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Abstract
The (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation appears in the 
mathematical description of physical phenomena in plasma physics, fluid dynamics and 
nonlinear optics. In this article, extended trial and modified auxiliary equation methods are 
utilized to observe the dynamical structures exhibiting the solitary wave behavior of the 
considered model. The traveling wave hypothesis is employed to extract explicit closed-
form solution expressions. The presented methods show reliability and robust computa-
tional capabilities to investigate solitary waves. In order to investigate the physical behavior 
of these solutions, 3D, 2D and density plots are drawn for different values of parameters. 
The graphical observations depict kink soliton, dark–bright singular soliton and peri-
odic wave solutions. The comparison of the outcomes of the proposed results with those 
obtained using prior techniques is made to confirm the usefulness of the proposed tech-
niques. The presented study will be helpful to explain the wave propagation in many prob-
lems of plasma physics and fluid dynamics. Moreover, the reported solutions may help to 
understand optical wave transmission and aid in the development of optical devices. The 
results given in this study will contribute in the understanding of the behavior of waves in 
the higher-dimensional governing models.

Keywords (2+1)-Dimensional extended Calogero–Bogoyavlenskii–Schiff equation · 
Extended trial equation method · Modified auxiliary equation method · Traveling wave 
solutions

1 Introduction

Nonlinear evolution equations (NLEEs) have a number of significant applications in 
various fields of science, namely, solid-state physics, quantum mechanics, optical fibers 
and many others (Eslami and Rezazadeh 2016; Rezazadeh 2018; Akinyemi et al. 2022; 
Abbagari et al. 2022; Ahmad et al. 2021, 2022; Akram et al. 2023, 2022; Asjad et al. 
2023; Majid et al. 2023. The solutions of nonlinear evolution equations in mathematical 
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physics and other branches of science are a major interest of research. The exact trave-
ling wave solutions of nonlinear evolution equations provide a deeper insight into the 
dynamical framework of the governing models (Arshed et  al. 2021; Raza et  al. 2021; 
Rizvi et al. 2023a, b). Owing to the importance of traveling wave solutions, particularly 
solitons and solitary wave solutions, many researchers have proposed useful numeri-
cal and analytical methods to determine traveling wave solutions (Nasreen et al. 2023; 
Seadawy et  al. 2020; Kumar et  al. 2023). Various mathematical techniques have been 
established successfully such as, sine-Gordon equation expansion (Yamgoué et  al. 
2019), enhanced (G

�

G
) expansion (Islam 2015), modified simple equation (Biswas et al. 

2018), extended Kudryashov (Hassan et al. 2014), exp-function (Hafez et al. 2015), new 
extended (G

�

G
) expansion (Hoque and Akbar 2014), Frobenius integrable decomposition 

(Ma et al. 2007), trial solution (Biswas et al. 2016), simple equation (Roshid and Bashar 
2019), extended and modified rational expansion method (Seadawy et  al. 2023), new 
extended direct algebraic method (Nasreen et  al. 2023) and Darboux transformation 
(Feng and Zhang 2018; Xu and He 2012) methods. Analytical solutions of many NLEEs 
represent solitons, breathers and lump solutions (Feng et al. 2020; Sulaiman et al. 2020; 
Shen et al. 2021; Manukure et al. 2018; Ding et al. 2019; Ismael et al. 2023). During 
propagation, a soliton preserves its shape while interacting with other waves and has 
constant velocity (Kedziora et al. 2014; Nasreen et al. 2023).

A generalized (2 + 1)-dimensional NLEE (Tahami and Najafi 2017) can be consid-
ered, as

where p, q are arbitrary constants.
Equation (1.1) becomes (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff (CBS) 

equation for p =
1

2
 , q =

1

4
 , as

where the terms rxrxy and rxxry indicate the nonlinearity of the wave. The derivation of the 
CBS equation is attributed to Bogoyavlenskii and Schiff who used different approaches to 
retrieve the afore-mentioned equation. Schiff utilized the self-dual Yang–Mills equation to 
present the CBS equation, whereas Bogoyavlenskii derived the CBS equation using the 
modified Lax-formalism (Peng 2006; Toda et al. 1999; Schiff 1992). In recent years, many 
scholars paid much attention to the (2 + 1)-dimensional CBS equation. Yu et  al. (1998) 
proposed a new (2 + 1)-dimensional CBS equation by adding 1

4
�−1
x
ryyy in Eq. (1.2), which 

can be written, as

where �−1
x

f = ∫ f dx.
In the framework of (2 + 1)-dimensional equations, several integrable models have 

been recently constructed. These integrable systems have various applications in non-
linear optics, hydrodynamics, plasma and field theories (Wazwaz 2017; Kumar et  al. 
2022). The CBS equation clarifies the interaction between long propagating and Rie-
mann waves (Kumar et al. 2023).

