023), in the analysis of NLS equations. 
Indeed, facilitating this analytical process necessitates the introduction of an auxiliary linear 
ordinary differential equation. This auxiliary equation is meticulously formulated to comple-
ment the methodology, enabling a systematic exploration of nonlinear phenomena and their 
solutions, which is constructed as follows:

In the above equation, the sign ‘.’ stands for the differentiation as regards � in addition the 
variables agree like this:

Equation (3) satisfied the following relationships:

It is worth noting that Φ and Ψ are the functions of �.
The Eq. (2) mentioned above yields different results subject to the value of λ, which can be 

classified into three distinct scenarios:
Case I. If 𝜆 > 0 (positive values).
In this case, Eq. (2) yields the general solution (GS) as follows:

(2)G̈(𝜍) + 𝜆G(𝜍) = 𝛽

(3)Φ = Ġ(𝜍)∕G(𝜍) andΨ = 1∕G(𝜍)

(4)Φ̇ = −Φ2 + 𝛽Ψ − 𝜆 and Ψ̇ = −ΦΨ

(5)G(�) = C1sin

�
�
√
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where �1 = C2

1
+ C2

2
 stands for the arbitrary constants.

Case II. If 𝜆 < 0 (negative values)
In this consequence, Eq. (2) produces the GS in the following manner:

resulting in:

Case III. If � = 0

Within this context, Eq. (2) produces the GS in the following manner:

Now, let’s assume the general form of an NLS equation that encompasses three inde-
pendent variables (x, y, and t) can be represented as:

Within this context, H represents a polynomial function that is contingent upon the vari-
ables encapsulated in Υ and Υx =

�Υ

�x
 , Υy =

�Υ

�y
 , Υt =

�Υ

�t
 , Υxx =

�2Υ

�x2
 , Υyy =

�2Υ

�y2
 , Υtt =

�2Υ

�t2
 , 

Υxt =
�Υ

�x�t
 , Υxy =

�Υ

�x�y
 and so on.

In order to transform Eq. (11), we introduce a new variable � , which is governed by the 
following relations:

where k is the wave number, � represents the constant and l is the wave frequency.
Equation (11), now converted into an ordinary differential equation which can be writ-

ten as follows:

Here, J represents the new polynomial that contains v with its ordinary derivatives.
Consider the following equation, which represents the GS of Eq. (13) utilizing the pre-

viously discussed method:

In the above equation a0 , ai and bi(i = 1, 2, 3,……… ,M) are the arbitrary constant ful-
filling the requirement a2

M
+ b2

M
≠ 0 and the parameter M is defined as a positive homoge-

neous balance number in this context. To figure out these arbitrary constants, we employ 
the previously mentioned method, following these phases:
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Phase 1: To find the balance number M, the homogeneous balance method is employed. 
This method entails balancing the highest-order derivative and the nonlinear terms with the 
highest degree.

Phase 2: By inserting the value of M into Eq. (14) and subsequently substituting this modi-
fied equation into Eq. (13), while utilizing Eqs. (4) and (6) (illustrated through Case I as an 
example), the left-hand side of Eq.  (13) is transformed into a polynomial that incorporates 
Φ and Ψ . In this polynomial, the degree associated with Ψ does not exceed 1, whereas the 
degree of Φ ranges from 0 to any integer. Setting the coefficients of terms with matching pow-
ers within the polynomial to 0 leads to the establishment of a system of algebraic equations 
involving ai , bi , λ (when λ > 0), � and others.

Phase 3: Utilizing Mathematica software to solve the algebraic equations obtained in Step 
II, we determine the values of ai, bi , λ (where λ > 0), and � . Subsequently, these values are 
substituted into the transformed Eq.  (14), allowing us to derive the optical solutions repre-
sented by the trigonometric functions as described in Eq. (5). This comprehensive procedure 
ultimately yields the optical solution for Eq. (1), following the coordinate change outlined in 
Eq. (12).

Phase 4: Following a process similar to Steps II and III, we obtain the optical solutions for 
Eq. (13), particularly Eq. (11), which are represented as a combination of hyperbolic functions 
and rational functions.

3 � Method’s application

In this part, we implement the aforementioned method outlined in Sect. 2 to acquire the opti-
cal solution of the resonant NLS equation.

