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Abstract
In this manuscript, an original graphene-based metamaterial perfect absorber (MPA) was 
suggested and investigated with substituting aluminum with graphene. The proposed struc-
ture consists of a gold substrate as a conductive layer, a silicon substrate as a middle insu-
lated layer and the patterned graphene layer as a resonator. The suggested structure, with 
only one metamaterial layer, has a lot of advantages such as simple implementation, cost-
effectiveness, simple design and frequency tunability. The results of the proposed absorber, 
demonstrate that the absorber can provide absorption close to 100% at the frequencies of 
0.56, 0.79, 1.02 and 1.25 THz by 0.9 eV graphene chemical potential (μc). With increasing 
the thickness of the silicone insulating layer, the absorption peaks number can be increased 
up to XIII bands. Also, changing the Fermi level can cause an absorption frequency shift. 
Furthermore, this structure is polarization insensitive and it is tolerating incident angles up 
to 45°. The recommended absorber is an appropriate candidate for filtering, spectroscopy, 
imaging and sensing application.

Keywords Graphene · Polarization-insensitive · Metamaterial · Multi-band · Terahertz 
perfect absorber

1 Introduction

Terahertz (THz) multiband absorbers have garnered significant consideration in latest years 
caused by their pivotal role in various industries such as medical, chemical and electrical 
engineering branch (Norouzi and Rezaei 2022a; Asl and Khajenoori 2021), ranging from 
telecommunications (Ye et al. 2022) and medical imaging (D’Arco et al. 2020) to security 
screening (Tribe et  al. 2004) and spectroscopy (Yang et  al. 2021). The terahertz region 
of the electromagnetics frequency range spanning approximately 100 GHz–10 THz (Kim 
et al. 2016), offers unique opportunities for material interaction and characterization. How-
ever, harnessing these capabilities requires efficient control over THz radiation, which is 
where multiband absorbers come into play (Khani and Hayati 2021).
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At first a Russian physicist, Victor Veselago, presented metamaterials in 1968. These 
materials are artificial characterized by engineered structures and exhibit electromagnetic 
specifications that are not exist in natural material for example negative permittivity’s 
imaginary part, negative refractive index and so on (Varshney and Giri 2021; Khani and 
Hayati 2022; Kiani et al. 2021). Metamaterials can be divided into several categories, gra-
phene is one of these engineered structures which is two-dimensional with unique prop-
erties (Abohmra et  al. 2022), a metamaterial that is consists of breaking graphite bonds 
which are demonstrated in Fig. 1. The unique properties of graphene such as small size 
and it is adjustable chemical potential that affects the graphene conductivity (Wang et al. 
2016), cause use them in manufacture antenna (Failed 2023) to reduce the structure size 
and increase the antennas gain with controllable polarization (Chashmi et  al. 2020), the 
design of resonators, electromagnetic shields, cloaking (Zhang et al. 2023; Zhimin et al. 
2023), sensors (Norouzi Razani et  al. 2022; Alipour et  al. 2023; Kiani et  al. 2020) and 
absorbers to inhibit the reflection or transmission.

Terahertz metamaterial absorbers, by controlling the graphene chemical potential with 
the bias voltage (external) specifically designed to achieve high absorption efficiency (near 
to 100%) and absorption bandwidth over specific frequency ranges, have attracted atten-
tion for their ability to surpass the limitations of conventional materials (Ghods and Rezaei 
2018; Zhang et al. 2022). Conventional absorbers designed for single-frequency operation 
fall short when confronted with the complexity and diversity of modern THz applications. 
This ability to manipulate and absorb distinct frequencies opens up avenues for enhanced 
signal processing, improved imaging resolution and enhanced security protocols (Zamzam 
and Rezaei 2021; Khodadadi et al. 2022; Zamzam et al. 2023a; Kim and Hopwood 2019).

In absorbers, high absorption and polarization insensitivity are two important param-
eters (Zamzam et al. 2021). These features can cause absorber flexibility to be used in dif-
ferent applications such as Modulators (Emami-Nejad and Mir 2017), solar cells (Failed 
2022; Sahin and Kabacelik 2018; Tang et al. 2016) and sensors for example Li et al(2021) 
designed early-stage cervical cancer identification with dual band terahertz metamaterial 
biosensor (Li et al. 2021).

Since graphene offers several advantages compared to aluminum when used in tera-
hertz (THz) absorbers such as tunable absorption (Norouzi and Rezaei 2022b), ultra-thin 
material, compatibility with nanofabrication and environmental stability (Yong Zhang 
and He 2021) so, in this article, a multiband perfect metamaterial absorber (PMA) (Feng 
et al. 2020) is suggested by using Dongxia et al.’s article design and substitute graphene 
as a structure material with aluminum. At first simulations outcomes demonstrate the 

Fig. 1  Graphite exfoliation in order to create graphene
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improvement of the suggested model to achieve the absorptivity rate of more than 90% in 
four picks of 0.56, 0.79, 1.02 and 1.25 THz. The multiband presented absorber is made of 
only one graphene layer, in comparison with multi-layer metamaterial, this feature of our 
suggested structure makes it easier to manufacture and inexpensive. This absorber consists 
of a square-shaped graphene surface layer, a silicon as an insulated spacer, along with the 
golden ground layer. From the simulation results, it can be obtained that, the suggested 
structure is very proper for sensing, imaging and other applications (Khodadadi et  al. 
2023a; Al-Ibadi 2022; Zamzam et al. 2023b; Nickpay et al. 2022).