An extended (2 + 1)-dimensional CBS equation is attained by adding the flux term � 
rxy in Eq. (1.3) (Wazwaz 2012; Mabrouk and Rashed 2019), as

(1.1)rxt + rxrxy + prxxry + qrxxxy = 0,

(1.2)rxt + rxrxy +
1

2
rxxry +

1

4
rxxxy = 0,

(1.3)rxt + rxrxy +
1

2
rxxry +

1

4
rxxxy +

1

4
�−1
x
ryyy = 0,
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where � is an arbitrary constant. This extended CBS equation retains the integrability 
after the addition of the flux term. The proposed mathematical model has applications in 
a wide range of theoretical physics problems and scientific domains. Many experts have 
focused their attention on understanding the extended CBS model in recent years. Several 
approaches have been used to get accurate solutions for the extended CBS equation, which 
includes several complicated functions and, as a result, shows a multitude of unique behav-
iors. These closed-form solutions are achieved in the form of solitons and other solitary 
waves which play crucial roles in the field of plasma physics, fluid dynamics and nonlinear 
optics. The presence of solitary wave solutions is important in the nonlinear wave phenom-
ena and propagation of waves (Nasreen et al. 2023; Kumar et al. 2022).

The main objective of this manuscript is the theoretical investigation of the dynamical 
behavior of Eq. (1.4) by finding the exact closed-form solitons and other traveling wave solu-
tions. The traveling wave transformation is applied along with the extended trial equation 
method (ETEM) and modified auxiliary equation method (MAEM) to extract many accurate 
analytical solutions of the considered model. The graphical depiction of obtained solutions 
using these methods is used to analyze the physical interpretation of the governing equation. 
The ETEM is an extension of the trial method that was proposed to solve some time fractional 
differential equations, including the generalized third-order fractional KdV equation (Pandir 
et al. 2013). The MAEM was developed to find the solitary wave solutions of various NLEEs 
utilizing an auxiliary equation (Khater et al. 2019). These schemes are proficient and valuable 
to investigate the considered model.

The remaining paper is organized in the following way: Sect. 2 presents the conversion of 
Eq. (1.4) into an ordinary differential equation (ODE). Section 3 presents the mathematical 
analysis and application of the extended trial equation method on the considered model. Sec-
tion 4 presents the mathematical analysis and application of the modified auxiliary equation 
method. The graphical simulations of the obtained solutions are presented in Sect. 5. The pre-
sented work is concluded in Sect. 6.

2  Conversion of extended CBS equation into an ODE

Differentiating Eq. (1.4) with respect to x leads to the (2 + 1)-dimensional extended CBS 
equation in the following form.

The traveling wave transformation can be considered, as

where a, b and c are any constants. Substituting Eq. (2.2) into Eq. (2.1), it reduces to

which implies that

(1.4)rxt + rxrxy +
1

2
rxxry +

1

4
rxxxy +

1

4
�−1
x
ryyy + �rxy = 0,

(2.1)4rxtx + 4rxrxxy + 6rxxrxy + 2rxxxry + rxxxxy + ryyy + 4�rxxy = 0.