Upon applying the transformation described in Eq.  (12), Eq.  (1) can be expressed as an 
ordinary differential equation after separating the real and imaginary components in the fol-
lowing manner:

Real part:

Imaginary part:

Operating the homogeneous balance technique, we find out the balance number M to be 
1

2
 . However, since it is not an integer number, we introduce an additional transformation as 

follows:

Now, utilizing this transformation in Eq. (15), we obtain:

Once more, we apply the homogeneous balance law to Eq. (18), resulting in: M = 1 and 
the solution of Eq. (18) can be written as follows:

(15)(p + w)v̈ −
(
l + pk2

)
v + qv3 + sv5 = 0

(16)a = −2kp

(17)F
1

2 = v

(18)(p + w)
(
2FF̈ − Ḟ

2
)
− 4

{(
l + pk2

)
F

2 − qF3 − sF4
}
= 0

(19)F(�) = a0 + a1Φ(�) + b1Ψ(�)
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In this equation, the constants a0, a1 , and b1 are coefficients that need to be figured 
out. We will now apply the three cases, as discussed in the methodology section.

Case I. 𝜆 > 0 (For trigonometric solutions).
To obtain the required solution, Eq. (19) is substituted into Eq. (18) and Eqs. (2) and 

(3) are applied, the left side of Eq. (18) is switched to a polynomial that encompasses Φ 
and Ψ . Setting each coefficient of this polynomial to zero leads to a system of algebraic 
equations involving the coefficients a0 , a1 , and b1 . The solution to these algebraic sys-
tems supplies the values for the arbitrary constants as results:

Now, employing these computed values in Eq. (19), we obtain the following:

where b1 ≠ 0.
By reverting Eq. (21) to its initial form with the assistance of Eq. (12) and Eq. (17), 

we obtain the following:

where b1 ≠ 0.
If we set both � and C2 to zero while ensuring C1 is non-zero simplifies Eq. (22) to the 

solitary wave solution as:

where b1 ≠ 0.
Furthermore, if we set both � and C1 to zero while ensuring that C2 is non-zero, 

Eq. (22) simplifies to return the solitary wave solution as follows:

where b1 ≠ 0.
Case II. 𝜆 < 0 (For hyperbolic solutions)
In this scenario, we follow a similar procedure that is described in case I to derive the 

necessary solution. We start the process by inserting Eq. (19) into Eq. (18) and imple-
menting Eqs.  (2) and (3). This series of operations results in the left side of Eq.  (18) 
being converted into a polynomial that incorporates Φ and Ψ . Upon equating each 
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coefficient of this polynomial to zero, we derive a system of algebraic equations involv-
ing the coefficients a0 , a1,and b1 . The solution to these algebraic systems provides the 
values for the arbitrary constants as follows:

Set 1:

By incorporating these values into Eq. (19), we arrive at the solution in the following 
manner:

where b1 ≠ 0.
By substituting the transformation variables outlined in Eq. (12) into this equation, it is 

transformed into the following GS form:

Where b1 ≠ 0.
When both � and C2 are set to zero, with the condition that C1 is non-zero, Eq. (27) sim-

plifies to supply the solitary wave solution as follows:

Where b1 ≠ 0.
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Incorporating these determined values into Eq. (19), we arrive at the solution in the fol-
lowing manner:

where b1 ≠ 0.
Upon substituting the transformation variables as defined in Eq. (12) into this equation, 

it transforms into the following generalized solution form:

Where b1 ≠ 0.
If both � and C2 are set to zero, with the condition that C1 is non-zero, Eq. (31) simpli-

fies to supply the solitary wave solution as follows:
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Utilizing these computed values in Eq. (19), the solution can be expressed as follows:

where b1 ≠ 0.
Reverting Eq. (34) to its original form with the assistance of Eq. (12) and Eq. (17), we 

arrive at the following:

where b1 ≠ 0.
When � and C2 to zero while ensuring C1 is non-zero shortens Eq. (35) to the solitary 

wave solution as follows:

where b1 ≠ 0.
Furthermore, when we set both � and C1 to zero while ensuring that C2 is non-zero, 

Eq. (35) simplifies to return the solitary wave solution as follows:

where b1 ≠ 0.
Case III. � = 0 (For rational solutions)
In this instance, we follow a procedure like the one expressed in cases I and II to 

obtain the required solution. The process begins with the substitution of Eq.  (19) into 
Eq. (18) and the application of Eqs. (2) and (3). This manipulation converts the left side 
of Eq. (18) into a polynomial containing Φ and Ψ . By equating each coefficient of this 
polynomial to zero, we set up a system of algebraic equations that involve the constants 
a0 , a1 and b1 . The solution to these algebraic systems furnishes the values for the arbi-
trary constants as follows:
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(34)F(�) = b1
1

