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Abstract
The nonlinear Schrödinger equation (NLSE), which governs the propagation of pulses in 
optical fiber while including the effects of second, third, and fourth-order dispersion, is 
crucial for a comprehensive understanding of pulse propagation in optical communica-
tion systems. It assists engineers and scientists in optimizing and controlling the behavior 
of ultra-short pulses in complex and real-world optical systems. In this study, we solve 
the generalized NLSE for the pulse envelope E(z, �) with �-time derivative by employ-
ing the Sardar subequation method (SSM). We obtain new soliton solutions correspond-
ing to the relevant parameters of this technique. Additionally, conditions depending on the 
parameters of optical pulse envelope E(z, �) are provided for the existence of such soliton 
structures. Furthermore, the solitary wave solutions are expressed in the form of general-
ized trigonometric and hyperbolic functions. The dynamic behaviours of the solutions are 
revealed with specific values of the parameters that satisfy their respective existence crite-
ria. The results indicate that SSM demonstrates high reliability, simplicity, and adaptability 
for use with various nonlinear equations.
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1 Introduction

The study of solitary wave propagation generated by a specific type of nonlinear evolu-
tion equations (NLEEs), has garnered significant interest within the scientific commu-
nity in recent years (Ali et al. 2023; El-Ganaini and Al-Amr 2022; Kumar and El-Ganaini 
2020; Akram et al. 2023; Faisal et al. 2023; Muhammad et al. 2023). These NLEEs, which 
explain the dynamical behavior and composition of such waves, present a significant chal-
lenge in fields such as nuclear physics, plasma physics, signal processing, optical com-
munication systems, laser optics, and others (El-Ganaini and Kumar 2020; Osman et  al. 
2018; Bulut et al. 2018; Abdel-Gawad et al. 2016; Mirzazadeh 2015; Manafian et al. 2017; 
Ahmad et al. 2023; Feng et al. 2022; Kai-Da et al. 2021; Zhao et al. 2020; Zhang et al. 
2023; Guo et al. 2023a,  b; Meng et al. 2023; Bai et al. 2021; Li et al. 2018; Jin and Wang 
2016; Zhang et al. 2022; Chen et al. 2021; Chen 2022; Yong Zhang et al. 2020). Addition-
ally, many NLEEs also demonstrate the propagation of solitons in fiber optics (Savaissou 
et  al. 2020; Liu et  al. 2020; Inc et  al. 2020; Vahidi et  al. 2021; Sajid and Akram 2020, 
2019; Biswas 2003; Osman and Behzad 2018; Bhrawy et al. 2014; Savescu et al. ; Triki 
et  al. 2012; Biswas 2001; Saha et  al. 2009; Arnous et  al. 2017; Mirzazadeh et  al. 2015; 
Ahmad et al. 2023).

Solitons a2016re light pulses that travel through optical fibers and are typically 
described using the nonlinear Schrödinger equation (NLSE), which covers fundamen-
tal wave effects like group velocity dispersion (GVD) and self-phase modulation (SPM) 
(Hasegawa and Tappert 1973a, b; Agrawal 2001). Solitons result from the delicate balance 
between GVD and SPM in the material (Hao et al. 2005). Their robust and stable quality 
makes them an ideal choice for communication as signal carriers at remote sites. However, 
in various applications, such as time-resolved infrared spectroscopic techniques, ultrahigh-
bitrate optical communication systems, ultrafast physical processes, and optoelectronic 
sampling, ultrashort femtosecond (fs) pulses are required, leading to the occurrence of var-
ious higher-order effects in the optical material (Agrawal 2001; Goyal et al. 2011).

Third-order dispersion plays a crucial role in the propagation of short pulses with 
widths of nearly 50 fs, while fourth-order dispersion becomes imperative when dealing 
with pulses shorter than 10 fs (Fernández-Dıaz and Palacios 2000; Palacios 2003; Piché 
et al. 1996). In such cases, wave structures can be explained using the higher-order NLSE, 
which considers the effects of various physical phenomena on the propagation and regen-
eration of short pulses. Understanding the propagation of ultra-short light pulses through 
inhomogeneous optical fibers with higher-order dispersive effects is essential for design-
ing practical optical systems, maintaining signal quality in optical communications, and 
advancing fields such as quantum optics and nonlinear optics.