(2.2)r(x, y, t) = Φ(�), � = ax + by − ct,

(2.3)
a4bΦ�����(�) + 6a3bΦ�(�)Φ���(�) + (4�a2b − 4a2c + b3)Φ���(�) + 6a3b(Φ��(�))2 = 0,

(2.4)a4bΦ�����(�) + 6a3bΦ�(�)Φ���(�) + �Φ���(�) + 6a3b(Φ��(�))2 = 0,
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where � = 4�a2b − 4a2c + b3 . Integrating Eq. (2.4) twice, yields the relation

Using the substitution

leads to

3  Mathematical analysis using ETEM

The brief description of the extended trial equation method is given as follows:
The nonlinear partial differential equation is considered, as

where P is a polynomial.
According to the traveling wave hypothesis, Eq. (3.1) is reduced to an ODE of the form

where (�) = d

d�
 . The solution of Eq. (3.2) is assumed, as

where

Using the Eqs. (3.3)–(3.4), the following expressions for (Φ�

)2 and Φ�� are obtained.

and

where Γ(Ω) and Ψ(Ω) are polynomials in Ω . Putting Eqs. (3.5)–(3.6) into Eq. (3.2), a rela-
tion of the following form is obtained.

(2.5)a4bΦ���(�) + �Φ�(�) + 3a3b(Φ�(�))2 = 0.

(2.6)Φ�(�) = �(�),

(2.7)a4b���(�) + 3a3b�2(�) + ��(�) = 0.

(3.1)P(r, rx, ry, rt, rxx, rxy, rxt, ryy,…) = 0,

(3.2)Q(Φ,Φ�,Φ��,Φ���,…) = 0,

(3.3)Φ =

�∑
j=0

�jΩ
j,

(3.4)(Ω
�

)2 = Λ(Ω) =
Γ(Ω)

Ψ(Ω)
=

��Ω
� +⋯ + �1Ω + �0

��Ω
� +⋯ + �1Ω + �0

.

(3.5)(Φ�)2 =
Γ(Ω)

Ψ(Ω)

(
�∑
j=0

j�jΩ
j−1

)2

,

(3.6)Φ�� =
Γ�(Ω)Ψ(Ω) − Γ(Ω)Ψ�(Ω)

2Ψ2(Ω)

(
�∑
j=0

j�jΩ
j−1

)
+

Γ(Ω)

Ψ(Ω)

(
�∑
j=0

j(j − 1)�jΩ
j−2

)
,

(3.7)Θ(Ω) = ��Ω
� +⋯ + �1Ω + �0 = 0.
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Balancing the highest power nonlinear term and the term with the highest order derivative 
yields a relation in � , � and � , which is used to select suitable values of � , � and � . Equating 
all coefficients of Θ(Ω) equals to zero yields a set of algebraic equations containing free 
parameters, as

Solving the system (3.8), the values of �0,… , �� , �0,… ,�� and �0,… , �� are determined. 
Equation (3.4) can be expressed in integral form, as

Equation (3.9) is solved using a complete discrimination system for polynomials to classify 
the roots of Ψ(Ω) and obtain the exact solutions of Eq. (3.2). The solutions of Eq. (3.2) pro-
vide the exact traveling wave solutions of Eq. (3.1) after some simplification.

3.1  Application of ETEM

According to balancing principle, the highest order derivative term �′′ is equated with the non-
linear term �2 , as

For � = 1 and � = 0 , � = 3 is obtained. Hence, Eqs. (3.3) and (3.6) yield the following rela-
tions for the solution of Eq. (2.7).

Putting Eqs. (3.11)–(3.12) into Eq. (2.7), then solving the algebraic system determined 
by collecting the coefficients of Ω with the help of Mathematica, the following values are 
retrieved.

Putting these results into Eqs. (3.4) and (3.9), the following relation is obtained.

where

(3.8)�i = 0, i = 0, 1,… , s.

(3.9)±(� − �0) = ∫
dΩ√
Λ(Ω)

= ∫
�

Γ(Ω)

Ψ(Ω)
dΩ.

(3.10)� = � + � + 2.

(3.11)� = �0 + �1Ω,

(3.12)��� =
�1(3�3Ω

2 + 2�2Ω + �1)

2�0

.

�1 =
−2�0(� + 3a3b�0)�0

a4b�1
, �2 =

(−� − 6a3b�0)�0

a4b
,

�3 =
−2�1�0

a
, �0 = �0, �0 = �0, �1 = �1, �0 = �0.

