
Vol.:(0123456789)

Optical and Quantum Electronics (2024) 56:540
https://doi.org/10.1007/s11082-023-06134-4

1 3

The conserved vectors and solitonic propagating wave 
patterns formation with Lie symmetry infinitesimal algebra

Umair Asghar1 · Muhammad Imran Asjad1 · Waqas Ali Faridi1 · Taseer Muhammad2

Received: 28 September 2023 / Accepted: 17 December 2023 / Published online: 30 January 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In this study, the generalized perturbed-KdV partial differential equation is examined. Fur-
thermore, symmetry generators address the Lie invariance criteria. The suggested approach 
produces the Lie algebra, where translation symmetries in space and time are associated 
with mass conservation and conservation of energy respectively, the other symmetries are 
scaling or dilation. The optimal system of the obtained system developed. By using Lie 
Group methods, the generalized perturbed-KdV partial differential equation is changed 
using suitable similarity transformations through a system of highly nonlinear ordinary dif-
ferential equations. The new extended direct algebraic approach is applied to get the soliton 
solutions. As a result, a plane solution, periodic stumps, compacton, smooth soliton, mixed 
hyperbolic solution, periodic and mixed periodic solutions, mixed trigonometric solution, 
trigonometric solution, peakon soliton, anti-peaked with decay, shock solution, mixed 
shock singular solution, mixed singular solution, complex solitary shock solution, singu-
lar solution and shock wave solutions are developed. The behavior of certain solutions is 
shown in 3-D and 2-D for specific values of the physical components in the studied equa-
tion. The outcomes hold significance for elevating research to a more impactful and effec-
tive level. The whole set of local conservation laws for the generalized perturbed-KdV 
equation for any arbitrary constant coefficients is found by applying the conservation laws 
multiplier. These findings are pivotal for advancing the current understanding and pushing 
the boundaries of knowledge to new heights.
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1 Introduction

Non-linear partial differential equations (PDEs) are significant and helpful within dif-
ferent fields like, sciences, engineering, computational mathematics, including compu-
tational physics. The exact solutions of non-linear equations perform a important part to 
study the dynamics of complex physical problems (Yalcınkaya et al. 2022). Evaluation 
and interpretation of the systems and processes behind different non-linear phenomena 
are found among numerous professional areas of study, combining hydrodynamics, fiber 
optics, viscoelastic materials, signal processing, biology, physical science, and others. 
Different analytical methods were recently created (Uddin et al. 2023). In modern sci-
ence, a wide range of attractive non-linear models have developed, and other scientists 
and mathematicians have created important mathematical methods for obtaining exact 
solutions such as simplest equation methodology, ( G

′

G
)-expansion technique (Jianguo 

et  al. 2019), rational ( G
′

G
 ) technique (Islam et  al. 2018), extended tanh-function meth-

odology (Ali et al. 2023), Sine-cosine scheme (Ali et al. 2023), tanh function method-
ology (Ashraf et  al. 2023), Riccati expansion (Huiling et  al. 2023), unified expansion 
(Alshammari et  al. 2023), Kudryashov expansion (Alquran 2021), the modified expo-
nential-function scheme (Degon and Chowdhury 2022), Hirota bilinear methodology 
(Alshammari et al. 2023), differential transformation scheme (Verma and Rawani 2023), 
the homotopy analysis technique(Brociek et al. 2023) and so on. Different methods have 
been applied in the literature to solve nonlinear partial differential equations (NLPDE). 
Finding exact NLPDE solutions is necessary for understanding nonlinear physical phe-
nomena properly (Seadawy et al. 2023). In this article, we examine the KDV equation. 
The classical KDV equation (Khan et al. 2023):

was established in 1895 by de Vries along with Korteweg to identify particular theoreti-
cal physics occurrences related to quantum mechanics. To find analytical exact solitary 
wave solutions of the partial differential equations. Since the KDV equation has been ini-
tially derived in a study on canal waves in shallow water, It is involved in several different 
physics cases, particularly those providing traveling waves, solitons, and shock waves. It’s 
been investigated and used for a long time. Considering aerodynamics, continuum mechan-
ics, and fluid dynamics, it provides a representation for shock wave creation, turbulence, 
and mass transfer. A lot of students were interested in this discovery because it was so 
important to research equatorial one-layer oceanic flows, by including the effects due to the 
Earth’s rotation over the fluid in Eq. (1), Geyer et al. modified it.