In this paper, we employ the Sardar subequation method (Rezazadeh et al. 2020a, b) to 
unveil exact solutions of the generalized NLSE in the presence of second, third, and fourth-
order dispersion terms (Blow and Wood 1989; Shagalov 1998; Cavalcanti et al. 1991; Kru-
glov and Harvey 2018; Kruglov 2020; Triki and Kruglov 2020; Demiray 2020; Karpman 
1998; Karpman and Shagalov 1999). The solutions derived through this technique comple-
ment those obtained by other methods, such as the trail equation method, the functional 
variable method, and the first integral method. We specifically consider the NLSE com-
bined with the �-time derivative for � ∈ (0, 1].

Considering the NLSE with second, third, and fourth-order dispersion terms is crucial for 
accurately modeling pulse propagation in optical fiber, especially in modern communication 
systems and applications involving ultra-short pulses and advanced modulation formats. It 
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facilitates the design, optimization, and control of optical systems in the presence of higher-
order dispersion effects, serving as a fundamental tool for researchers working on advanced 
optical systems. This provides a foundation for the study and development of techniques to 
control and manipulate optical pulses.

Fractional calculus is often employed to model complex and anomalous behaviors that can-
not be adequately described by integer-order calculus. Conformable derivatives provide a more 
effective tool for modeling these complex phenomena, especially in fields like mathematical 
biology, fluid dynamics, heat conduction, quantum physics, signal processing, engineering, 
electromagnetic theory, optical fiber communication, plasma physics, and viscoelastic materi-
als. Conformable derivatives offer a more flexible approach to fractional calculus by general-
izing the traditional Riemann-Liouville and Caputo derivatives, making them applicable to 
a broader range of functions and systems. This increased applicability allows for a broader 
class of nonlinear fractional partial differential equations (FPDEs) to be addressed using con-
formable derivatives. The conformable fractional calculus can often simplify the complexity 
of FPDEs, leading to more manageable equations that admit exact solutions, which can be 
particularly valuable in both theoretical and practical applications (Ahmad and Mustafa 2023; 
Özkan et al. 2023; Akar and Özkan 2023; Özkan and Akar 2022; Ahmad et al. 2023; Ali et al. 
2023).

1.1  Properties of �‑time derivative

Conformable fractional derivatives offer a more manageable approach and adhere to certain 
standard characteristics, such as the chain rule, which is lacking in traditional fractional deriv-
atives. However, a notable drawback of this derivative arises: the fractional derivative of any 
differentiable function at point zero lacks physical significance and cannot currently be inter-
preted in a physical context. To overcome this limitation, an enhanced version of the conform-
able derivative has been introduced. This modified derivative is contingent on the interval over 
which the function is subjected to differentiation (Özkan and Özkan 2021; Özkan and Mehmet 
2022).

Atangana et al. (2014) introduced the definition of �-time derivative and later some proper-
ties possessed by this derivative are given in Atangana et al. (2016, 2015). The suggested �
-derivative possesses numerous features that have found utility in simulating various physical 
phenomena, addressing shortcomings associated with traditional fractional derivatives.

Definition. Let h(�) be a function defined for all 𝜏 > 0 , then the �-time derivative of h(�) is 
given by

Theorem. Let h(�) and n(�) be �-differentiable functions for all 𝜏 > 0 and � ∈ (0, 1] , then

D�

�
(h(�)) = lim

c→0

h

(
� + c

(
� +

1

Γ(�)

)1−�
)
− h(�)

c
, � ∈ (0, 1].

D�

�
(ph(�) + qn(�)) = pD�

�
(h(�)) + qD�

�
(n(�)), ∀p, q ∈ ℝ,

D�

�
(h(�)n(�)) = h(�)D�

�
(n(�)) + n(�)D�

�
(h(�)),

D�

�

(
h(�)

n(�)

)
=

n(�)D�

�
(h(�)) − h(�)D�

�
(n(�))

(n(�))2
⋅
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1.2  Governing model

The generalized NLSE for the pulse envelope E(z, �) with �-time derivative has the form (Blow 
and Wood 1989; Shagalov 1998; Cavalcanti et al. 1991; Kruglov and Harvey 2018; Kruglov 
2020; Triki and Kruglov 2020; Demiray 2020; Karpman 1998; Karpman and Shagalov 1999)

where z is the longitudinal coordinate, � = t − �1z is the retarded time, 
� =

�2

2
, � =

�3

6
, � =

�4

24
 , and � represents the nonlinear parameter. The parameters 

�k =

(
dk�

d�k

)

