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Abstract
In this paper, the fractional nonlinear Schrödinger equation (NLSE) has been studied 
through conformable fraction space-time derivatives sense. Namely, we introduce some 
vital solutions for the fractional NLSE by using robust solver approach based on the Jaco-
bian elliptic function method. This solver is easy to use, reliable, practical, and sturdy. The 
fractional properties structures that obtained from the equation are given in form of hyper-
bolic, soliton, shocks, explosive, superperiodic and trigonometric structures. It was noticed 
that raising the fractal factors causes the nonlinear wave to propagate with a different phase 
and wave frequency. The physical models describe the tidal energy generations play the 
important roles in the modern green power technologies. The solutions of nonlinear equa-
tions produce the parametric description for wave features in these processes. The solutions 
developed can be used in novel communications, energy applications, fractional quantum 
modes, and complicated astrophysical phenomena.
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1  Introduction

The physical processes in many branches of engineering and nonlinear research, such as 
fibre optics, nonlinear plasma, geophysics, fuzzy mechanics, thermodynamics, laser phys-
ics, and so forth, are described by the nonlinear wave models (Iqbal et  al. 2019; Islam 
et  al. 2023; Seadawy et  al. 2019; Islam et  al. 2023; Akbar et  al. 2023). Many scientists 
have investigated novel models in recent decades to explain fundamental physical mean-
ings of real-world challenges (Seadawy and Iqbal 2021; Iqbal et al. 2022; Seadawy et al. 
2021; Iqbal et al. 2023). In the contemporary scientific and technological period, numer-
ous researchers are working to develop a variety of analytical techniques to precisely solve 
nonlinear wave models (Seadawy et al. 2022; Zahed et al. 2022; Uddin et al. 2021; Iqbal 
et  al. 2022; Uddin et  al. 2022). Fractional calculus is now a fundamental ingredient of 
many important applications in new physics and applied science. Particularly, the nonlinear 
fractional partial differential equations (NFPDEs) are capable of modeling a wide range of 
physical processes in applied science, such as chemical engineering, quantum mechanics, 
nonlinearity optical communications, solid-state physics, plasma physics and many others 
(Abdelrahman et  al. 2021; Akter et  al. 2023; Uddin et  al. 2022, 2021). These equations 
play important roles in describing the underlying mechanics of numerous scientific phe-
nomena. Furthermore, mathematical models containing a fractional order derivative pro-
vide a good representation of the features of the behavior of nonlinear systems in a variety 
of scientific and engineering fields (Abdelrahman and AlKhidhr 2020; Sarwar and Iqbal 
2018; Foukrach 2018). In this sense, fractional order models perform better than integer 
order ones. In light of this, several approaches are put forth and created to solve various 
sorts of NFPDEs (Younis and Rizvi 2015; Hosseini et  al. 2017; Khodadad et  al. 2017; 
Iqbal et al. 2018, 2020).

An intriguing conformable fractional derivative was introduced by Khalil et al. (2014). 
This definition has received a lot of attention because of its simplicity and efficiency As a 
result, numerous powerful studies have been produced using this new definition (Rezaza-
deh et al. 2018; Zeliha 2019; Abdelwahed et al. 2022; Abdelrahman et al. 2022). The fol-
lowing is a description of fractional differentiation and some of its properties (Khalil et al. 
2014):

Definition 1.1  (Khalil et al. 2014) Let � ∶ (0,∞) → ℝ be a function, then the � order of 
the conformable derivative of � is

This definition satisfies: 

	 (i)	 D�
t
(C1 𝔊 + C2 ℌ) = C1D

�
t
(𝔊) + C2D

�
t
(ℌ), C1;C2 ∈ ℝ,

	 (ii)	 D�
t
(t�) = �t�−� , � ∈ ℝ,

	 (iii)	 D�
t
(𝔊ℌ) = ℌD�

t
(𝔊) +𝔊D�

t
(ℌ),

D𝛼
t
(�(t)) = lim

𝜍→0

�(t + 𝜍t1−𝛼) −�(t)

𝜍
, t > 0, 1 ≥ 𝛼 > 0.
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	 (iv)	 D�
t
(
𝔊

ℌ
) =

ℌD�
t
(𝔊)−𝔊D�

t
(ℌ)

ℌ2
.