Many different techniques have been developed to solve KDV equations. For example, uti-
lizing binary Bell polynomials to study the generalized variable coefficient Korteweg-de 
Vries equation in the fluid. Wazzan discovered the exact solutions of the KDV, modified 
KDV, potential KDV, and generalized KDV equations using the extended hyperbolic func-
tion approach. Geophysical KDV equation Eq. (2)’s solitary waves solution was calcu-
lated using a better expansion approach. Applying the Kudryashov approach, the solitons, 
conservation rules, and Geophysical KDV equation conservation equation Eq. (2). The 
geophysical KDV equation’s lump and interaction solutions were examined using Hiorta 
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BLM. Studied the soliton solutions of the generalized perturbed KDV equation applying 
Hirota BLM. Generalized perturbed KDV equation as:

where, � is a perturbation factor that expresses the Coriolis effect. Ω denoted the non-line-
arity as well as � is the dispersion factor, and �  is an analytic function of (x, t), free surface 
advancement is represented by � (x, t) . By choosing the � = 0 , Ω = 1 , and � = 1 , the classi-
cal KDV Eq. (1) may become of Eq. (3). The generalization of standard KDV Eq. (1) and 
the geophysical KDV Eq. (2) is a generalized perturbed-KdV partial differential Eq. (3). 
By selecting � = −�0 , Ω = 32 , and � = 16 , it is possible to obtain the geophysical KDV 
Eq. (2). The vibration transmission in fluids is explained by the perturbed-KDV equation, 
which is found in various fields such as healthcare engineering and mechanics. Non-linear 
systems are frequently determined using linear equations because dealing with nonlinear 
dynamical equations is challenging. As long as the input data has a particular precision and 
range, this works correctly, but chaos, singularities solitons, and other exciting components 
by linearization (Ali et  al. 2023). Schrödinger’s equation combines the features of para-
bolic and hyperbolic equations from a mathematical perspective (Rizvi et al. 2023).

Lie symmetry analysis is a powerful method for finding precise solutions to compli-
cated equations known as non-linear partial differential equations (PDEs). It involves 
a comprehensive and effective approach to unraveling these complex mathematical 
problems. In recent times, Lie’s approach has been addressed in several excellent text-
books and has been applied to the analysis of many engineering and physical modeling 
techniques. Lie symmetry analysis was used to explore the unstable isentropic Navier 
Stoke’s equations in 1-D about an ideal pressure formula (Jiwari et al. 2022). Lie sym-
metry technique was used to study the Fisher’s type diffusion equations (Verma et  al. 
2014). The Lie group was used to analyze the nonlinear regularised long wave system 
(Jiwari et al. 2017). To create the bright and dark soliton solution and study the nonlin-
ear regularised long wave approach (Kumar et  al. 2021). Determining non-linear evo-
lution equations’ solutions, and implementation from symmetry analysis procedure is 
important (Akram et al. 2023). It is acknowledged that the pursuit of accurate solutions 
to non-linear evolution equations is a constant focal point in theoretical physics (Younas 
et al. 2023).

In 1918, Noether found another important feature of Lie symmetry. The concept of 
DEs has effects on conservation laws. Noether discovered a connection between con-
served quantities and symmetry. The literature is full of references to the contribu-
tions made by numerous researchers in creating various approaches to create conserva-
tion rules (Rabia et al. 2023; Rizvi et al. 2023; Aziz et al. 2023). Scholar expands on 
what she finds in kumar and Dhiman (2022). The idea of self-adjointness has recently 
received a lot of attention (Freire 2011). According to Lie symmetry, the damped non-
linear elastic wave problem-solving will also be examined. To study partial differential 
equations, conservation principles are very important, for the reason why they deliver 
conserved quantities in each solution (Usman and Zaman 2023). The innovation of Lie 
symmetry analysis is the convenience and systematicity with which invariant functions 
can be created. For differential equations, there will be an association between Lie sym-
metries and conservation principles (Paliathanasis and Leach 2022). The equation’s 
symmetry group can be determined by using the Lie symmetry technique. Moreover, 
the equation can be simplified in the same way, and the symmetry transformation can 
produce new results for the equation (Yang et al. 2023).