�=�0

 are the k-order dispersion of the optical fiber and �(�) is the propagation 

constant depending on the optical frequency.
This equation has been extensively studied in literature due to its significance from a variety 

of perspectives. In Shagalov (1998), the effect of the third and fourth order dispersive terms on 
the SPM instability was investigated. Particularly, the SPM instability phenomenon of Eq. (1) 
was presented in the domain of the minimum GVD in Cavalcanti et al. (1991). The exact soli-
tary wave solution with sech 2 form have been analyzed in Kruglov and Harvey (2018) for the 
Eq. (1) including the dispersion effects of second, third, and fourth-order. The solitary wave 
solution and periodic solutions of the Eq. (1) with the higher order dispersion effects have 
been obtained in Kruglov (2020) governing the pulses propagation in optical fibers. In Triki 
and Kruglov (2020), the exact self-similar dipole soliton solutions of Eq. (1) in highly disper-
sive optical fiber media have been derived. In Demiray (2020), the optical soliton solutions of 
Eq. (1) with beta time derivative have been presented by employing the modified exp(−Ω(�))
-expansion function method and generalized Kudryashov method. Some more exact solutions 
of Eq. (1) have been reported in Roy et al. (2009); Zhu (2007); Inc et al. (2017).

2  Description of the method

In this section, we summarize the Sardar subequation method that was firstly formulated by 
Rezazadeh et al. (2020a, 2020b). Consider a �-derivative NLEE for � = �(z, �) to be in the 
form

where Ω is a polynomial of �(z, �) and its highest order partial derivatives, as well as the 
nonlinear terms.

We use the wave transformation

where � is for wave speed and Eq. (2) can be converted into the nonlinear ordinary differ-
ential equation (NLODE) given as

where prime denotes the derivatives with respect to �.

(1)i
�E

�z
− �

�
2�E

��
2�

− i�
�
3�E

��
3�

+ �

�
4�E

��
4�

+ �|E|2E = 0,

(2)Ω(�, �z, �
(�)

�
, �(2�)

��
,…) = 0,

(3)�(z, �) = �(�), � = z −
�

�

(
� +

1

Γ(�)

)
�

,

(4)Υ(�, ��, ���, ����,…) = 0,
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We suppose that Eq. (4) has the solution of the form:

where �i (i = 0, 1,… , L) are arbitrary constants to be obtained. The value of L will be cal-
culated by balancing the highest order derivative of � and the highest order nonlinear term 
in Eq. (4), while Φ(�) is the solution of the NLODE:

where �, a and b are the real constants. Furthermore, Eq. (6) has the following solutions:
Case 1. If a > 0 and � = 0 , then

where

Case 2. If a < 0, b > 0 and � = 0 , then

where

Case 3. If a < 0, b > 0 and � =
a2

4b
 , then

(5)�(�) =

L∑

i=0

�iΦ
i(�),

(6)Φ
�2

(�) =� + aΦ2(�) + bΦ4(�),

Φ±

1
(𝜉) = ±

�
−
pqa

b
sech pq(

√
a𝜉), b < 0,

Φ±

2
(𝜉) = ±

�
pqa

b
csch pq(

√
a𝜉), b > 0,

sech pq(�) =
2

p e � + q e −�
, csch pq(�) =

2

p e � − q e −�
⋅

Φ±

3
(�) = ±

�
−
pqa

b
secpq(

√
−a�),

Φ±

4
(�) = ±

�
−
pqa

b
cscpq(

√
−a�),

secpq(�) =
2

p e i� + q e −i�
, cscpq(�) =

2i

p e i� − q e −i�
⋅

Φ±

5
(�) = ±

�
−

a

2b
tanhpq

��
−
a

2
�

�
,

Φ±

6
(�) = ±

�
−

a

2b
cothpq

��
−
a

2
�

�
,

Φ±

7
(�) = ±

�
−

a

2b

�
tanhpq

�√
−2a�

�
± i

√
pq sech pq

�√
−2a�

��
,

Φ±

8
(�) = ±

�
−

a

2b

�
cothpq

�√
−2a�

�
±
√
pq csch pq

�√
−2a�

��
,

Φ±

9
(�) = ±

�
−

a

8b

�
tanhpq

��
−
a

8
�

�
+ cothpq

��
−
a

8
�

��
,
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where

Case 4. If a > 0, b > 0 and � =
a2

4b
 , then

where

Substituting Eq. (5) along with Eq. (6) into (4) and setting the coefficients of 
all powers of Φi(�) to zero leads to a set of algebraic equations in terms of 
a, b, �, �, �i(i = 0, 1, 2,… , L) . Identifying the values of all parameters, and then sub-
stituting these parameters along with the solutions of Eq. (6) into Eq. (5), a series of exact 
solutions of Eq. (2) are recovered.

