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Abstract
This article aims to study the generalized exponential rational function method to solve the 
differential-difference Burgers’ equation. Our approach is an efficient method for solving 
nonlinear partial differential equations, and it can be used for a specific type of nonlinear 
differential-difference equations. To recognize diverse singular soliton and multi-soliton 
wave structures, we displayed the 3-D and contour graphs associated with the solutions.

Keywords  Differential-difference Burgers’ equation · Traveling wave solutions · 
Generalized exponential rational function approach

1  Introduction

Despite the difficulty of studying nonlinear differential-difference equations (NDDEs), this 
class of equations has always been considered one of the most essential tools for research-
ers to describe various models in different fields of science (Parand and Delkhosh 2017; 
Houwe etal. 2020; Rasheed etal. 2023). The importance of NDDEs has dramatically 
increased with the development of new concepts, causing classical methods to be incapable 
of solving some of these new types of equations. The role of NPDEs and NDDEs is evident 
in describing many biological phenomena (Wang and Wen 2018; Parand etal. 2017b, c; 
Akram et al. 2023).
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To achieve exact solutions in solving NPDEs and NDDEs, numerous established 
analytical techniques have been effective, for instance: the He-Elzaki transform method 
(Modanli etal. 2023), extended ( G�∕G2)-expansion method (Akram and Zainab 2020), 
residual Power seriesn method (Abdulazeez et al. 2023; Tariq etal. 2023; Modanli etal. 
2021), homotopy analysis approach (Abdulazeez etal. 2022; Sadaf and Akram 2021), 
the extended Sinh-Gordon equation expansion technique (Akram et  al. 2022; Sadaf 
etal. 2022), the explicit finite difference method (Abdulazeez and Modanli 2022), the 
improved tan(Ψ(� )∕2)-expansion method (Akram etal. 2022), the modified simple 
equation approach (Akram et  al. 2023), modified auxiliary equation approach (Sadaf 
etal. 2023), generalized Kudryashov method (Akram etal. 2023), the generalized Pseu-
dospectral approach (Delkhosh and Parand 2019; Delkhosh and Cheraghian 2022), etc.

This research aims to bring forth exact solutions using a recently developed general-
ized exponential function method (GERFM), This method is one of the effective meth-
ods for calculating exact wave solutions, which is used in the present article to solve the 
DDBE.

This method was already introduced by Ghanbari in 2018 (Ghanbari and Inc 2018), 
and after that year, he and other researchers have repeatedly used it for partial differen-
tial equations. For instance, Ghanbari and Kuo (2019) found exact wave solutions for the 
variable-coefficient (1 + 1)-dimensional Benjamin-Bona-Mahony and (2 + 1)-dimen-
sional asymmetric Nizhnik-Novikov-Veselov equations by means of the GERFM. Also, 
Ghanbari etal. (2020) presented the generalized exponential function method to a novel 
extension of the nonlinear Schrödinger equation. Tarla etal. (2022) investigates the 
propagation of solitons in the Hamiltonian amplitude equation via GERFM.

The differential-difference Burgers’ equation (DDBE) that incorporates discrete 
terms along with continuous terms. This equation is used to model systems where both 
continuous and discrete processes play a role in the evolution of the variables. The dif-
ferential-difference Burgers’ equation (DDBE) has applications in various fields, includ-
ing hydrodynamics, fluid dynamics, nonlinear acoustic waves, mathematical physics, 
biological systems, numerical simulations, and materials science (Mohanty et al. 2022).

The general form of such an equation looks like this:

Where �k(t) = �(k, t) , k ∈ ℤ , This equation in 2010 by Aslan (2012) was solved using the 
discrete ( G�∕G)-expansion method.

The generality of GERFM is described in Sect. 2, where we address the requirements 
of this approach and the categorization of the solutions. Section 3 presents the GERFM 
for solving the differential-difference Burgers’ equation and the associated traveling 
wave solutions utilizing 3D and contour diagrams. In the final part, we deliver a sum-
mary of our findings.

2 � Procedure analysis

In this section, the GERFM method is briefly explained. Consider the differential-differ-
ence equation in the following form:

(1)
d�k(t)

dt
=
(

1 + �k(t)
)(

�k+1(t) − �k(t)
)

.
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Using the following traveling wave transform

Where d and c are constants to be determined later, then Eq. (2) reduces to an ODE of the 
following form:

This technique is built using a hypothetical solution that can be displayed as follows:

In Eq. (5), V0,V�,Z�

(

1 ≤ � ≤ a0
)

 , and in Eq. (6) r�, ��, (1 ≤ � ≤ 4) , Recall that we use the 
balance rules to determine the positive integer a0.

Now, in this research, we show that the following relations can be considered in Eq. 
(4) as follows:

By inserting Eq. (5) into Eq. (4), we obtain a polynomial, which indicates that the analyti-
cal solutions for Eq. (2) are obtained.