C1sinh

�
�
√
−�

�
+ C2cosh

�
�
√
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�
+ �∕�

(35)
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3(�2+�2�2)

�
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⎝
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�
(x − at)

√
−�

�
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�
(x − at)

√
−�

�
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⎞
⎟
⎟
⎟
⎠
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2

(36)Υ(x, t) = e
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1
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�
t

��
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�
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√
−�

�� 1

2

(37)Υ(x, t) = e
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�
�−kx+

�
−3pk2C2

2
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�
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��
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�
(x − at)

√
�
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2

(38)

a0 =
2�b1

C2

1
− 2�C2

, a1 = 0, q =
4s�b1

−C2

1
+ 2�C2

,w =
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1
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1

3
(
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1
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1
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1
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2
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1

(
C2

1
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where b1 ≠ 0.
Substituting the transformation variables defined in Eq. (12) into the above equation 

yields the following generalized solution form:

where b1 ≠ 0.
If both � and C2 are set to zero, with the condition that C1 is non-zero, Eq. (40) sim-

plifies to supply the solitary wave solution as follows:

where b1 ≠ 0.
Set 2:

(39)F(�) =
2�b1

C2

1
− 2�C2

+ b1
1

�

2
�2 + C1� + C2

(40)

Υ(x, t) = e
i

{
�−kx+

(
−pk2C4

1
+4pk2�C2

1
C2−4pk

2�2C2
2
−4s�2b2

1

(C21−2�C2)
2

)
t

}(
2�b1

C2

1
− 2�C2

+ b1
1

�

2
(x − at)2 + C1(x − at) + C2

) 1

2

(41)Υ(x, t) = ei{�−kx−pk
2t}

(
b1

C1

1

(x − at)

) 1

2

Fig. 1   Graphical representations of the solutions |Υ(x, t)| of Eq.  (22) for 
b
1
= −.2, � = .1, a = −3.3,C

1
= −.2,C

2
= 0.1, and � = 1: (a) A 3D representation (b) A 2D representation 

and (c) Contour representation
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Incorporating these values into Eq. (19), we obtain the solution as follows:

where b1 ≠ 0.
When the transformation variables defined in Eq. (12) are substituted into the equation 

mentioned above, it results in the following generalized solution form:

where b1 ≠ 0.

(42)a0 = 0, a1 = 0, q =
4s�b1

4(C2

1
− 2�C2)

,w =
−3pC2

1
+ 6p�C2 − 4sb2

1

3
(
C2

1
− 2�C2

) and l = −pk2

(43)F(�) =
b1

�

2
�2 + C1� + C2

(44)Υ(x, t) = ei{�−kx−pk
2t}

(
b1

�

2
(x − at)2 + C1(x − at) + C2

) 1

2

Fig. 2   Graphical representations of the solutions |Υ(x, t)| of Eq. (23) for b
1
= .2, � = .2, a = 2.3, and C

1
= .9

: (a) A 3D representation (b) A 2D representation and (c) Contour representation
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4 � Graphs and their associated physical interpretations

In this section, we employed Mathematica, a modern mathematical computational tool, to 
reveal unique graphical patterns displayed by the resonant NLS equation. Our presentation 
featured a diverse set of visual representations, including 3D renderings, 2D graphical dis-
plays, and contour plots. These graphics spanned a broad spectrum of parameter values for 
each relevant variable. The goal was to provide a comprehensive insight into the graphical 
behavior of the resonant NLS equation, elucidating its intricacies across a diverse param-
eter space.

In the interest of clarity and brevity, we have chosen to visually depict a limited selec-
tion of five solution sets from our comprehensive results. To keep simplicity, we have 
standardized the x-axis (− 10 to 10) for all the graphs. The constants specific to each graph 
are provided in the corresponding figure captions. In 2-D graphs, we have consolidated 
multiple solutions within a single figure by varying the parameter t.

Figure  1 is obtained from Eq.  (22), effectively illustrates the multi-periodic soliton 
solution. In (a), we provide a 3D visualization of these solutions, (b) offers a 2D display 
with time variations, and (c) features a contour representation of the solution. This graphi-
cal depiction allows us to discern the recurring and bell-shaped patterns that define these 

Fig. 3   Graphical representations of the solutions of Eq. (31) for and: (a) A 3D representation (b) A 2D rep-
resentation and (c) Contour representation
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solutions, offering a visual understanding of the unique characteristics of the Resonant 
NLS equation.