3  Application of the Sardar subequation method

We use the wave transformation

where �, � and �0 represent the soliton frequency, soliton wave number and the phase con-
stant, respectively. Substituting Eq. (7) into (1) and separating the real and imaginary parts, 
we obtain the following equations:

tanhpq(�) =
p e � − q e −�

p e � + q e −�
, cothpq(�) =

p e � + q e −�

p e � − q e −�
⋅

Φ±

10
(�) = ±

�
a

2b
tanpq

��
a

2
�

�
,

Φ±

11
(�) = ±

�
a

2b
cotpq

��
a

2
�

�
,

Φ±

12
(�) = ±

�
a

2b

�
tanpq

�√
2a�

�
±
√
pq secpq

�√
2a�

��
,

Φ±

13
(�) = ±

�
a

2b

�
cotpq

�√
2a�

�
±
√
pq cscpq

�√
2a�

��
,

Φ±

14
(�) = ±

�
a

8b

�
tanpq

��
a

8
�

�
+ cot pq

��
a

8
�

��
,

tanpq(�) = −i
p e i� − q e −i�

p e i� + q e −i�
, cotpq(�) = i

p e i� + q e −i�

p e i� − q e −i�
⋅

(7)
E(z, �) = u(�)ei�(z,�), � = z −

�

�

(
� +

1

Γ(�)

)
�

,

� = −�z +
�

�

(
� +

1

Γ(�)

)
�

+ �0,

(8)� �
4u���� + �

2
(
3 � � − � − 6 � �2

)
u�� +

(
� + � �

2 − � �
3 + � �

4
)
u + � u3 = 0,

(9)(� − 4 � �)�3u�� +
(
1 + 2��� − 3���2 + 4���3

)
u = 0.
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Using Eq. (9), we obtain

Substituting Eq. (10) into (8), we get

where,

Balancing u′′ and u3 in Eq. (11) gives L = 1 . Hence, Eq. (11) has the solution in the form, 
as

where �0 and �1 are the constants, such that �1 ≠ 0 . Using Eq. (12) along Eq. (6) into Eq. 
(11) and equating the coefficients of all powers of Φi(�), i = 0, 1,… , 3 to zero, the sys-
tem of algebraic equations can be derived, as

Solving the resulting system, we obtain

Therefore, we provide the exact solutions of Eq. (1) as the following special cases:
Case 1:  If B(−𝜎+4 𝜖 𝜔)

A
> 0 and � = 0 , then

where,

(10)u���� = −

(
1 + 2��� − 3���2 + 4���3

)

(� − 4 � �)�3
u��⋅

(11)Au�� + (� − 4 � �)Bu + � (� − 4 � �)u3 = 0,

A = − � � + 2 � � ��
2 − 15 � � �

2
�
2 + 20 �2�3

�
2 + 3 �2�2

� − �
2
� �

B =� + � �
2 − � �

3 + � �
4.

(12)u(�) = �0 + �1Φ(�),

Φ3(�) ∶ 2A�1b + � � �1
3 − 4 � � ��1

3 = 0,

Φ2(�) ∶ 3 � � �0�1
2 − 12 � � ��0�1

2 = 0,

Φ1(�) ∶ − 4B� ��1 + B� �1 + A�1a + 3 � � �0
2
�1 − 12 � � ��0

2
�1 = 0,

Φ0(�) ∶ − 4B� ��0 + B� �0 + � � �0
3 − 4 � � ��0

3 = 0.

(13)�0 = 0, �1 =

√
−

2Ab

� (� − 4 � �)
, a =

B(−� + 4 � �)

A

(14)

E±

1
(z, �) = ±

√

−
2 pqB

�

sech pq

(√
B(−� + 4 � �)

A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))
e

i

(
−�z+

�

�

(
�+

1

Γ(�)

)
�

+�0

)

,

(15)

E±

2
(z, �) = ±

√
2 pqB

�

csch pq

(√
B(−� + 4 � �)

A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))
e

i

(
−�z+

�

�

(
�+

1

Γ(�)

)
�

+�0

)

,
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and

Case 2:  If B(−𝜎+4 𝜖 𝜔)
A

< 0 and � = 0 , then

Case 3: If B(−𝜎+4 𝜖 𝜔)
A

< 0 and � =
a2

4b
 , then

A = −� � + 2 � � ��
2 − 15 � � �

2
�
2 + 20 �2�3

�
2 + 3 �2�2

� − �
2
� �

B = � + � �
2 − � �

3 + � �
4.

