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Abstract
A qualitative analysis of the electron-acoustic wave is taken in a collisional plasma having 
two-temperature electrons with a fixed ion background, where hot electrons follow kappa 
distribution. The collision between stationary ions and cold electrons is considered. Using 
reduced perturbation technique, the Burgers equation for the plasma system is derived. 
Using traveling wave transformation, we obtain the dynamical system corresponding to the 
plasma system. Phase plane analysis is used in the dynamical system to study different 
kinds of wave features for the considered plasma system. Moreover periodic wave features 
and shock wave features are investigated in accordance to periodic orbits and heteroclinic 
orbits obtained in the phase portrait. Role of the superthermal parameter ( � ), speed of the 
travelling wave (U) and � = n

c
0
∕n

h
0
 (where n

c
0
 denotes the number density of cold elec-

trons in equilibrium and n
h
0
 denotes the number density of hot electrons in equilibrium) 

are shown on the electron-acoustic periodic waves and shock waves structures. The results 
hold relevance and significance in the context of space plasma.

Keywords  Burgers equation · Phase plane analysis · Dynamical system · Reductive 
perturbation method

1  Introduction

The study of electron-acoustic waves (EAW) continues to be of great interest, as they are 
observed in various plasma environments, including laboratory experiments, numerical 
simulations, and space plasma environments (Montgomery et al. 2001; Nikolic et al. 2002; 
Surendra and Graves 1991; Shukla et al. 2002; Akter and Hafez 2023). These waves occur 
in plasma containing stationary ions and two distinct populations of electrons (hot and 
cold) (Gary and Tokar 1985; Gary 1987). The cold electron fluid supplies inertia and hot 
electron fluid provides the force of restoration. The ions in the plasma act as a stable, 

 *	 Asit Saha 
	 asit_saha123@rediffmail.com

	 Yogesh Chettri 
	 chettriyogesh2974@gmail.com

1	 Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, 
Majitar, Rangpo, East‑Sikkim 737136, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-023-05898-z&domain=pdf


	 Y. Chettri, A. Saha 

1 3

431  Page 2 of 18

unperturbed neutral background essential for the existence of EAWs (Gary 1987). The 
phase velocity ( vph ) of EAWs falls within the range of the thermal speeds of the hot and 
cold electrons, where the thermal speed of the cold electrons ( vtc ) is given by vtc =

√

Tc∕m , 
and the thermal speed of the hot electrons ( vth ) is given by vth =

√

Th∕m , where Th denotes 
the temperature of the hot electrons, Tc denotes the temperature of the cold electrons and m 
denotes the mass of an electron. For EAWs to exist, it is crucial that the number density of 
the cold electron species is much less compared to the number density of the hot electron 
species (i.e., nh0 >> nc0 ), where nh0 denotes the number density of hot electrons in equilib-
rium and nc0 denotes the number density of cold electrons in equilibrium. So, the speed of 
EAWs is Cse =

√

(Th∕m)(nc0nh0 ) . The linear mode analysis shows that EAWs follow a dis-
persion relation expressed as Gary and Tokar (1985), Mace et al. (1999), Singh and Lakh-
ina (2001) �2 = k2c2

se
(1 + 3k2�2

Dc
)∕(1 + k2�2

Dh
) , where k denotes the wave number, � 

denotes the wave frequency and �Dh =
√

Th∕4�nh0e
2 and �Dc =

√

Tc∕4�nc0e
2 are Debye 

length of hot and cold electron respectively. In the long wavelength limit ( k2𝜆2
Dh

<< 1 ) and 
when the pressure from cold electrons is negligible compared to hot electrons, the disper-
sion relation simplifies to � ≈ kCse . Compared to ion acoustic waves, EAWs typically 
experience stronger damping due to the higher mobility of cold electrons. However, if cold 
electron density ( nc0 ) is sufficiently low compared to the hot electron ( nh0 ) density, and the 
cold electron temperature ( Tc ) is much lower than the hot electron temperature ( Th ) (Gary 
1987), the damping effect of EAWs is significantly reduced. This is because the wave prop-
agation is enabled due to presence of the cold electron component while reducing the 
impact of Landau damping.