(3)�t + ��x + Ω��x + ��xxx = 0,
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In Sect. 1, we discuss the classical symmetries of the KDV equation. The optimal sys-
tem of KDV equation is explained in Sect. 2. In Sect. 3, consists of symmetry reduction. 
This study explains the overview and analytical techniques in Sect.  4, and the graphical 
illustration developed. Section 5 covered the Conserved quantities. Section 6 consists of a 
graphical explanation. Then finally, the conclusion.

2  Classical symmetries of the generalized perturbed‑KdV equation

One-parameter Lie group of infinitesimal transformation within generalized perturbed-
KdV equation x, t, w is given,

where, � = small parameter, group parameter. �1 = function of dependent or independent.
Suppose a vector field,

The third prolongation of X provided by,

with coefficients,

Utilizing the third prolongation (A(3)) to the Eq. (1) .

The Lie algebra of the Eq. (1) (generalized perturbed-KdV equation) is generated through 
vector field,

The generalized perturbed-KdV equation has Lie point symmetries that are,

(4)x∗ = x + ��1(x, t,w) + Θ(�2),

(5)t∗ = t + ��2(x, t,w) + Θ(�2),

(6)w∗ = w + ��(x, t,w) + Θ(�2),

(7)A = xi1(x, t,w)
�

�x
+ �2(x, t,w)

�

�t
+ �(x, t,w)

�

�w
.

(8)
A|3| =�1(x, t,w)

�

�x
+ �2(x, t,w)

�

�t
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�

�w

+ � t
�

�wt

+ �x
�

�wx

+ �xxx
�

�wxxx

,

(9)�J = DJ

(
� −

2∑

i=1

�iw�
j

)
+

2∑

i=1

�iw�
J,i
.

(10)A(3)(Wt + �Wx + ΩWWx + �Wxxx)|(1)=0 = 0.

(11)A = �1(x, t,w)
�

�x
+ �2(x, t,w)

�

�t
+ �(x, t,w)

�
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.

(12)A1 =
�

�t
, A2 =

�

�x
, A3 = Ωt

�

�x
+

�

�w
, A4 = w

�
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−

3

2
t
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+
(
−1

2
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)
�

�x
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These vector fields’ commutation relations are displayed in the table 1, and each ith row 
and jth column entry is identified as [Xi,Xj] = AiAj − AjAi, i, j = 1, 2, 3, 4.

3  Optimal system of generalized perturbed‑KdV equation

To create the most effective structure for subgroups, we could create an ideal structure 
of subgroups to achieve our goal. Since they are equivalent. The ideal structure for one-
dimensional subalgebras is equivalent to the orbit categorization using the adjoint repre-
sentations. An adjoint representation Ad(exp(�Ai)) is defined by the Lie series,

where, [Ai,Aj] is the Lie algebra’s commutator, � is a parameter, and i, j = 1, 2, 3, 4. We 
provide an overview of all adjoint characterizations of the algebraic generalized perturbed-
KdV equation generator in Table 2, where the (i, j)th entry indicates Ad(exp(�Ai))Aj.

4  Symmetry reduction

In the following section, we determine the generalized perturbed-KdV equation’s symme-
tries together with associated reductions. The generalized perturbed-KdV equation can be 
written as (x,  t, w). Therefore, to make the equation easier, to use a certain set of coor-
dinates. Therefore, it is necessary to reduce the number of variables that are dependent 
within the generalized perturbed-KdV equation. A PDE can be converted to either an ODE 
or a more simple PDE by reducing its number of independent parameters. The above gen-
eralized perturbed-KdV in the context of (x, t, w) can be transformed as an ODE in param-
eters of (r, w). We are now able to get the simplified equation, through a chain rule. As for 
concerning the operator,

(13)Ad(exp(�.Ai).Aj) = Aj − �[Ai,Aj] +
�2

2
[Ai, [Ai,Aj]] − ...,

Table 1  Commutator table
[Ai,Aj] A

1
A
2

A
3

A
4

A
1

0 0 ΩA
2

−3

2
A
1
− �A

2

A
2

0 0 0 −1

2
A
2

A
3

−ΩA
2

0 0 A
3

A
4

3

2
A
1
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2

1

2
A
2

−A
3

0

Table 2  The adjoint form that represents the generalized perturbed-KdV equation
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Family 1:

we have,

the similarity variables are as follows:

In order to identify the syntax of the function �(r) , substitute Eq. (17) into Eq. (3), which 
satisfied following conditions:

Similarly,
Family 2:

we obtain,

the similarity variables are as follows:

We anticipate that when �(r) is substituted into Eq. (1), it will satisfy the following 
condition:

Similarly
Family 3:

In this particular instance, the defining equation is:

(14)A1 =
�

�t
,

(15)
dx

0
=

dt

1
=

dw

0
,

(16)x = r, w = �(r).

(17)w = �(r) ⇒ w = x.

(18)���(r) + Ω�(r)��(r) + ���(r)����(r) = 0.

(19)A2 =
�

�x
,

(20)
dx

1
=

dt

0
=

dw

0
,

(21)t =r, w = �(r).

(22)w =�(r) ⇒ w = t,

(23)�
�(r) = 0.

(24)A3 = Ωt
�

�x
+

�

�w
.

(25)
dx

Ωt
=
dt

0
=

dw

1
,
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After substituting it into Eq. (1), the apparent form of �(r) is revealed. Through this substi-
tution, we ascertain the existence of a solution for the following equation, �(r):

Family 4:

In the present situation, the main equation is:

whenever it is substituted within (1), it appears as though �(r) would fulfill the equation:

Family 5:

In the present situation, the characteristic equation is:

since it is substituted through Eq. (1), it appears as though �(r) would fulfill the equation:

(26)Ω
t2

2
=r,

x

Ωt
= w + �(r),

(27)w −
x

Ωt
=�(r) ⇒ w =

x

Ωt
− �(r),

(28)
x

Ωt2
+ Ωt��(r) +

�

Ω
+

x

Ω2t2
−

z

t
= 0.

(29)A4 = w
�

�w
−

3

2
t
�

�t
+
(
−1

2
x − �t

)
�

�x
.

(30)
dx

(
−1

2
x − �t)

=
dt

(
−3

2
t)

=
dw

w
,

(31)−tx + �
t2

2
= r, w = −�(r) −

2

3
t,

(32)
�����(r)t

4

3 + 3Ω��(r)t�(r) + 2Ω��(r)t2 − 2t
4

3 − �
�(r)t� + �

�(r)x

4t
4

3

= 0.

(33)A1 + A2 =
�

�t
+

�

�x
.

(34)
dx

1
=

dt

1
=

dw

0
,

(35)r = x − t, w = �(r),

(36)−��(r) + ���(r) + Ω�(r)��(r) + �����(r) = 0.
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5  Application of new extended direct algebraic method

To use a new extended direct algebraic method to find an exact solution for the generalized 
perturbed-KdV equation, specifically focusing on solitary waves in an analytical manner 
(Asghar et al. 2022; Bakar et al. 2022; Hussain et al. 2023; Faridi et al. 2023; Iqbal et al. 2023; 
Shahzad et al. 2023). Let us pick Eq. (3) due to its generality. we have,

Integrating Eq. (37) with regard to the r and constant is zero if integration,

By adjusting the homogeneous balancing parameter of Eq. (38), a solution can be seen,

As we put the solution Eq. (39) within the Eq. (38) and count the difference in power 
coefficients:

The solution of above system of algebraic Eq. (40) with the help of Mathematica,
Set 1:

Set 2:

The general solution of the Eq. (3) is obtaining by putting the Eq. (41) in the Eq. (39) is:

(37)−��(r) + ���(r) + Ω�(r)��(r) + �����(r) = 0.

(38)����(r) + �(r)(� − 1) +
1

2
Ω�2(r) = 0.

(39)�(r) = c0 + c1 S(r) + c2 S(r)
2.