(16)

E±

3
(z, �) = ±

√

−
2 pqB

�

secpq

(√
B(� − 4 � �)

A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))
e

i

(
−�z+

�

�

(
�+

1

Γ(�)

)
�

+�0

)

,

(17)

E±

4
(z, �) = ±

√

−
2 pqB

�

cscpq

(√
B(� − 4 � �)

A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))
e

i

(
−�z+

�

�

(
�+

1

Γ(�)

)
�

+�0

)

⋅

(18)

E±

5
(z, �) = ±

√
−
B

�

tanhpq

(√
B(� − 4 � �)

2A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))
e

i

(
−�z+

�

�

(
�+

1

Γ(�)

)
�

+�0

)

,

(19)

E±

6
(z, �) = ±

√
−
B

�

cothpq

(√
B(� − 4 � �)

2A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))
e

i

(
−�z+

�

�

(
�+

1

Γ(�)

)
�

+�0

)

,

(20)

E±

7
(z, �) = ±

�
−
B

�

�
tanhpq

��
2B(� − 4 � �)

A

�
z −

�

�

�
� +

1

Γ(�)

�
�

��

± i
√
p q sech pq

��
2B(� − 4 � �)

A

�
z −

�

�

�
� +

1

Γ(�)

�
�

���
e

i

�
−�z+

�

�

�
�+

1

Γ(�)

�
�

+�0

�

,
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Case 4: If B(−𝜎+4 𝜖 𝜔)
A

> 0 and � =
a2

4b
 , then

(21)

E±

8
(z, �) = ±

�
−
B

�

�
cothpq

��
2B(� − 4 � �)

A

�
z −

�

�

�
� +

1

Γ(�)

�
�

��

±
√
p q csch pq

��
2B(� − 4 � �)

A

�
z −

�

�

�
� +

1

Γ(�)

�
�

���
e

i

�
−�z+

�

�

�
�+

1

Γ(�)

�
�

+�0

�

,

(22)

E±

9
(z, �) = ±

1

2

√
−
B

�

(
tanhpq

(
1

4

√
2B(� − 4 � �)

A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))

+ cothpq

(
1

4

√
2B(� − 4 � �)

A

(
z −

�

�

(
� +

1

Γ(�)

)
�

)))
e

i

(
−�z+

�

�

(
�+

1

Γ(�)

)
�

+�0

)

⋅

(23)

E±

10
(z, �) = ±

√
B

�

tanpq

(√
B(−� + 4 � �)

2A

(
z −

�

�

(
� +

1

Γ(�)

)
�

))
e

i

(
−�z+

�

�
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4  Graphical interpretation

In this section, we analyze the dynamical nature of some of the solutions that are obtained 
for the optical pulse envelope E(z, �) with �-time derivative. We can observe from the 
results obtained in this paper that all orders of dispersion lead to the generation of optical 
soliton solutions in the considered model. Consequently, our findings may have practical 
implications for utilizing optical solitons in optical fiber media with dispersion effects up 
to the fourth order. Additionally, we identify several new exact solutions by comparing the 
results of this paper to those in Triki and Kruglov (2020), Demiray (2020). Figures 1, 2, 
3, 4, 5, 6, 7 and 8) represent the 3D–plots and contour plots of |E+

i
|,Re(E+

i
) and Im(E+

i
) , 

(i = 1, 3, 5, 7, 9, 10, 12, 14).
The dynamical behavior of soliton solutions calculated for the generalized NLSE 

(1) is depicted in the cases 1–4, subject to the existence criteria for the param-
eter a. For instance, we illustrate the solutions |E+

1
| , Re(E+

1
) and Im(E+

1
) in Fig.  1a–f 

with the parameter values � = −1, � = 1, � = 0.25, � = 0.1, � = −1.05, � = 1 . 
These values also satisfy the restrictive condition a =

B(−𝜎+4 𝜖 𝜔)

A
> 0 as indicated 

in the case 1. Furthermore, we determine the values of A and B using the rela-
tions A = −� � + 2 � � ��

2 − 15 � � �
2
�
2 + 20 �2�3

�
2 + 3 �2�2

� − �
2
� � and 

B = � + � �
2 − � �

3 + � �
4. Fig.  1a represents the bright soliton solution |E+

1
| , while 

the periodic wave solutions Re(E+

1
) and Im(E+

1
) are depicted in Fig.  1b, c, respectively. 