The presence and characteristics of EAWs have been confirmed through observations 
conducted by the Fast Auroral SnapshoT (FAST) mission in various regions of Earth’s mag-
netosphere (Gary and Tokar 1985; Gary 1987; Mace et al. 1999; Singh and Lakhina 2001; 
Cattell et al. 1999), including the intermediate auroral region (altitude less than 4000 km), 
geotail, and at higher altitude polar auroral region (approximately 2 − 8 RE , where RE 
denotes the Earth’s radius). These observations have revealed that the generation of most 
of the electrostatic high-frequency noise in the auroral plasma is due to EAWs (Pottelette 
and Treumann 2005). Under strong excitation, EAWs can undergo nonlinear evolution and 
give rise to various nonlinear structures, such as kink and anti-kink wave features, solitons, 
wave modulations (envelope solitons), turbulence, electron holes and shocks. These non-
linear structures have been observed in different regions of Earth’s magnetosphere, primar-
ily in the polar magnetosphere and various auroral regions (Mozer et  al. 1977; Temerin 
et al. 1982; Dubouloz et al. 1993; Berthomier et al. 2000; Ergun et al. 2004; Bostron 1992; 
Lakhina et al. 2008; Mace and Hellberg 1990; Kourakis and Shukla 2004; Chakrabarti and 
Sengupta 2011; Dutta et al. 2011), through satellite measurements. Similar observations of 
EAWs have also been made in laboratory settings (Anderegg et al. 2009). While analyzing 
the data collected by various satellites, it has been observed that the majority of the nonlin-
ear structures in EAWs can be attributed to fluctuations in the parallel electric field (Evans 
1974; Mozer and Kletzig 1998; Pottelette and Berthomier 2009).

In Yu and Shukla (1983) investigated linear and nonlinear modified EAWs in a plasma 
with two electron components (cold and hot). They found that the cold electron population 
density strongly influences the frequency of these EAWs. The study also discussed solitons 
associated with the modified EAWs. In Hellberg et al. (2000) conducted an experiment to 
observe electrostatic waves with high-frequency in a plasma with two temperature elec-
trons. They observed that neither the bi-Maxwellian nor the Maxwellian-waterbag models 
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could fully explain the damping and dispersion rates. However, by modelling the hot elec-
tron component using kappa-distribution function, they confirmed the presence of EAWs 
in the laboratory. In Singh and Lakhina (2001) examined the generation of EAWs in the 
magnetosphere using a plasma model with four components. They demonstrated that add-
ing hot electrons to a three-component model reduced the excited wave growth rates and 
frequencies. The study applied the linear theory of EAWs to different regions of the mag-
netosphere and explained the presence of broadband electrostatic noise. In Lakhina et al. 
(2008) studied the nonlinear behavior of electron-acoustic and ion-acoustic waves in space 
plasma with multi-components. They applied the method of Sagdeev pseudopotential and 
identified three different types of solitary waves: ion-acoustic, slow ion-acoustic and elec-
tron-acoustic solitons. This study also discussed the effects of various plasma parameters 
on the amplitude of these solitons and their relevance to observations in the plasma sheet 
boundary layer.