(3.13)±(� − �0) = K ∫
dΩ√
Δ(Ω)

,

(3.14)Δ(Ω) = Ω3 +
�2

�3
Ω2 +

�1

�3
Ω +

�0

�3
, K =

√
�0

�3
.
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Integrating Eq. (3.13), substituting the result in Eq. (3.11) and using the transformation 
Eqs. (2.2) and (2.6), the solutions are obtained as follows:

For Δ(Ω) = (Ω − �1)
3

where E1 is the integration constant.
For Δ(Ω) = (Ω − �1)

2(Ω − �2) and 𝜆2 > 𝜆1

where E2 is the integration constant.
For Δ(Ω) = (Ω − �1)(Ω − �2)

2 and 𝜆1 > 𝜆2

where E3 is the integration constant.
For Δ(Ω) = (Ω − �1)(Ω − �2)(Ω − �3) and 𝜆1 > 𝜆2 > 𝜆3

where

(3.15)

r(x, y, t) =(�0 + �1�1)

(
ax + by −

t(b3 − � + 4a2b�)

4a2

)

−
4K2�1(

ax + by −
t(b3−�+4a2b�)

4a2

)
− �0

+ E1,

(3.16)

r(x, y, t) =(�0 + �1�1)

�
ax + by −

t(b3 − � + 4a2b�)

4a2

�
− 2K�1

√
�1 − �2

× tanh

⎛⎜⎜⎜⎝

√
�1 − �2

�
ax + by −

t(b3−�+4a2b�)

4a2
− �0

�

2K

⎞⎟⎟⎟⎠
+ E2,

(3.17)

r(x, y, t) =(�0 + �1�1)

�
ax + by −

t(b3 − � + 4a2b�)

4a2

�
− 2K�1

√
�1 − �2

× coth

⎛⎜⎜⎜⎝

√
�1 − �2

�
ax + by −

t(b3−�+4a2b�)

4a2
− �0

�

2K

⎞⎟⎟⎟⎠
+ E3,

(3.18)

r(x, y, t) =(�0 + �1�3)

�
ax + by −

t(b3 − � + 4a2b�)

4a2

�

+ 2�1K
√
�1 − �3

⎡⎢⎢⎢⎣

√
�1 − �3

�
ax + by −

t(b3−�+4a2b�)

4a2
− �0

�

2K

− EllipticE

⎛
⎜⎜⎜⎝
sn

⎛
⎜⎜⎜⎝

√
�1 − �3

�
ax + by −

t(b3−�+4a2b�)

4a2
− �0

�

2K
,�

⎞
⎟⎟⎟⎠
,�

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
+ E4,

�
2 =

�2 − �3

�1 − �3
, EllipticE[r, z] = ∫

r

0

(√
1 − z2m2

1 − m2

)
dm
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and E4 is the integration constant.
Here �1 , �2 and �3 are the zeros of polynomial equation

Taking �0 = −�1�1 and �0 = 0 , the solutions Eqs. (3.15)–(3.17) can be simplified, as 
rational function solution

traveling wave solution

singular soliton solution

respectively.
Furthermore, for �0 = −�1�3 and �0 = 0 , Eq. (3.18) can be simplified, as traveling wave 

solution

Remark When the modulus term � → 1, then the solution Eq. (3.22), becomes

where �1 = �2.

(3.19)Δ(Ω) = 0.

(3.20)r(x, y, t) = −
4K2�1

ax + by −
t(b3−�+4a2b�)

4a2

+ E1,

(3.21)

r(x, y, t) = −2K�1

√
�1 − �2 tanh

⎛⎜⎜⎜⎝

√
�1 − �2

�
ax + by −

t(b3−�+4a2b�)

4a2

�

2K

⎞⎟⎟⎟⎠
+ E2,

(3.22)

r(x, y, t) = −2K�1

√
�1 − �2 coth

⎛⎜⎜⎜⎝

√
�1 − �2

�
ax + by −

t(b3−�+4a2b�)

4a2

�

2K

⎞⎟⎟⎟⎠
+ E3,

(3.23)

r(x, y, t) =2�1K
√
�1 − �3

⎡
⎢⎢⎢⎣

√
�1 − �3

�
ax + by −

t(b3−�+4a2b�)

4a2

�

2K

−EllipticE

⎛
⎜⎜⎜⎝
sn

⎛
⎜⎜⎜⎝

√
�1 − �3

�
ax + by −

t(b3−�+4a2b�)

4a2

�

2K
,�

⎞
⎟⎟⎟⎠
,�

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
+ E4.