Similarly, we obtain the solutions |E+

3
| , Re(E+

3
) and Im(E+

3
) in Fig. 2a–f with the param-

eter values � = 1.4, � = 0.5, � = 0.25, � = � = � = 1 satisfying the constraint condition 
a =

B(−𝜎+4 𝜖 𝜔)

A
< 0 as indicated in case 2. In Fig. 2a–f, the soliton solutions |E+

3
| , Re(E+

3
) 

and Im(E+

3
) occur periodically along the propagation distance. In this regard, Fig. 3a rep-

resents the kink-type wave profile of solution |E+

5
| , while Fig.  3b, c reveal the solutions 

Re(E+

5
) and Im(E+

5
) , respectively. Fig.  4a depicts the dark soliton solution |E+

7
| , whereas 

Fig. 4b, c reveal the periodic dark-bright wave solutions Re(E+

7
) and Im(E+

7
) , respectively. 

Furthermore, we obtain the bright-singular, singular and periodic solitary wave structures 
in Figs. 5, 6, 7 and 8 revealed by the solutions E+

9
 , E+

10
 , E+

12
 and E+

14
.

5  Conclusion

In this paper, we have investigated the exact solutions of the NLSE (1) for the pulse enve-
lope E(z, �) with �-time derivative governing the effects of dispersion up to fourth order 
using the Sardar subequation method. We have successfully retrieved bright, dark-bright, 
kink, dark, bright-singular, and periodic solitary wave solutions of the NLSE (1). Addition-
ally, we have presented graphical interpretations that demonstrate the potential application 
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Fig. 1  3D-plots and contour plots of |E+

1

|,Re(E+

1

) and Im(E+

1

) for 
� = −1, � = 1, � = 0.25, � = 0.1, � = −1.05, � = 1, � = −2, p = 0.1, q = 0.2 and � = 1

Fig. 2  3D-plots and contour plots of |E+

3

|,Re(E+

3

) and Im(E+

3

) for 
� = 1.4, � = 0.5, � = 0.25, � = � = � = 1, � = −2, p = 1, q = 0.1 and � = 1
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Fig. 3  3D-plots and contour plots of |E+

5

|,Re(E+

5

) and Im(E+

5

) for 
� = � = 1, � = −0.7, � = 1.5, � = −1, � = 1, � = −2, p = 0.1, q = 0.2 and � = 1

Fig. 4  3D-plots and contour plots of |E+

7

|,Re(E+

7

) and Im(E+

7

) for 
� = 1, � = 1.5, � = −2, � = 1, � = −1, � = 3, � = −2, p = 1, q = 0.1 and � = 1
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Fig. 5  3D-plots and contour plots of |E+

9

|,Re(E+

9

) and Im(E+

9

) for 
� = 1, � = 1, � = −1, � = 1, � = −1, � = 1, � = −2, p = 0.2, q = 0.1 and � = 1

Fig. 6  3D-plots and contour plots of |E+

10

|,Re(E+

10

) and Im(E+

10

) for 
� = 1, � = 1.5, � = 2, � = 1, � = −1, � = 3, � = 2, p = 0.9, q = 0.2 and � = 1



 R. Luo et al.

1 3

719 Page 14 of 18

Fig. 7  3D-plots and contour plots of |E+

12

|,Re(E+

12

) and Im(E+

12

) for 
� = 1, � = 1.5, � = 2, � = 1, � = −1, � = 1, � = 2, p = 0.1, q = 0.9 and � = 1

Fig. 8  3D-plots and contour plots of |E+

14

|,Re(E+

14

) and Im(E+

14

) for 
� = 1, � = 1.5, � = 2, � = −1, � = −0.2, � = 1, � = 2, p = 1, q = 0.1 and � = 1
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of the proposed method for suitable choices of parameters. In this study, it is vital to take 
into account the integration of conformal derivatives, as it significantly enhances the preci-
sion of describing soliton propagation through high-order dispersive optical fibers. In the 
future, this approach will be utilized to study the soliton solutions of the high-order NLSE 
with third and fourth-order dispersion and the cubic-quintic nonlinear terms.
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