It is evident that the behavior of the derived solutions, including the amplitude and 
width of the solitary wave, was unaffected by the nonlinear parameters.

Figure 2, is found from Eq. (23), effectively illustrates a specific solution derived from 
Eq. (22), prominently displaying its singular multi-periodic characteristics. In (a), we offer 
a 3D visualization of these solutions; (b) provides a 2D display showcasing time variations, 
and (c) includes a contour representation of the solution. This graphical representation ena-
bles us to clearly identify the periodic behavior inherent in the solutions within the context 
of the Resonant NLS equation.

Figure 3, derived from Eq. (31), prominently highlights singular soliton features char-
acterized by a semi-bell-shaped behavior. In (a), a 3D representation of these solutions is 
provided, while (b) offers a 2D view with time variations, and (c) showcases a contour rep-
resentation of the solution. This graphical representation affords a clear visualization of the 
distinctive behavior inherent in the solutions of the Resonant NLS equation.

It is evident that the graph’s structure in Figs. 2 and 3 is made up of singular-periodic 
solutions. We claim that a singular wave solution is essential for studying many physical 
phenomena. For instance, a singular wave is formed when a sudden force is applied, such 
an earthquake that might generate a disastrous tsunami wave. Moreover, a sudden tempera-
ture shock might also result in a thermal tsunami for a porous medium.

Fig. 4   Graphical representations of the solutions of Eq. (36) for and: (a) A 3D representation (b) A 2D rep-
resentation and (c) Contour representation
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Figure 4, obtained from Eq. (36), illustrates a specific solution derived from Eq. (35), 
emphasizing a bright soliton solution with a half-bell-shaped structure within the singular 
soliton. In (a), a 3D representation of these solutions is displayed, while (b) presents a 2D 
view with time variations, and (c) showcases a contour representation of the solution. This 
graphical depiction offers a clear visualization of the unique bright soliton solution with a 
half-bell-shaped structure inherent in the solutions of the Resonant NLS equation.

Figure 5, derived from Eq. (37), which is a particular solution of Eq. (35), prominently 
showcases bright soliton solutions characterized by a specific periodicity and bell-shaped 
profiles. In (a), a 3D representation of these solutions is presented, while (b) offers a 2D 
view displaying varying time patterns, and (c) showcases a contour representation of 
the solution. This graphical depiction provides a clear visualization of the distinct bright 
soliton solutions with bell-shaped profiles inherent in the solutions of the Resonant NLS 
equation.

It is evident that the behavior of the derived solutions, including the amplitude and 
width of the solitary wave, was unaffected by the nonlinear parameters.

By contrasting the results we obtained in this paper with the well-known results from 
Tozar et  al. (2021) and Zayed and Alurrfi (2016), we can conclude that while the other 
solutions in the paper are new and unpublished, our results (36) and (37) are equivalent to 
the solutions W13,14andW15,16 in Tozar et  al. (2021), respectively. While our results (23), 

Fig. 5   Graphical representations of the solutions of Eq. (37) for and: (a) A 3D representation (b) A 2D rep-
resentation and (c) Contour representation
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(24), and (37) are equivalent to the solutions (3.44), (3.47), and (3.54) obtained in Zayed 
and Alurrfi (2016), respectively.

5 � Conclusion

The double ( Ġ∕G,1∕G)-expansion method is investigated to get numerous precise opti-
cal solutions for the resonant NLS equation. This equation is essential to understanding 
the dynamics of optical soliton in optical fiber theory. By constructing several nonlinear 
wave structures inside this equation, new traveling pulse responses are obtained. Flexible 
forms are created that include rational, hyperbolic, and trigonometric functions. A range 
of behaviors are examined, including brilliant solitons, single solitons, singular and mul-
tiperiodic patterns, and semi-bell-shaped structures. These optical solutions, characterized 
by varying parameter values, hold substantial promise for advancing the field of optical 
physics, impacting both light and electron optics. The versatility of the double ( Ġ∕G,1∕G
)-expansion method that employed in our study empowered us to explore a diverse spec-
trum of optical solutions. Significantly, the optical soliton solutions derived through this 
method underscore its efficacy, reliability, and simplicity when contrasted with alternative 
techniques. In the near future, this model will be discussed by other different techniques 
when its coefficients are not constants.
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