(3.24)

r(x, y, t) =2�1K
√
�3 − �1

⎡
⎢⎢⎢⎣

√
�3 − �1

�
ax + by −

t(b3−�+4a2b�)

4a2

�

2K

−EllipticE

⎛
⎜⎜⎜⎝
tanh

⎛
⎜⎜⎜⎝

√
�3 − �1

�
ax + by −

t(b3−�+4a2b�)

4a2

�

2K

⎞
⎟⎟⎟⎠
, l

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
+ E4,
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4  Mathematical analysis using MAEM

According to the modified auxiliary equation method, the nonlinear partial differential equa-
tion is taken, as

where P is a polynomial. Using the traveling wave transformation Eq. (4.1) is converted to 
an ODE of the form

where (�) = d

d�
 . The solution of Eq. (4.2) is expressed, as

where p0 , pi , Y and qi are constants to be determined. The unknown constants pi’s, qi’s can-
not be zero simultaneously and the function g(�) satisfies the auxiliary equation

where � , � and � are parameters to be calculated and Y > 0 , Y ≠ 0 . Using the homogenous 
balancing principle, the value of M can be induced, but in some cases, M is not retrieved 
as a positive integer. A positive integer value of M is determined by the following suitable 
transformation in these cases.

Case 1 When M =
m

n
 , where m and n are co-prime, the following transformation is 

utilized.

Case 2 When M = −p is a negative integer, the following transformation is utilized.

Putting either Eqs. (4.5) and (4.6) into Eq. (4.2), the integer value of M can be obtained by 
homogenous balancing principle. Inserting Eq. (4.3) along with Eq. (4.4) into Eq. (4.2), 
collecting all the coefficients of Yig(�) , where (i = 0,±1,±2,… ,±M) , and equating them to 
zero, a system of equations can be deduced by using software like Mathematica, Maple to 
retrieve the values of unknowns p0, pi, qi , � , � , � , a, b, c where (i = 1, 2,… ,M).

The function Yg(�) assumes the following values.
If 𝛽2 − 4𝛼𝛿 < 0 and � ≠ 0 then

or

(4.1)P(r, rx, ry, rt, rxx, rxy, rxt, ryy,…) = 0,

(4.2)Q(Φ,Φ�,Φ��,Φ���,…) = 0,

(4.3)Φ(�) = p0 +

M∑
i=1

piY
ig(�) +

M∑
i=1

qiY
−ig(�),

(4.4)g�(�) =
� + �Y−g(�) + �Yg(�)

ln(Y)
,

(4.5)Φ(�) = (U(�))
m

n .

(4.6)Φ(�) = (U(�))−p.

(4.7)Yg(�) =

−� +
√
−�2 + 4�� tan

�
1

2

√
−�2 + 4���

�

2�
,

(4.8)Yg(�) = −

� +
√
−�2 + 4�� cot

�
1

2

√
−�2 + 4���

�

2�
.
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If 𝛽2 − 4𝛼𝛿 > 0 and � ≠ 0 then

or

If �2 − 4�� = 0 and � ≠ 0 then

The exact solution of Eq. (4.1) can be attained by putting the values of p0 , pi , qi , � , � , � 
and substituting the corresponding values of Yg(�) from Eqs. (4.7–4.11) into Eq. (4.3) with 
transformation Eq. (2.2).

4.1  Application of MAEM

According to the homogenous balancing principle, the highest order derivative term �′′ and 
nonlinear term �2 are balanced for M = 2 , Eq. (4.3) takes the form for solution of Eq. (2.7).

where p0 , p1 , p2 , q1 and q2 are arbitrary constants to be evaluated. Putting Eq. (4.12) with 
auxiliary equation Eq. (4.4) into Eq. (2.7) and equating all the coefficients of Yig(�) to zero, 
where (i = 0,±1,±2,±3,±4) , an algebraic set of equations is determined. The following 
solution sets are determined for the unknown constants.

Set 1: p0 = −
1

3
a(�2 + 2��) , p1 = −2a�� , p2 = −2a�2 , q1 = 0 , q2 = 0 , b =

�

a4(�2−4��)
 . 