(40)

S(r)0 ∶ � c1� (ln (�))2� + 2 � c2�
2(ln (�))2 + c0� − c0 + 1∕2Ω c0

2 = 0,

S(r)1 ∶ � c1�
2(ln (�))2 + 2 � c1� (ln (�))2�

+ 6 � c2� (ln (�))2� + c1� − c1 + Ω c0c1 = 0,

S(r)2 ∶ 3 � c1� (ln (�))2� + 8 � c2� (ln (�))2� + 4 � c2�
2(ln (�))2

+ c2� − c2 + Ω c0c2 + 1∕2Ω c1
2 = 0,

S(r)3 ∶ 2 � c1�
2(ln (�))2 + 10 � c2� (ln (�))2� + Ω c1c2 = 0,

S(r)4 ∶ 6 � c2�
2(ln (�))2 + 1∕2Ω c2

2 = 0.

(41)

[
� = 4ln(�)2��� − ln(�)2�2� + 1,

c0 =
−12ln(�)2���

Ω
, c1 = −

12��ln(�)2�

Ω
, c2 =

−12��2ln(�)2

Ω

]
.

(42)

[
� = −4ln(�)2��� − ln(�)2�2� + 1,

c0 =
−2�ln(�)2

(
2�� + �2

)

Ω
, c1 = −

12��ln(�)2�

Ω
, c2 =

−12��2ln(�)2

Ω

]
.

(43)� (x, t) =
−12ln(�)2���

Ω
−

12��ln(�)2�

Ω
[Si(r)] −

−12��2ln(�)2

Ω
[Si(r)]

2,
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where,

We just deal with the first set, in order to find the results and describe each result in the 
form of various cases as follows,

(Group 1): When 𝛽2 − 4𝛼𝛾 < 0 , and � ≠ 0, the following is the derivation of mixed trigo-
nometric solutions,

(Group 2): When 𝛽2 − 4𝛼𝛾 > 0 , and � ≠ 0 , we obtained the solutions of various format as 
following. Shock solution is achieved as,

(44)Θ =
3ln(�)2�

Ω
, Λ = �2 − 4�� .

(45)

�1(x, t) = − Θ

�
4�� − 2�2 + 2�

√
−Λtan�

�√
−Λ

2
(r)

�

+

�
−� +

√
−Λtan�

�√
−Λ

2
(r)

��2�
,

(46)

�2(x, t) = − Θ

�
4�� − 2�2 − 2�

√
−Λcot�

�√
−Λ

2
(r)

�

+

�
−� +

√
−Λcot�

�√
−Λ

2
(r)

��2�
,

(47)
�3(x, t) = − Θ

�
4�� − 2�2 + 2�

√
−Λ

�
tan�

�√
−Λ(r)

�
±
√
mn

�
sec�

√
−Λ(r)

��

+
�
−� +

√
−Λ

�
tan�

�√
−Λ(r)

�
±
√
mnsec�

�√
−Λ(r)

���2
�
,

(48)
�4(x, t) = − Θ

�
4�� − 2�2 + 2�

√
−Λ

�
cot�

�√
−Λ(r)

�
±
√
mn

�
csc�

√
−Λ(r)

��

+
�
−� +

√
−Λ

�
cot�

�√
−Λ(r)

�
±
√
mn

�
csc�

√
−Λ(r)

���2
�
,

(49)

�5(x, t) = − Θ

�
4�� − 2�2 + 2�

√
−Λ

�
tan�

�√
−Λ

4
(r)

�
− cot�

�√
−Λ

4
(r)

��

+

�
−� +

√
−Λ

2

�
tan�

�√
−Λ

4
(r)

�
− cot�
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−Λ

4
(r)

���2�
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As a result, the singular solution is,

As a result, the mixed complex solitary wave solution is achieved,

The format for obtaining the mixed singular solution is as,

Mixed shock singular solutions are achieved in the following format,

(Group 3): Since 𝛼𝛾 > 0 as well as � = 0, we obtained trigonometric solution as,

These are the mixed trigonometric solutions,

(50)

�6(x, t) = − Θ

�
4�� − 2�2 − 2�

√
Λtanh�

�√
Λ

2
(r)

�

+

�
−� −

√
Λtanh�

�√
Λ

2
(r)

��2�
.

(51)

�7(x, t) = − Θ

�
4�� − 2�2 − 2�

√
Λcoth�

�√
Λ

2
(r)

�

+

�
−� −

√
Λcoth�

�√
Λ

2
(r)

��2�
.