3 � Applications of GERFM for the DDBE

To solve Eq. (1), using the method of GERFM, as explained in the previous section, we 
first apply the transformation �k(t) = �

(

�k

)

 , �k = dk + ct + �0 , where d and c are con-
stants to be determined, and �0 is an arbitrary phase constant, to arrive at the following 
ordinary differential equation:

According to the method explained in the previous section, balancing the highest-order lin-
ear term with the highest nonlinear term in Eq. (8) yields a0 = 1 . Therefore, we will have 
the solution of the equation in the following hypothetical form:

(2)
N(�m+p1

(t),… ,�m+pk
(t),… ,��

m+p1
(t),… ,

�
�
m+pk

(t),… ,�(r�)
m+p1

(t),… ,�(r�)
m+pk

(t)) = 0,

(3)
�k+ps

(t) = �k

(

�k

)

, s = 1, 2,… , k,

�k = dk + ct + �0.

(4)
Q(�m+p1

(

�n

)

,… ,�m+pk

(

�n

)

,… ,��
m+p1

(

�n

)

,… ,

�
�
m+pk

(

�n

)

,… ,�(r)
m+p1

(

�n

)

,… ,�(r)
m+pk

(

�n

)

) = 0.

(5)Y
(

�k

)

= V0 +

a0
∑

�=1

V��
�
(

�k

)

+

a0
∑

�=1

Z�

��
(

�k

) .

(6)�
(

�k

)

=
r1 exp

(

�1�k

)

+ r2 exp
(

�2�k

)

r3 exp
(

�3�k

)

+ r4 exp
(

�4�k

) .

(7)
�k+1(t) = �

(

�k+1

)

= �
(

�k + d
)

,

�k−1(t) = �
(

�k−1

)

= �
(

�k − d
)

.

(8)c��(�k) =
(

1 +�
(

�k

))(

�k+1

(

�k

)

−�
(

�k

))

.
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Where the constant coefficients of V0 , V1 , Z1 are determined in the next step, and �
(

�k

)

 is 
obtained according to Eq. (5).

Category I: catching 
[

r1 r2 r3 r4
]

= [−1 1 1 1] and 
[

�1 �1 �1 �1

]

= [1 − 1 1 − 1] in Eq. 
(5) render:

By putting Eq. (9) into Eq. (8) and collecting coefficients of �i
(

�k

)

 for i = 0, 1, 2... and set-
ting them to zero, we derive a system of algebraic equations. By solving this system using 
MAPLE software, we can determine the unknown parameters. Therefore, the many various 
anthologies are obtained as follows:

Set 1:

Where d,V1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd − V1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (11) is presented in 
Fig. 1.

Set 2:

Where d,V1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

(9)Y
(

�k

)

= V0 + V1�
(

�k

)

+
Z1

�
(

�k

) .

(10)�
(

�k

)

= −tanh(�k).

c = −V1, V0 = −(2V1 + 1)tanh(2d), Z1 = V1.

(11)Y
(

�k

)

= −(2V1 + 1)tanh(2d) − V1tanh(�k) −
V1

tanh(�k)
.

c = −V1, V0 = −1 − V1coth(d), Z1 = 0.

Fig. 1   The graphical 3D and contour diagrams related to the solution of Eq.  (11) with parameters 
d = 1,V1 = 2, �0 = 0.05
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Where �k = kd − V1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (12) is presented 
in Fig. 2.

Set 3:

Where d,Z1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd − Z1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (13) is presented 
in Fig. 3.

Category II: catching 
[

r1 r2 r3 r4
]

= [i − i 1 1] and 
[

�1 �1 �1 �1

]

= [−i i − i i] in Eq. 
(5) render:

the many various anthologies are obtained as follows:
Set 1:

Where d,V1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

(12)Y
(

�k

)

= −1 − V1coth(d) − V1tanh(�k).

c = −Z1, V0 = −1 − Z1coth(d), V1 = 0.

(13)Y
(

�k

)

= −1 − Z1coth(d) −
Z1

tanh(�k)
.

(14)�
(

�k

)

= −tan(�k).

c = V1, V0 =
−
(

tan2 (d)
)

V1 − tan(d) + V1

tan(d)
, Z1 = −V1.

Fig. 2   The graphical 3D and contour diagrams related to the solution of Eq.  (12) with parameters 
d = 1,V1 = 2, �0 = 0.05
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Where �k = kd + V1t + �0.

The graphical diagrams related to this traveling wave solution Eq.  (15) is presented in 
Fig. 4.

Set 2:

Where d,V0 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

(15)Y
(

�k

)

=
−
(

tan2 (d)
)

V1 − tan(d) + V1

tan(d)
− V1tan(�k) +

V1

tan(�k)
.

c = tan(d)
(

V0 + 1
)

, V1 = tan(d)
(

V0 + 1
)

, Z1 = 0.

(16)Y
(

�k

)

= V0 − tan(d)
(

V0 + 1
)

tan(�k).

Fig. 3   The graphical 3D and contour diagrams related to the solution of Eq.  (13) with parameters 
d = 1,Z1 = 3, �0 = 0.05

Fig. 4   The graphical 3D and contour diagrams related to the solution of Eq.  (15) with parameters 
d = 1,V1 = −2, �0 = 0.05
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Where �k = kd + tan(d)
(

V0 + 1
)

t + �0.