In Han et  al. (2013) investigated the existence and interactions of electron-acoustic 
shock waves with q-nonextensive distributed electrons in a non-Maxwellian plasma. They 
studied the role of collision on the propagation of shock waves, considering various param-
eters like the q non-extensive parameter and the ratio of number density of hot electrons to 
the number density of cold electrons. This study highlighted trajectory changes of shock 
waves with the combined role of dispersion and dissipation. In Han et al. (2014) conducted 
a theoretical inquiry into the nonlinear electron-acoustic shock and solitary waves propaga-
tion in a dissipative, nonplanar space plasma with � distributed hot electrons. They used 
the method of reductive perturbation to derive a modified KdV-Burgers equation for non-
linear waves in this plasma. The study examined the role of different parameters on the 
time evolution of shock wave profiles, nonlinear structures and nonplanar solitary waves 
resulting from the planar solitary wave collision. In Chowdhury et al. (2017) addressed the 
experimental observation of EAW propagation in a laboratory plasma. They overcame the 
challenge of heavy damping by introducing a small amount of drifting cold electrons in 
the Magnetized Plasma Linear Experimental device. This study revealed that the drift of 
electrons relaxes the conditions for wave destabilization and explained the observed phase 
velocity of the EAW. In Ali et al. (2017) studied the behavior of analytical electron acoustic 
solitary waves (EASWs) in the presence of a periodic force. They obtained a solution ana-
lytically for EASWs in the occurrence of a periodic force. The solution helped in exploring 
the role of various parameters on the characteristics of the EASWs. In Bansal et al. (2018) 
investigated obliquely propagating EASWs in a magnetized plasma with cold electrons, 
stationary ions and superthermal hot electrons. Using method of reductive perturbation, 
they derived the KdV-Burgers equation and investigated the variation of shock wave struc-
ture with various plasma parameters such as density of particle, superthermal parameter, 
temperature ratio of electrons, obliqueness, kinetic viscosity and magnetic field strength. 
The study aimed to understand the wave features observed in laboratory or space plasmas. 
In Sarkar et al. (2020) explored the formation of envelope solitons and solitary structures in 
EAWs in the inner magnetosphere plasma with suprathermal ions. Applying the method of 
reductive perturbation, they obtained the KdV equation and investigated the role of density, 
supra-thermality and Mach number on solitary wave structures. The study found that the 
parameters influenced the existence and profile of solitary waves, with higher densities and 
temperatures resulting in sharper profiles. The findings have implications for understanding 
astrophysical phenomena and data obtained from space missions. In Chatterjee and Mandi 
(2023) conducted a study on dust-ion-acoustic waves (DIAWs) in an unmagnetized dusty 
plasma and obtained one-soliton and two-soliton-shocks and other wave features.
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In Abdelwahed et al. (2021) found new mathematical solutions for studying ionosphere 
plasma, with practical implications for fluid dynamics and ionosphere observations. Var-
ious types of wave propagations, including soliton waves, periodic waves, shock waves, 
explosive waves, and explosive-shock waves were successfully derived from the mathemat-
ical framework of the (MKP) equation. In Alharbi et al. (2022) developed a unified solver 
technique for creating new optical structures in stochastic nonlinear Schrödinger equations 
(NLSEs) with practical applications in fiber optics. These structures include various types 
and exhibit stochastic variations in amplitude and frequency due to nonlinear effects, mak-
ing them important for advanced fiber communications. In Abdelwahed et al. (2023) uti-
lized the Wiener process to investigate the (2+1)-dimensional chiral nonlinear Schrödinger 
equation (CNLSE), which relates to fractional Hall effect edge states in quantum physics. 
They applied the sine-Gordon expansion technique (SGET) to derive stochastic solutions, 
revealing various solitary behaviors like bright and dark solitons, periodic envelopes, and 
dissipative waves. These solutions changed significantly with variations in system param-
eters. The stochastic parameter played a key role in affecting damping, growth, and conver-
sion effects, while noise intensity led to notable periodic envelope structures and shock-
forced oscillations. This method holds promise for diverse nonlinear energy equations in 
applied sciences. In Azzam et  al. (2023) studied electrostatic nonlinear Langmuir struc-
tures in dynamic environments like magnetospheres, clouds, and solar wind. They used 
theoretical models with stochastic elements to describe Langmuir waves, showing how 
stochastic factors influenced key behaviors. Their simplified method for obtaining stochas-
tic solutions was crucial for understanding energy generation during the collapse of solar 
Langmuir wave bursts and clouds. This research had implications for studying energy phe-
nomena and seeding in clouds, including electrostatic waves. It also explored the impact of 
noise parameters on solar wind Langmuir waves, relevant for real observations of energy 
processes in clouds. In Abdelwahed et  al. (2023) examined how higher-order nonlinear 
Schrödinger equations (HONLSEs) impact energy and solitary transmission in optical fiber 
communications. They used a unified solver approach, accounting for factors like steep-
ness, higher-order dispersions, and nonlinearity’s self-frequency effects. These HONLSE 
solutions revealed insights into complex wave energy phenomena and applications.