Referring to Khalil et al. (2014) for further information regarding the benefits and charac-
teristics of conformable fractional definition.

Since the behaviour of real-world applications is influenced by their past states, NFP-
DEs are recommended for understanding and analyzing real-world systems. Recently, the 
study of nonlinear Schrödinger equation even of integer or fractional order is quite fasci-
nating (Seadawy et al. 2020; Islam et al. 2022, 2022, 2022; Yokuş et al. 2022; Hafez et al. 
2019; Uddin and Hafez 2022). The fractional nonlinear Schrödinger equation (NLSE) is 
so crucial in fractional quantum mechanics (Laskin 2002, 2000a, b). Three NLSE models 
were proposed by Darvishi et al. (2018) as space-time fractional types, and he subsequently 
introduced optical soliton solutions for these models using the sine-cosine technique. 
Darvishi and Najaf (2020) then used the semi-inverse variational principle to provide some 
additional soliton solutions for these three models. Through this study we investigate the 
following space-time fractional NLSE (Darvishi et al. 2018):

� ∈ ℝ − {0} , u(x, t) is a complex valued function.
In Abdelrahman and AlKhidhr (2020), we developed a robust solver technique based 

on the Jacobian elliptic function method (Dai and Zhang 2006; Wanga et  al. 2005) to 
solve NFPDE. This approach explicitly provides the unified structure of solitary waves of 
various types of NFPDEs. It is also uncomplicated, reliable and effective. In this study, 
we employed this technique in order to generate some new solitary waves for Eq. (1.1). 
Namely, we produce in the form of hyperbolic, shocks, soliton, explosive form, superperi-
odic, and trigonometric structures. These waves are critical in describing vital complicated 
processes in fractional quantum mechanics (Laskin 2002, 2000a, b) and optical fiber com-
munications (Abdelwahed et al. 2021; Abdelrahman et al. 2021). To the best of our knowl-
edge, no previous scientific work has been done using this technique.

The remaining components of this study are as follows. Sect.  2 describes the unified 
solver. Sect. 3 provides new solitary waves to the space-time fractional NLSE (1.1). The 
physical investigation of the acquired results is described in Sect. 4. Section 5 introduces 
the effect of the fraction parameters on the obtained solutions properties. Finally, Sect. 6 
provides a concluding remark on the obtained results.

2 � Description of the method

Here, we provide a succinct overview of the unified solver. Consider the following 
NFPDEs:

Utilizing the wave transformation:

converts Eq. (2.1) to the following ODE:

(1.1)i D𝛼
t
u + D2𝛾

x
u + 2𝛿 ∣ u ∣2 u = 0 , 1 ≥ 𝛼, 𝛾 > 0,

(2.1)F(u,D𝛼
t
u,D𝛾

x
u,D𝛼

t
D𝛾

x
u, ...) = 0, 0 < 𝛾 , 𝛼 ≤ 1.

(2.2)u(x, t) = U(�), � = k
x�

�
− v

t�

�
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Several NFPDEs can be simplified in applied science to:

L, M and N are constants rely on the proposed equation’s constants and the wave transfor-
mations’ speed. Balancing U′′ and U3 , gives the homogenous balance one. Thus, the solu-
tion of Eq. (2.4) takes the form Dai and Zhang (2006), Wang et al. (2005), Abdelrahman 
and AlKhidhr (2020):

where A0 , A1 and B1 are constants to be calculated. Equation (2.5) gives

Substituting Eqs. (2.5–2.7) into Eq. (2.4) and equating all coefficients of sn3 , sn2cn , sn2 , 
sncn , sn, cn, sn0 to zero, gives system of algebraic equations. Solving these equations, 
yields:

Case 1 
When m → 1 , Eq. (2.8) becomes

Case 2 
When m → 1 , Eq. (2.10) becomes

Case 3 
When m → 1 , Eq. (2.12) becomes

(2.3)G(U,U�,U��,U���, ....) = 0.