The graphical diagrams related to this traveling wave solution Eq. (16) is presented in 
Fig. 5.

Set 3:

Where d,V0 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd + tan(d)
(

V0 + 1
)

t + �0.

The graphical diagrams related to this traveling wave solution Eq. (17) is presented in 
Fig. 6.

c = tan(d)
(

V0 + 1
)

, V1 = 0, Z1 = − tan(d)
(

V0 + 1
)

.

(17)Y
(

�k

)

= V0 +
tan(d)

(

V0 + 1
)

tan(�k)
.

Fig. 5   The graphical 3D and contour diagrams related to the solution of Eq.  (16) with parameters 
d = 1,V0 = −2, �0 = 0.05

Fig. 6   The graphical 3D and contour diagrams related to the solution of Eq.  (17) with parameters 
d = 1,V0 = −2, �0 = 0.05
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Category III: catching 
[

r1 r2 r3 r4
]

= [1 1 − 1 1] and 
[

�1 �1 �1 �1

]

= [1 − 1 1 − 1] in 
Eq. (5) render:

The many various anthologies are obtained as follows:
Set 1:

Where d,V1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd − V1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (19) is presented in 
Fig. 7.

Set 2:

Where d,V1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd − V1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (20) is presented in 
Fig. 8.

Set 3:

(18)�
(

�k

)

= −coth(�k).

c = −V1, V0 = −(2V1 + 1)tanh(2d), Z1 = V1.

(19)Y
(

�k

)

= −(2V1 + 1)tanh(2d) − V1coth(�k) −
V1

coth(�k)
.

c = −V1, V0 = −1 − V1coth(d), Z1 = 0.

(20)Y
(

�k

)

= −1 − V1coth(d) − V1coth(�k).

c = −Z1, V0 = −1 − Z1coth(d), V1 = 0.

Fig. 7   The graphical 3D and contour diagrams related to the solution of Eq.  (19) with parameters 
d = 1,V1 = 2, �0 = 0.05
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Where d,Z1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd − Z1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (21) is presented in 
Fig. 9.

Category IV: catching 
[

r1 r2 r3 r4
]

= [−1 0 1 1] and 
[

�1 �1 �1 �1

]

= [0 0 0 1] in Eq. (5) 
render:

The many various anthologies are obtained as follows:

(21)Y
(

�k

)

= −1 − Z1coth(d) −
Z1

coth(�k)
.

(22)�
(

�k

)

= −cot
(

�k

)

.

Fig. 8   The graphical 3D and contour diagrams related to the solution of Eq.  (20) with parameters 
d = 1,V1 = 2, �0 = 0.05

Fig. 9   The graphical 3D and contour diagrams related to the solution of Eq.  (21) with parameters 
d = 1,Z1 = 3, �0 = 0.05
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Set 1:

Where d,V1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd − V1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (23) is presented 
in Fig. 10.

Set 2:

Where d,V1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

Where �k = kd − V1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (24) is presented 
in Fig. 11.

Set 3:

Where d,Z1 are constant. By substituting the values of the above obtained parameters into 
Eq. (8), the following traveling wave solution is obtained:

c = −V1, V0 =

(

tan2 (d)
)

V1 − tan(d) − V1

tan(d)
, Z1 = −V1.

(23)Y
(

�k

)

=

(

tan2 (d)
)

V1 − tan(d) − V1

tan(d)
− V1cot(�k) +

V1

cot(�k)
.

c = −V1, V0 = −V1cot(d) − 1, Z1 = 0.

(24)Y
(

�k

)

= −V1cot(d) − 1 − V1cot(�k).

c = Z1, V0 = Z1cot(d) − 1, V1 = 0.

Fig. 10   The graphical 3D and contour diagrams related to the solution of Eq.  (23) with parameters 
d = 1,V1 = 2, �0 = 0.05
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Where �k = kd + Z1t + �0.

The graphical diagrams related to this traveling wave solution Eq. (25) is presented in 
Fig. 12.

(25)Y
(

�k

)

= Z1cot(d) − 1 −
Z1

cot(�k)
.

Fig. 11   The graphical 3D and contour diagrams related to the solution of Eq.  (24) with parameters 
d = 1,V1 = 2, �0 = 0.05

Fig. 12   The graphical 3D and contour diagrams related to the solution of Eq.  (25) with parameters 
d = 1,Z1 = 3, �0 = 0.05
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4 � Conclusion

In this article, we obtained several solutions for the differential-difference Burgers’ equa-
tion using generalized exponential functions, such as hyperbolic and trigonometric func-
tion solutions. Also, the singular soliton, multi-soliton, and kink-soliton solutions were 
obtained, each having a different form that is used to describe physical phenomena. We 
displayed the 3-D and contour graphs associated with the solutions. Based on the findings 
of this research, the proposed strategy offers promising solutions to this problem.
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