Singh et  al. (2020) in 2020 studied the nonlinear electrostatic waves in a magnetized 
plasma, composed of cold ions and suprathermal �-distributed electrons, were investi-
gated. These waves propagated obliquely to the magnetic field. The researchers examined 
how parameters like initial electric field amplitude, wave Mach number, spectral index, 
propagation angle, and ion drift velocity influenced electric field structures. In Bibi et al. 
(2023) applied the (m + (G�∕G))-expansion technique to find soliton solutions for the 
(3+1)-dimensional fractional modified Zakharov Kuznetsov (mZK) equation, which 
describes magnetic field effects on ion-acoustic waves in plasma. In Alkinidri et al. (2023) 
studied the impact of fluid flow and vibration on subsonic flow acoustics. They focused on 
noise generated by a convective gust interacting with a vibrating plate. Using the Wiener-
Hopf technique, they analyzed how sound waves scatter when encountering a soft finite 
barrier. This research is valuable for understanding how structures interact with fluid flow 
in subsonic environments, with applications in aerospace engineering and noise reduction. 
Dutta et al. (2012), in 2012 investigated finite amplitude electron acoustic waves (EAW) 
in a collisional plasma using a fluid model to describe two-temperature electron species 
within a fixed ion background. They found that wave nonlinearity, dispersion, and dissipa-
tion due to electron-ion collisions, coupled with collective phenomena like plasma current, 
led to the formation of electron acoustic shock waves, as evidenced by both analytical and 
numerical analyses but they did not study the qualitative behavior of the electron-acoustic 
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plasma waves. So, we are interested in this model to study the qualitative behavior of these 
electron-acoustic plasma waves in auroral plasma.

Most of the previous investigations were focused on EAWs focused on the collision-
less regime. But, it is important to take into consideration the role of collisions in different 
plasma environments, both in the space plasma environment and in laboratory experiments. 
For instance, at the altitudes of the auroral ionosphere, collisions cannot be neglected 
(Volosevich and Galperin 1997). Therefore, it is crucial to study the attributes of nonlin-
ear propagation of EAWs in the existence of dissipation caused by electron-ion collisions. 
There is no work on qualitative analysis of EAWs considering the collision between elec-
trons and ions in the considered plasma system to the best of our knowledge. This paper 
explores the behavior of finite amplitude nonlinear EAWs in a plasma where collisions 
occur between electrons and ions. Specifically, we study the characteristics of propaga-
tion of these EAWs in a plasma environment that involves electron-ion collisions. Using 
Burgers equation, one can analyze the propagation, dispersion, and damping properties of 
EAWs in plasma. By solving this equation numerically and analytically, one can examine 
the nonlinear dynamics of the waves, including the formation of shock waves and analyze 
the impact of different plasma parameters on these wave features.

This paper is structured as follows: The plasma model and the basic equations are dis-
cussed in Sect. 2. Section 3 focuses on deriving the Burgers equation, which describes the 
propagation of the nonlinear EAWs. The transformation of the Burgers equation into planar 
dynamical systems is followed by both analytical and numerical solutions in Sect. 4. Sec-
tion 5 is kept for the conclusion of the paper.

2 � Basic equations

The plasma considered here is unbounded, meaning it does not have any specific bounda-
ries or confinements. The plasma is also homogeneous, indicating that its properties and 
characteristics are uniform throughout its volume. Furthermore, the plasma is considered 
to be unmagnetized, implying that magnetic fields do not have a significant influence on 
its behavior. Space plasma often exhibit distribution functions that deviate from the Max-
wellian distribution due to the presence of suprathermal particles with high-energy tails, 
which can be effectively described by the �-distribution (Summers and Thorne 1991; Mace 
and Hellberg 1995). The plasma is composed of two main components: electrons, which 
can be categorized as both hot and cold, and ions, which are stationary. The primary colli-
sions that occur within this plasma system involve interactions between the stationary ions 
and cold electrons. Relative to these EAWs, the hot electrons move so fast that they have 
enough time to conserve the thermodynamics equilibrium and hence with regard to this 
wave with low frequency, we can presume that hot electrons follow Kappa distribution. 
Ghosh (2017), Danehkar et al. (2011) given by

where 𝜅 >
3

2
 and nh , nh0 , e, � and Th are number density of hot electrons, number density of 

hot electrons in equilibrium, magnitude of electric charge, electrostatic potential and tem-
perature of hot electrons respectively.

(1)nh = nh0

[

1 −
1

(� −
3

2
)

e�

Th

]−�+
1

2

,
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In the momentum equation for the cold electrons, the pressure term has been neglected due 
to the significant difference between the hot electron temperature ( Th ) and the cold electron 
temperature ( Tc ) in this plasma system. Usually, in the auroral region, Th ranges from 200 to 
500 electron volts (eV), while Tc ranges from 1 to 10 eV (Singh and Lakhina 2001). The equa-
tion of momentum (Dutta et al. 2012) for the cold electrons is given by

where nc , �c , vc and E are the number density of cold electrons, collision frequency between 
stationary background ions and cold electrons, cold electron fluid velocity and the electric 
field respectively.