(2.4)LU�� +MU3 + N U = 0,

(2.5)U = A0 + A1sn(�) + B1cn(�),

(2.6)U� = A1cn(�) dn(�) − B1sn(�) dn(�),

(2.7)U�� = −m2sn(�)A1 + 2A1sn
3(�)m2 + 2m2sn2(�)cn(�)B1 − A1sn(�) − B1cn(�).

(2.8)
A0 = 0,A1 = ±

√

−2L

M
m,B1 = 0,N = L(1 + m2).

U1(x, t) = ±

√

−2L

M
m sn(�).

(2.9)U1(x, t) = ±

√

−2L

M
tanh(�).

(2.10)
A0 = 0,A1 = ±

√

−L

2M
m,B1 = −

√

L

2M
m,N =

1

2
L(2 − m2).

U2(x, t) = ±

√

−L

2M
msn(�) −

√

L

2M
mcn(�).

(2.11)U2(x, t) = ±

√

−L

2M
tanh(�) −

√

L

2M
sech(�).

(2.12)
A0 = 0,A1 = ±

√

−L

2M
m,B1 =

√

L

2M
m,N =

1

2
L(2 − m2).

U3(x, t) = ±

√

−L

2M
msn(�) +

√

L

2M
mcn(�).
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Case 4 
When m → 1 , Eq. (2.14) becomes

3 � The solutions of the fractional nonlinear Schrödinger equation

In this section, we present the application of the unified solver technique to the space-
time fractional nonlinear Schrödinger equation. Using the wave transformation (Darvi-
shi et al. 2018):

Substituting Eq. (3.1) into Eq. (1.1), yields v = 2pk and

where L = k2,M = 2� and N = c − p2 . The solutions of Eq. (1.1) are:
Family I:

As a result, the solutions of Eq. (1.1) are:

Family II:

As a result, the solutions of Eq. (1.1) are:

(2.13)U3(x, t) = ±

√

−L

2M
tanh(�) +

√

L

2M
sech(�).

(2.14)
A0 = 0,A1 = 0,B1 = ±

√

2L

M
m,N = L(1 − 2m2).

U4(x, t) = ±

√

2L

M
mcn(�).

(2.15)U4(x, t) = ±

√

2L

M
sech(�).

(3.1)u(x, t) = eiΘU(�), � = k
x�

�
− v

t�

�
, Θ = p

x�

�
− c

t�

�
.

(3.2)LU�� +MU3 + N U = 0,

(3.3)U1(x, t) = ±i
k
√

�
m sn

�

k
x�

�
− v

t�

�

�

.

(3.4)u1(x, t) = ±i
k
√

�
e
i
�

p
x�

�
−c

t�

�

�

m sn

�

k
x�

�
− v

t�

�

�

.

(3.5)U2(x, t) = ± i
k

2
√

�
msn

�

k
x�

�
− v

t�

�

�

−
k

2
√

�
mcn

�

k
x�

�
− v

t�

�

�

.