(52)
�8(x, t) = −Θ

�
4�� − 2�2 + 2�

√
Λ
�
−tanh�

�√
Λr

�
± �

√
mnsech�

√
Λ
�

+
�
−� +

√
Λ
�
−tanh�

�√
Λ(r)

�
±
√
mnsech�

√
Λ(r)

��2
�
.

(53)
�9(x, t) = − Θ

�
4�� − 2�2 + 2�

√
Λ
�
−coth�

�√
Λ(r)

�
± �

√
mncsch�

√
Λ(r)

�

+
�
−� +

√
Λ
�
−coth�

�√
Λ(r)

�
±
√
mncsch�

√
Λ(r)

��2
�
.

(54)

�10(x, t) = − Θ

�
4�� − 2�2 − 2�

√
Λ

�
tanh�

�√
Λ

4
(r)

�
+ coth�

�√
Λ

4
(r)

��

+

�
−� +

√
Λ

2

�
tanh�

�√
Λ

4
(r)

�
+ coth�

�√
Λ

4
(r)

���2�
.

(55)�11(x, t) = −4Θ��

�
1 +

�
tan�

�√
��(r)

��2
�
,

(56)�12(x, t) = −4Θ��

�
1 +

�
−cotp

�√
��(r)

��2
�
.
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(Group 4): Since 𝛼𝛾 < 0 as well as � = 0, we acquired solutions in the format of the shock 
solutions,

We obtained the singular as,

The distinct complex combo solutions are calculated as,

(Group 5): Since � = 0 as well as � = � , in the form of a periodic along with mixed peri-
odic class, the periodic along with mixed periodic solutions are investigated.,

(57)�13(x, t) = − 4Θ��

�
1 +

�
tan�

�
2
√
��(r)

�
±
√
mnsec�

�
2
√
��(r)

��2
�
,
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�
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�
2
√
��(r)

�
±
√
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�
2
√
��(r)

��2
�
,

(59)�15(x, t) = − Θ��

�
4 +

�
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�√
��

2
(r)

�
− cot�

�√
��

2
(r)

��2�
.

(60)�16(x, t) = −4Θ��

�
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�
−tanh

�√
−��(r)

��2
�
.
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�
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��2
�
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(Group 6): When � = 0 and � = −�, the following class of single and mixed-wave compo-
sitions is acquired,

(Group 7): When �2 = 4�� , then we have,

(Group 8), as well as (Group 9) have the constant solutions,
(Group 10): Since � = 0, � = 0 , then we have,

(Group 11): When � = 0 , then we have,
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√
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(Group 12)::When � = pq, (q ≠ 0), � = p, and � = 0 , we gain the plane solution as,

6  Graphical explanation

This section shows our results in the appearance of graphs through different parametric 
values. By choosing different parameter values, the diagrams display solutions that are dif-
ferent from those described in 3-D, 2-D, and their associated contours. Figure  1, shows 
the 2-D, 3-D and contour behaviour. The non-linearity Ω = 0.5 , dispersion factor � = 2 , 
� = 1.5 , � = 0.001 , � = 0.1 and � = 4 . By choosing the specific values of variable defor-
mation m = 0.1 , n = 0.7 and fixing other parameter constants, the value of m and n is 
always greater than 0. For this purpose, we selected the solution �1(x, t) and discovered 
the presence of a combined bright-dark soliton in both two-dimensional (2-D) and three-
dimensional (3-D) settings, represented visually through contour plots. Dark optical soli-
tons manifest in the normal dispersion regime, where certain optical phenomena exhibit 
stability and propagate without distortion. This behavior stands in contrast to other disper-
sion regimes, highlighting the unique conditions under which dark solitons emerge. Fig-
ure 2, the non-linearity Ω = 2 , dispersion factor � = 0.2 , � = 0.5 . To select the m = 0.001 , 
n = 0.00002 and � = 3 then, We achieve a smooth, bright (non-topological solitary), or 
bell-shaped soliton, showcasing diverse soliton profiles. This versatility in soliton shapes 
is essential for understanding and manipulating wave behavior in various physical systems, 
providing valuable insights into nonlinear phenomena. The anomalous dispersion regime 
where the bright optical solitons occur. In Fig. 3, A singular kink soliton is identified, rep-
resenting a distinct type of solitary wave with localized, abrupt changes. This observation 

(78)
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(
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)

)
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(
−�

(
sinh�(�(r)) + cosh�(�(r))

)

�
(
sinh� (�(r)) + cosh� (�(r)) + n

)

)2]
.