The equation of continuity (Dutta et al. 2012) for cold electrons is

also from Maxwell’s equation (Dutta et al. 2012), we have

The majority of the observations revolve around instability in the parallel electric field 
(Evans 1974; Mozer and Kletzig 1998; Pottelette and Berthomier 2009), in the given Eq. 
(5), the balance is achieved between the particle current and the displacement current, 
assuming that the plasma is unmagnetized ( ∇ × B = 0 ). Now using Eqs. (4) and (5) with 
E = −

��

�x
 in Eq. (2), we get

For convenience, we use normalized variables for the above equations to study the dynam-
ics of the EAWs, hence we define t̂ = 𝜔pc

t , x̂ = x

𝜆Dh

 , n̂c =
nc

nc0

 , n̂h =
nh

nh0

 , 𝜙̂ =
e𝜙

Th
 and v̂ = vc

vth
 , 

where �Dh
=

√

Th

4�nh0
e2

   denotes the Debye length of hot electron, �pc
=

√

4�nc0
e2

m
   denotes 

the plasma frequency of cold electrons, vth =
√

Th

m
    denotes the thermal speed of hot 

electron.
Now using these normalized quantities in Eqs. (3),(4) and (6), we get

(2)mnc

(

�

�t
+ vc

�

�x

)

vc = −nceE − mnc�cvc,

(3)
�nc

�t
+

�

�x
(ncvc) = 0,

(4)
�E

�x
=4�e(n0 − nc − nh),

(5)
�E

�t
=4�encvc.

(6)
(

�

�t
+ vc

�

�x

)

vc =
e

m

��

�x
+

�c

4�enc

�

�t

(

��

�x

)

.

(7)
𝜕n̂c

𝜕t̂
+

𝜕

𝜕x
(n̂cv̂c) = 0,

(8)
𝜕
2
𝜙̂

𝜕x̂2
=

[

1 −
𝜙̂

(𝜅 −
3

2
)

]−𝜅+
1

2

+ 𝛼n̂c − 𝛽,
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where � = nc0∕nh0 and � = n0∕nh0.
Equations (7)-(9) represent the normalized basic equations which describe the considered 

plasma model.
For simplicity, hereafter we remove cap from the variables in above equations and work 

with normalized variables.

3 � The Burgers equation

In this segment, we will obtain the Burgers equation for the above considered plasma model 
using the method of reductive perturbation.

Let us consider the following stretching coordinates (Tamang and Saha 2019; Washimi and 
Taniuti 1966; Dwivedi and Pandey 1995; Shukla and Mamun 2001; Mamun 2008; Sarma and 
Dev 2014):

where M denotes the phase velocity of the EAW and � denotes a dimensionless parameter 
that measures the order of the smallness of the perturbations.

Further we write the dependent variables nc , vc and � in the power series expansion of � 
(Saha and Chatterjee 2014a, b; Ali et al. 2017) as:

To incorporate the effects of finite electron-ion collision, assuming that the ratio of the 
electron collision frequency �c to the plasma frequency �pc

 is small but finite. So, we take

Now using Eqs. (10) and (11) in Eqs. (7)-(9), by considering the lowest powers of � , we 
obtain the following relations.

where a =

[

(�−
1

2
)

(�−
3

2
)

]

.

(9)
(

𝜕

𝜕t̂
+ v̂c

𝜕

𝜕x̂

)

v̂c =
𝜕𝜙̂

𝜕x̂
+

𝜈c

𝜔pc
n̂c

𝜕

𝜕t̂

(

𝜕𝜙̂

𝜕x̂

)

,

(10)
{

� = �(x −Mt),

� = �
2t,

(11)
nc = 1 + �nc1 + �

2nc2 +⋯ ,

vc = 0 + �vc1 + �
2vc2 +⋯ ,

� = 0 + ��1 + �
2
�2 +⋯ .

(12)
�c

�pc

= �.

(13)nc1 = −
a

�

�1,

(14)vc1 = −
1

M
�1,

(15)nc1 = −
1

M2
�1,
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Using Eqs. (13)-(15), we get the dispersion relation as

From next higher powers of � , we obtain the following relations

where b =

[

(�+
1

2
)(�−

1

2
)

(�−
3

2
)

]

.