(3.6)

u2(x, t) =

�

± i
k

2
√

�
tanh

�

k
x�

�
− v

t�

�

�

−
k

2
√

�
sech

�

k
x�

�
− v

t�

�

�

�

e
i
�

p
x�

�
−c

t�

�

�
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Family III:

As a result, the solutions of Eq. (1.1) are:

Family IV:

As a result, the solutions of Eq. (1.1) are:

4 � Results and discussion

The fractional NLSE is very important in optical propagations and complex environmental 
media. Darvishi et  al. (2018) introduced optical soliton solutions for this equation using 
the sine-cosine technique. Darvishi and Najaf (2020) presented only one family of the 
Jacobian-elliptic function utilizing the semi-inverse variational principle. In this paper, we 
implemented the solver technique to produce some vital solutions. The suggested method 
is creative, effective, and straightforward. The acquired fractional forms perform in soli-
tary, shock rational, superperiodic, hyperbolic (trigonometric) structures. These solutions 
are so important in various fields of applied science. On the other hand, it would be more 
appropriate for us to investigate how the fractal parameters affect the characteristics, struc-
tures, and forms of nonlinear wave patterns.

Consequently, we research how the fractional time and space parameter affects the solu-
tions that are produced. Equation (3.4) describes the dissipative behaviour that depends on 
the values of the parameters affecting the system. This describes a shock and periodic super 
propagating behaviour as given in Figs.  1, 2, 3, 4. it was noted that shock and periodic 
super trajectories depends on � and � as depicted in Figs. 2 and 4. For example, when � 
values are less than 0.5, the periodical wave begins to transform into the super shock wave, 
as shown in Figs. 1, 2. On the other hand, regarding the change in � parameter in Figs. 3, 4, 
we find that the periodic wave begins to transform into a damped oscillatory periodic form 
for 𝛼 > 0.3 , for which the wave amplitude decreases while the width is gradually increases. 
It was noted that shock and periodic super trajectories depends on � and � as depicted in 
Figs. 2 and 4. Equations (3.6) and (3.8) are characterized by cnoidal, shocksolitons like, 
supershock like waves as in Figs. 5, 6, 7, 8. Figure 7 represents a physical geometrical pro-
file that contains a mixture of cnoidal, periodic and shock formations. Equation (3.10) is a 

(3.7)U3(x, t) = ± i
k

2
√

�
msn

�

k
x�

�
− v

t�

�

�

+
k

2
√

�
mcn

�

k
x�

�
− v

t�

�

�

.

(3.8)

u3(x, t) =

�

± i
k

2
√

�
m sn

�

k
x�

�
− v

t�

�

�

+
k

2
√

�
mcn

�

k
x�

�
− v

t�

�

�

�

e
i
�

p
x�

�
−c

t�

�

�

.

(3.9)U4(x, t) = ±
k
√

�
mcn

�

k
x�

�
− v

t�

�

�

.

(3.10)u4(x, t) = ±
k
√

�
e
i
�

p
x�

�
−c

t�

�

�

mcn

�

k
x�

�
− v

t�

�

�

.



On the super solitonic structures for the fractional nonlinear…

1 3

Page 7 of 17  750

Fig. 1   Graph of u1(x, t) with x & � for k = 1.5, p = 1, � = 1

Fig. 2   Graph of u1(x, t) with x & � for k = 1.5, p = 1, � = 1
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third family of solutions which also characterize three profiles namely cnoidal wave, sharp 
supersolitonic propagation and shocksolitons like waves as shown in Figs. 9, 10, 11.

Fig. 3   Graph of u1(x, t) with t & � for k = 1.5, p = 1, � = 1

Fig. 4   Graph of u1(x, t) with t & � for k = 1.5, p = 1, � = 1
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Fig. 5   Graph of u3(x, t) with x & � for k = 1.7p = 1.1, � = 2

Fig. 6   Graph of u3(x, t) with x & � for k = 1.7p = 1.1, � = 2
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Fig. 7   Graph of u3(x, t) with t & � for k = 1.7p = 1.1, � = 2

Fig. 8   Graph of u3(x, t) with t & � for k = 1.7p = 1.1, � = 2
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On the other hand, when m → 1 , the solutions (3.4), (3.6), (3.8) and (3.10), respectively 
become

(4.1)û1(x, t) = ±i
k
√

𝛿
e
i
�

p
x𝛾

𝛾
−c

t𝛼

𝛼

�

tanh

�

k
x𝛾

𝛾
− v

t𝛼

𝛼

�

.