Set 2: p0 = −
1

3
a(�2 + 2��) , p1 = 0 , p2 = 0 , q1 = −2a�� , q2 = −2a�2 , b =

�

a4(�2−4��)
.

Set 3: p0 = −2a�� , p1 = −2a�� , p2 = −2a�2 , q1 = 0 , q2 = 0 , b = −
�

a4(�2−4��)
 . Set 4: 

p0 = −2a�� , p1 = 0 , p2 = 0 , q1 = −2a�� , q2 = −2a�2 , b = −
�

a4(�2−4��)
.

Family 1 The following solutions are determined using Set 1. For 𝛽2 − 4𝛼𝛿 < 0 and 
� ≠ 0,

or

For 𝛽2 − 4𝛼𝛿 > 0 and � ≠ 0

or

(4.9)Yg(�) = −

� +
√
�2 − 4�� tanh

�
1

2

√
�2 − 4���

�

2�
,

(4.10)Yg(�) = −

� +
√
�2 − 4�� coth

�
1

2

√
�2 − 4���

�

2�
.

(4.11)Yg(�) = −
2 + ��

2��
.

(4.12)�(�) = p0 + p1Y
g(�) + p2Y

2g(�) + q1Y
−g(�) + q2Y

−2g(�),

(4.13)r(x, y, t) = −
1

3
a(�2 − 4��)� − a

√
−�2 + 4�� tan

�
1

2

√
−�2 + 4���

�
+ k11,

(4.14)r(x, y, t) = −
1

3
a(�2 − 4��)� + a

√
−�2 + 4�� cot

�
1

2

√
−�2 + 4���

�
+ k12.

(4.15)r(x, y, t) = −
1

3
a(�2 − 4��)� + a

√
�2 − 4�� tanh

�
1

2

√
�2 − 4���

�
+ k13,
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where � = ax + by − ct , c = b3−�+4a2b�

4a2
 and k1j (j = 1, 2, 3, 4) are integration constants.

Family 2 The following solutions are determined using Set 2.
For 𝛽2 − 4𝛼𝛿 < 0 and � ≠ 0

or

For 𝛽2 − 4𝛼𝛿 > 0 and � ≠ 0

or

(4.16)r(x, y, t) = −
1

3
a(�2 − 4��)� + a

√
�2 − 4�� coth

�
1

2

√
�2 − 4���

�
+ k14,

(4.17)

r(x, y, t) =

�
a(�2 − 4��)

7

2 sec2
�
1

2

√
−�2 + 4���

��
�
3(−(�2 − 4��)2)

3

2

�
� −

√
−�2 + 4�� tan

�
1

2

√
−�2 + 4���

��2
�

×

�
2��

�
−�2 + 4��� +

�
−�2 + 4��

×
�
−3� + �2� − 2���

�
cosh

��
−�2 + 4���

�

+
�
−3�2 + �3� + 6�� − 4����

�
sinh

��
−�2 + 4���

��
+ k21,

(4.18)

r(x, y, t) =

�
a(�2 − 4��)

3

2 csc2
�
1

2

√
−�2 + 4���

��
�
3(−(�2 − 4��)2)

1

2

�
� +

√
−�2 + 4�� cot

�
1

2

√
−�2 + 4���

��2
�

×

�
−2��

�
−�2 + 4��� +

�
−�2 + 4��

×
�
−3� + �2� − 2���

�
cosh

��
−�2 + 4���

�

+
�
−3�2 + �3� + 6�� − 4����

�
sinh

��
−�2 + 4���

��
+ k22.

(4.19)

r(x, y, t) =

−

�
a
√
�2 − 4�� sech2

�
1

2

√
�2 − 4���

��

3

�
� +

√
�2 − 4�� tanh

�
1

2

√
�2 − 4���

��2

×

�
2��

√
�2 − 4��� +

√
�2 − 4��

×
�
−3� + �2� − 2���

�
cosh

�√
�2 − 4���

�

+
�
−3�2 + �3� + 6�� − 4����

�
sinh

�√
�2 − 4���

��
+ k23,



Exact traveling wave solutions of (2+1)‑dimensional extended…

1 3

Page 11 of 21 424

where � = ax + by − ct , c = b3−�+4a2b�

4a2
 and k2j (j = 1, 2, 3, 4) are integration constants.