(79)�37(x, t) = −4Θ�2q ×
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−

m�P(r)

m − qn�P(r)

)
+ q

(
−

m�P(r)

m − qn�P(r)

)2]
.

Fig. 1  Representation of solution �
1
(x, t) in 3-Dimension, 2-Dimension, and contour
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holds significance in nonlinear dynamics, offering insights into the behavior of physical 
systems where kink solitons may arise, contributing to a deeper understanding of wave phe-
nomena. In fields like optics and condensed matter physics, it is employed to describe and 
manipulate localized disturbances or abrupt changes, offering insights into wave behavior 
and facilitating the development of innovative technologies, such as signal processing and 
information transmission devices. The value of m and n is always greater-than 0 and m, and 
n are variables of constant deformation m = 0.09 , and n = 0.1 . Our conditions of �27(x, t) is 
that � = 0 and � = −� chose the � = −1.7 , and � = 0.5 . These diverse results, encompass-
ing various soliton types, are valuable for addressing nonlinear wave challenges in applied 
science and across multiple research domains. Their significance extends to enhancing our 
understanding of complex phenomena, impacting fields beyond applied science and con-
tributing to broader advancements in scientific inquiry. The graphical illustrations of our 
newly discovered outcome.

7  Conserved quantities

Conservation means something that doesn’t change. A dynamical structure’s conserved 
quantity includes a function of the dependent variables, whose values stay constant 
throughout every phase of the entire system. Conserved quantities are important because 
expressing them requires the formulation of specific equations. This necessity to articu-
late these quantities in mathematical terms is crucial for understanding and applying 

Fig. 2  Representation of solution �
35
(x, t) in 3-Dimension, 2-Dimension, and contour

Fig. 3  Representation of solution �
27
(x, t) in 3-Dimension, 2-Dimension, and contour
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fundamental principles to various scientific scenarios, and we may utilize that equation to 
comprehend how the variables will alter under various circumstances. When something is 
conserved, it indicates that regardless of what occurs, we are able to count on it to remain 
the same.

Full Fluxes (maybe involving arbitrary constants or functions).

Cases separated with respect to free constants / functions:
(Case): ℭ⦒

(Case): ℭ⦓

(Case:) ℭ⦔

8  Conclusion

This study deals with the generalized non-linear perturbed-KdV equation, exploring its 
properties and behaviors. By analyzing this equation, researchers sought to gain a deeper 
understanding of the underlying dynamics and potential applications in various scientific 

(80)

Fluxt =
1

2
,� (ℭ⦒Ωt� + ℭ⦓ � ) + � ((�t − x)ℭ⦒ + ℭ⦔),
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2(ℭ⦒Ωt� + ℭ⦓ � )Ω +

1

2
�
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+
1

2
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2
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and mathematical contexts. The Lie symmetry analysis with optimal system and reduction 
method is performed. New extended direct algebraic approach is employed to get analytical 
solutions. The final results are,

• The suggested model’s Lie algebra is established and also an optimal system of subal-
gebras is generated.

• The transnational symmetry in space is connected with the conservation of mass and 
temporal symmetry is associated with conservation of energy, along with scaling sym-
metries for the generalized perturbed-KdV equation is produced.

• The study successfully obtained generalized closed-form analytical solutions for a spe-
cific mathematical equation. Additionally, twelve distinct soliton groups were identi-
fied through the analysis, contributing to a comprehensive understanding of the equa-
tion’s behavior and providing valuable insights for applications in various scientific and 
mathematical domains.

• The transmission of propagating solitary waves can be controlled by solitonic wave 
number.

• The developed conserved vectors ensured that the total mass, energy, and momentum 
remain the same over time, even if it moves and changes shape.

In order to illuminate the graphical behavior of optical pulses, we strategically chose spe-
cific values for the involved free parameters. By assigning appropriate values, we create 
a visual representation that vividly showcases how optical pulses evolve. This graphical 
analysis serves as a valuable tool for interpreting the dynamics and characteristics embed-
ded within the solution.
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