(4.2)

û2(x, t) =

�

± i
k

2
√

𝛿
tanh

�

k
x𝛾

𝛾
− v

t𝛼

𝛼

�

−
k

2
√

𝛿
sech

�

k
x𝛾

𝛾
− v

t𝛼

𝛼

�

�

e
i
�

p
x𝛾

𝛾
−c

t𝛼

𝛼

�

.

Fig. 9   Graph of u4(x, t) with x & � for k = 1.9p = 1.3, � = 2.2

Fig. 10   Graph of u4(x, t) with x & � for k = 1.9p = 1.3, � = 2.2
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Finally, the fractional NLSE that described the waves propagations in complex fractal 
medium with fractal characteristics that may causing wave trapping or changing wave pic-
tures such as width and amplitude via medium fractal parameters. This appears in the form 
of fractional order equation. This mathematical order modulates the Wave properties such 
as amplitude and width. For the importance of the superior solutions deduced in this work 
and due to their generality, it is possible to compare them to some previous research works 
which depends on the Jacobi elliptic functions modulus m and fractional parameters val-
ues, while providing the conditions and restrictions imposed on the equation see Darvishi 
et al. (2018), Darvishi and Najaf (2020).

(4.3)

û3(x, t) =

�

± i
k

2
√

𝛿
tanh

�

k
x𝛾

𝛾
− v

t𝛼

𝛼

�

+
k

2
√

𝛿
sech

�

k
x𝛾

𝛾
− v

t𝛼

𝛼

�

�

e
i
�

p
x𝛾

𝛾
−c

t𝛼

𝛼

�

.

(4.4)û4(x, t) = ±
k
√

𝛿
e
i
�

p
x𝛾

𝛾
−c

t𝛼

𝛼

�

sech

�

k
x𝛾

𝛾
− v

t𝛼

𝛼

�

.

Fig. 11   Graph of u4(x, t) with t & � for k = 1.9p = 1.3, � = 2.2
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5 � Fractional parameters effects

We investigate the effect of the fraction parameters on the obtained solutions properties. 
The change of both Eqs. (3.4) and (3.10) with x and � is plotted in Figs. 12, 13. It was 

Fig. 12   Graph of u1(x, t) with t & � for k = 1.5, p = 1, � = 1

Fig. 13   Graph of u4(x, t) with t & �
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found that increasing the � factor produces a change in phase and periodic time to peri-
odic cnoidal wave of Eq. (3.4) and sharp supersoliton wave for Eq. (3.10). The imagi-
nary part variation of Eq. (3.10) with t and � is depicted in Fig. 14. It was considered 
that by increasing factor � the wave is converted into superhuge solitonlike structure. 

Fig. 14   Graph of u4(x, t) with t & � for k = 1.9p = 1.3, � = 2.2

Fig. 15   Graph of u4(x, t) with t & � for k = 1.9p = 1.3, � = 2.2
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Finally, increasing � in Fig. 15, the sharp super soliton becomes highly frequency prop-
agating super wave.

6 � Conclusions

The fractional nonlinear Schrödinger equation has been studied using conformable frac-
tion space-time derivatives. Using the offered strategy, numerous appealing solutions to the 
investigated equations are fruitfully generated, confirming great performance. The reported 
solutions are of great importance for serious applications, like optical communications, 
quantum models, new astrophysics studied and many others. The time-space fractional 
orders are affected the wave type, phase and frequencies which constrained the behaviour 
dynamics of generated solutions. Indeed, our results can be used in improving fluid models 
that describe the tidal lagoons which emerging promising model for new studies in tidal 
power generations. Finally, the proposed approach is efficient, simple, and innovative, and 
it is recommended for further study in order to obtain closed form analytic solutions to sev-
eral nonlinear fractional model related to nonlinear sciences in future studies.
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