Family 3 The following solutions are determined using Set 3.
For 𝛽2 − 4𝛼𝛿 < 0 and � ≠ 0

(4.20)

r(x, y, t) =

−

�
a
√
�2 − 4�� csch2

�
1

2

√
�2 − 4���

��

3

�
� +

√
�2 − 4�� coth

�
1

2

√
�2 − 4���

��2

×

�
−2��

√
�2 − 4��� +

√
�2 − 4��

×
�
−3� + �2� − 2���

�
cosh

�√
�2 − 4���

�

+
�
−3�2 + �3� + 6�� − 4����

�
sinh

�√
�2 − 4���

��
+ k24,

(4.21)r(x, y, t) = −a
√
−�2 + 4�� tan

�
1

2

√
−�2 + 4���

�
+ k31,

Fig. 1  Graph of dark–bright singular soliton solution (3.20) in (a) for K = � = a = y = 1, �1 = � = 2 , 
b = −1,E1 = 0 with its 2D graph in (b) and density plot in (c)
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or

For 𝛽2 − 4𝛼𝛿 > 0 and � ≠ 0

or

where � = ax + by − ct , c = b3−�+4a2b�

4a2
 and k3j (j = 1, 2, 3, 4) are integration constants.

Family 4 The following solutions are determined using Set 4.
For 𝛽2 − 4𝛼𝛿 < 0 and � ≠ 0

(4.22)r(x, y, t) = a
√
−�2 + 4�� cot

�
1

2

√
−�2 + 4���

�
+ k32.

(4.23)r(x, y, t) = a
√
�2 − 4�� tanh

�
1

2

√
�2 − 4���

�
+ k33,

(4.24)r(x, y, t) = a
√
�2 − 4�� coth

�
1

2

√
�2 − 4���

�
+ k34,

Fig. 2  Graph of singular periodic wave solution (3.21) in (a) for 
K = � = a = y = 1, �1 = � = 2, b = −1,E2 = 0, �1 = 2, �2 = 4 with its 2D graph in (b) and density plot in 
(c)
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or

For 𝛽2 − 4𝛼𝛿 > 0 and � ≠ 0

or

(4.25)r(x, y, t) = −
4a��

� −
√
−�2 + 4�� tan

�
1

2

√
−�2 + 4���

� + k41,

(4.26)r(x, y, t) = −
4a��

� +
√
−�2 + 4�� cot

�
1

2

√
−�2 + 4���

� + k42.

(4.27)r(x, y, t) = −
4a��

� +
√
�2 − 4�� tanh

�
1

2

√
�2 − 4���

� + k43,

Fig. 3  Graph of dark–bright singular soliton solution (3.22) in (a) for K = � = a = y = 1 , �1 = � = 2 , 
b = −1,E3 = 0 , �1 = 4, �2 = 2 with its 2D graph in (b) and density plot in (c)
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where � = ax + by − ct , c = b3−�+4a2b�

4a2
 and k4j (j = 1, 2, 3, 4) are integration constants.

5  Graphical simulations and comparison of results

Some of the retrieved solutions are demonstrated through graphical simulations to observe 
the wave behavior of the (2 + 1)-dimensional extended CBS equation. The graphs are plot-
ted for suitably assigned parametric values. A variety of dynamical structures are observed 
corresponding to various obtained solutions including kink soliton, dark-bright singular 
soliton and periodic wave solutions.

Figure 1 shows the graphs of solution (3.20) for K = � = a = y = 1 , �1 = � = 2 , b = −1 , 
E1 = 0 . The graphical illustration represents a dark-bright singular soliton solution.

(4.28)r(x, y, t) = −
4a��

� +
√
�2 − 4�� coth

�
1

2

√
�2 − 4���

� + k44,

Fig. 4  Graph of singular periodic wave solution (4.13) in (a) for � = � = a = y = � = 1 , � = � = 2 , k11 = 0 
with its 2D graph in (b) and density plot in (c)
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Figure  2 shows the graphs of solution (3.21) for K = � = a = y = 1 , �1 = � = 2 , 
b = −1 , E2 = 0 , �1 = 2 , �2 = 4 . The graphical illustration represents a singular periodic 
wave solution.