2  Theoretical discussions and structure design

2.1  Theoretical discussions

The absorption ability of a metamaterial absorber (A) is calculated by the general absorp-
tion equation which is mentioned below (Zhong et al. 2020):

In this equation T is transmissivity and R is reflectivity. As expressed before, gra-
phene is a two-dimensional controllable metamaterial, the graphenes’ surface conductivity 
controlled with external gating which has tolerance from − 1 to 1 eV and it can also be 
obtained from the Kubo formula which is indicated as follows (Khodadadi et  al. 2023b; 
Hanson 2008):

where ω, σ, τ, �c , EF are the angular frequency, the graphene conductivity, the relaxation 
time of graphene, the graphene chemical potential and the Fermi energy value, respectively. 
In addition, e is the charge of electron with 1.6 × 10−19 c value, T = 300 K, h = the constant 
of reduced Plank’s and Kb = the constant of Boltzmann. It is noticeable that according to 
the Pauli Exclusion Principle, in terahertz frequency band, we will have EF ≫ KbT  so the 
inter-band part of the above formula becomes negligible. Consequently, the graphene con-
ductivity equation will be simplified as the Drude model follow (Huang et al. 2018a):
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As mentioned before the graphene’s relaxation time can be obtained by Eq. (4)

where  VF and μ are the Fermi velocity with an approximately constant of 106m/s and the 
electron mobility.

2.2  Absorber structure design

The unit cell’s geometrical structure is presented in Fig. 2, like most absorber structures, 
the presented absorber in this paper contains 3 layers. From upper to lowest layer, the 
absorber consists of a 0.01-μm thick graphene array on a middle layer of 190-μm thick 
high-resistance silicon as a dielectric or spacer layer with a constant of ε = 11.9. To avoid 
transmission to the other side of the metamaterial both of these layers are located on the 
gold as the third layer with a thickness of 0.5  μm and conductivity of �gold = 4.56 × 107 . 
The most effective dielectric with high capacitance is an ion-gel, it can be compatible with 
tunable graphene plasmonic devices on various substrates by its good mechanical flexibil-
ity and thermal stability, the structure diagram of the ion-gel top gate which can be used 
to control the Fermi energy of graphene is shown in Fig. 2d. After patterning an array of 
graphene we cover it with the ion-gel layer, which induces carrier concentration and allows 

(6)�
(
�,EF , �, T

)
=

e2Ef

�h2
i

� + i�−1

(7)τ =
��c

eV2
F

Fig. 2  Schematic of the suggested structure. a Side view of unit cell, b top view of unit cell, c absorber 
arrangement under terahertz beam radiation, d a layer of ion-gel which added to biasing the graphene
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Fig. 3  Absorbance spectrum of the planned absorber for various Si layer thickness a 190 μm, b 600 μm

Table 1  The obtained values of 
the planned unit-cell (per μm)

Dimension Value Dimension Value

g
1

8 P 66
g
2

8 L
1

62
w 8 L

2
38
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the absorber to enter the terahertz band, we can give a conclusion ion-gel has little effect on 
the simulation results and we omit ion-gel to simplify the calculation.

One part of the incident light interacts with the graphene. The remained part passes 
through the graphene to reach the gold surface, which is reflected back by the gold and 
then lost in the silicon, to get a strong absorption mechanism, the imaginary parts of the 
relative permeability and/or permittivity can provide high magnetic and/or electrical losses 
for traveling waves absorption, so, by using a gold layer for the base layer of the structure, 
the transmission coefficient of the EM wave was decreased [T(ω) → 0].

The noticeable point is that to decrease the coefficient of the transmission (T) to zero, 
the base conductor layer thickness would be more than the THz range typical skin depth, so 
the absorption equation simplified to Eq. (8):

In our simulation, �c and τ were considered as 0.9 eV and 0.1 ps respectively, to get the 
optimum value We checked the various values of parameters and selected the best of them 
in the below table.

3  Simulation result and comparison

3.1  Simulation result

At first glance a quad-band absorber was designed as demonstrated in Fig.  3a with the 
same geometrical as mentioned in Table 1 and a thickness of 190 μm. Then by increas-
ing the thick value to 600 μm absorption peak growth to XIII- band, so in this way the 

(8)A = 1 − R

Fig. 4  The planned absorber absorption spectrum for various a graphene fermi-level, b graphene line 
width, c graphene relaxation time
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absorption peaks number is controllable with dielectric thickness changing and the claim 
to reach XIII-band absorber become true. Figure 3b illustrates the absorbance spectrum of 
the suggested absorber and it is zoom figures. All the simulation was implemented in CST 
software based on the full-wave finite-integration-technique (FIT) at normal room tempera-
ture (300 K) and the accuracy of mesh in the graphene layer are set to 93.33 and 0.1 nm 
tetrahedrons mesh type, in addition the boundary condition considered as zmax open (add 
space), zmin electric (Et = 0).