Figure  3 shows the graphs of solution (3.22) for K = � = a = y = 1 , �1 = � = 2 , 
b = −1 , E3 = 0, �1 = 4, �2 = 2 . The graphical illustration represents a dark-bright singular 
soliton solution.

Figure  4 shows the graph of solution (4.13) for � = � = a = y = � = 1 , � = � = 2 , 
k11 = 0 . The graphical illustration represents a singular periodic wave solution.

Figure  5 shows the graph of solution (4.15) for � = � = a = y = 1 , � = 4 , � = 2 , 
� = −1, k13 = 0 . The graphical illustration represents a traveling wave solution.

Figure  6 shows the graph of solution (4.25) for � = � = 2 , � = � = a = y = 1 , 
� = −1, k41 = 0 . The graphical illustration represents a periodic wave solution.

Figure  7 shows the graph of solution (4.27) for � = � = 2 , � = 4 , � = a = y = 1 , 
� = −1 , k43 = 0 . The graphical illustration represents the kink soliton solution.

The proposed extended trial equation method and modified auxiliary equation method 
are applied for the first time in this work to explore the considered CBS model. The pro-
posed techniques have produced a diverse range of exact traveling wave solutions to the 
(2+1)-dimensional extended CBS model. The comparison of the proposed study with the 

Fig. 5  Graph of traveling wave solution (4.15) in (a) for � = � = a = y = 1 , � = 4 , � = 2 , � = −1 , k13 = 0 
with its 2D graph in (b) and density plot in (c)
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existing literature reveal that the obtained results confirm some of the previously obtained 
wave behavior and also include some novel results (Tripathy and Sahoo 2021; Shen et al. 
2021; Khalique and Maefo 2021; Ali et al. 2021; Chen et al. 2020). Hence, the achieved 
solutions demonstrate the effectiveness of the recommended approaches.

6  Conclusion

The (2 + 1)-dimensional extended CBS equation is theoretically investigated to con-
struct the exact traveling wave solutions including solitons. The extended trial equation 
method and modified auxiliary equation method are applied to retrieve the explicit accu-
rate closed-form solution expressions. The traveling wave solutions in terms of hyper-
bolic, trigonometric and rational functions are obtained. The behavior of the retrieved 
exact solutions is demonstrated by surface plots, line plots and density plots choosing 
suitable values of parameters. Kink soliton, dark-bright singular soliton and periodic 

Fig. 6  Graph of periodic wave solution (4.25) in (a) for � = � = 2 , � = � = a = y = 1 , � = −1 , k41 = 0 with 
its 2D graph in (b) and density plot in (c)
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wave solutions are exhibited by the graphical simulations. These results gives us differ-
ent forms of solitary waves which help to understand the real-world problems. The kink 
soliton is characterized by the sudden change in wave form from one asymptotic state 
to another. The bright-dark singular soliton has a localized increase in the wave ampli-
tude followed by a localized decrease in the wave amplitude. The periodic waves are 
characterized by the repetitive wave form after certain intervals of time. Periodic wave 
solutions can be used in plasma physics and nonlinear optics to describe the propagation 
of periodic traveling waves. Kink solitons in nonlinear fibers can cause self-steepness or 
nonlinear effects, influencing the high-intensity short-pulse characteristics. Kink soli-
tons can be applied between two optical logic units or domains as polarization switches. 
Owing to the cross-polarization of light fields in birefringent, dark-bright solitons can 
be produced. They are widely used in telecommunication and ultrafast optics. The vis-
ual depiction shows that the modified auxiliary equation approach has more accurate 
and valuable results for the proposed model than the extended trial equation method. All 

Fig. 7  Graph of kink type soliton solution (4.27) in (a) for � = � = 2 , � = 4 , � = a = y = 1 , 
� = −1, k43 = 0 with its 2D graph in (b) and density plot in (c)
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soliton types are not provided by the single scheme so to enhance the capability of the 
considered model these methods have been described. The obtained results exhibit that 
the presented methods are effective and useful for determining the solutions of (2 + 1)

-dimensional extended CBS equation. The obtained results will be helpful in under-
standing the relevant physical system in plasma physics, optics and fluid dynamics.
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