Figure 4 simulation results, shows various value of (w), the graphene chemical potential 
and relaxation time to get the optimum result. As illustrated, only by substituting aluminum 
with graphene and a little change in the in-line width of the structure, both of absorption 
peak and average absorptivity increase. Four absorption peaks and more than 99.6% for 
average absorptivity. By using graphene, the claim that the proposed structure is tunable 
becomes true because changing the graphene fermi level (μc) can shift the absorption fre-
quency without remanufacturing and even parameters changing. The maximum absorption 

Fig. 5  Electrical field distribution of TE waves at a 0.49 THz, b 0.76 THz, c 1.05 THz, d 1.34 THz
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peaks resulted by μc =0.9  eV in Figs.  4a and 8 for graphene line width in Fig.  4b also 
τ = 0.1 ps is considered as the optimum value of graphene relaxation time in Fig. 4c.

Most multiband absorbers are challenging to fabricate because they make use of over 
one layer of metamaterials in their form or have a complicated construct although they’re 
single layers. However, the presented structure uses only single layer of metamaterial in 
its construction and has an elementary plan. Therefore, they are completely lot simpler to 
fabricate than lookalike multiband structures.

Fig. 6  Electrical field distributions of TM waves at a 0.49 THz, b 0.76 THz, c 1.05 THz, d 1.34 THz

Fig. 7  TE and TM mode of 
excitation
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To describe the proposed absorber absorption mechanism, we mention the gold bottom 
layer considered as a ground layer which does not permit the radiated wave to pass through 
the arrangement. Furthermore, a silicon mid layer and a designed graphene layer located 
on top, neutralize the reflected waves by their phase difference, as a result perfect absorber 
seems reasonable.

Figure 5 displays the electrical field distribution in a normal incidence for TE modes. 
Similarly, Fig. 6 displays the electrical field distributions of TM modes briefly.

Here to compare the plot in both mode of excitation we show the figure of absorption 
where TE and TM mode of excitation plotted in a figure, so as shown in Fig. 7 TE and TM 
mode of excitation shows negligible differences on absorption peak.

3.1.1  Stability analysis

In this section, the angular and polarization stability of suggested absorber is considered 
by exposure to terahertz radiation along the ‘z’ axis. For evaluating the stability of polari-
zation, TM and TE propagation modes are applied by increasing ϕ angle to 90° when the 
incidence angle (θ) is 0°. Even though, the suggested terahertz absorber is not in rotational 
form however Fig. 8a shows that the TM and TE modes are similar so, it’s obvious that the 
absorption is stabile for both TM- and TE-modes therefore the claim that the presented 
absorbers are polarization insensitive become true. Moreover, Fig. 8b illustrates the study 
of how electromagnetic waves with a different angle of incidence affect their ability to be 
absorbed.

We evaluate the level of angular stability by looking at the range of angles, called θ, 
where the built absorber appears to have similar properties. So, the suggested terahertz 
absorber works well at any angle up to 45°. The terahertz absorber we showed works the 
same for different polarizations, so the way it behaves when the waves come at an angle is 
similar for both types of waves. Therefore, the planned absorber is stable when it comes to 
changes in angles and polarization.

Table  2 tries to compare this paper with reported results of other research from 
the standpoint of the peak numbers, average absorption, incident angle and polariza-
tion insensitive. It is obvious that in addition to polarization insensitivity the average 
absorption of absorber reached 99.60% in XIII bands which in comparison with other 
results in the table, it is slightly better.

In Table 2 the multiband absorber presented in this paper is compared with some 
other similar structures that were reported recently. Our final structure has the bene-
fits of simple design, polarization insensitivity and high incident angle tolerance with 

Fig. 8  The absorption spectrum for a insensitivity of polarization, b changes of incident angle
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the desired absorption peak with average absorption of 99.60%. All the characteris-
tics make the final structure very flexible and a good candidate for sensing, imaging, 
spectroscopy and some other absorbing application.

4  Conclusion

In this paper, at first, a dual-band THz absorber based on aluminum was designed for sen-
sor application to diagnose early-stage cervical cancer. Because of graphene’s several 
advantages compared to aluminum by substituting the surface material of the sensor with 
graphene and adding a gold ground layer our proposed model formed. In comprehension 
between the new suggested absorber and the previous model, two absorption peaks were 
added and overall absorptivity was increased. We investigated an multi band tunable meta-
material structure that is polarization insensitive and tolerates incident angles up to 45°, 
in addition to all these features the flexibility and high absorbance characteristics, make it 
a candidate for our proposed model for filtering, imaging, sensing and other applications.
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