Finally, the Burgers equation for EAWs is obtained from Eqs. (17)-(19) after some 
substitutions in terms of �1 as

where A =

[

−
3

2M
−

bM

2a

]

 and B =

[

�

2
M2

]

.

Equation (20) represents the Burgers equation for the electron-acoustic waves.

4 � Phase plane analysis and nonlinear wave features

We consider the transformation

where U denotes the speed of the wave and �1(�, �) = �(�).
Using transformation (21), we convert the Burgers Eq. (20) into the following 

dynamical system (Strogatz 2015; Saha and Banerjee 2021; Abdikian et al. 2020):

The dynamical system (22) is conservative because if we consider f = (z,
dz

d�
) , then we get 

�.f = 0.
For the equilibrium points of the dynamical system (22), we take

(16)M2 =
�

a
.

(17)−M
�nc2

��

+
�nc1

��

+
�vc2

��

+
�(nc1vc1 )

��

= 0,

(18)�nc2 + b
�
2

1

2
= −a�2,

(19)
�vc1

��

+ vc1

�vc1

��

+ �M
�
2
�1

��
2

=
�

��

(�2 +Mvc2 ),

(20)
��1

��

+ A�1

��1

��

− B
�
2
�1

��
2

= 0,

(21)� = � − U�,

(22)

{

d�

d�
= z,

dz

d�
=

A2

2B2
�

3 −
3UA

2B2
�

2 +
U2

B2
� .

d�

d�
= 0 and

dz

d�
= 0.



Electron‑acoustic anti‑kink, kink and periodic waves in a…

1 3

Page 9 of 18  431

So, the equilibrium points of the dynamical system (22)   are   E0(0, 0) , E1(
2U

A
, 0) and 

E2(
U

A
, 0).

Now Jacobian matrix of the system (22) is given by

where 𝜙̇ =
d𝜙

d𝜂
  and  ż = dz

d𝜂
.

For equilibrium point E0(0, 0) , the eigenvalues are �1 =
U

B
 and �2 = −

U

B
 which are two real 

eigenvalues with opposite signs. So, E0(0, 0) is a saddle point.
Now for equilibrium point E1(

2U

A
, 0) , the eigenvalues are �1 =

U

B
 and �2 = −

U

B
 , which 

are two real eigenvalues with opposite signs, Therefore E1(
2U

A
, 0) is a saddle point.

Now for equilibrium point E2(
U

A
, 0) , the eigenvalues are �1 =

U

B
i and �2 = −

U

B
i , which 

are two complex eigenvalues with real part equal to zero. Therefore, E2(
U

A
, 0) is a center.

In the phase portrait given in Fig. 1, E0 and E1 are saddle points and E2 is a center. Phase 
portrait shows a collection of periodic orbits encircling the the center E2 and two hetero-
clinic orbits (one passing through E0 towards E1 and other passing through E1 towards E0 ). 
Similar phase portraits can be obtained for other values of � , � , � and U. As those phase 
portraits carry the same feature, we ignore them. In the next section, we show nonlinear 
wave features of the plasma system that we have considered.

4.1 � Analytical anti‑kink and kink wave solutions

Now, Hamiltonian function for the dynamical system (22) is given by Saha and Banerjee 
(2021)

J =

[

𝜕𝜙̇

𝜕𝜙

𝜕𝜙̇

𝜕z
𝜕ż

𝜕𝜙

𝜕ż

𝜕z

]

,

or, J =

[

0 1
3A2

2B2
�
2 −

3UA

B2
+

U2

B2
0

]

.

Fig. 1   Phase portrait of the 
dynamical system (22) for the 
parameters � = 2 , � = 0.2 , 
� = 0.1 and U = 0.2
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Hamiltonian function (23) gives the sum of kinetic energy and potential energy, i.e., the 
total energy of the system (22).

Now at (0, 0),   H(0, 0) = 0 = h (say).
So, H(� , z) = h for (0, 0), we have

Using Eq. (24) in the first equation of system (22), we get

The graph for anti-kink and kink waves features and effects of various parameters are 
shown in Figs. 2-6.

We have chosen the values of the parameter based on the environment of the auroral 
region (Dutta et  al. 2012). The Figs.  2-6 show the behavior of anti-kink and kink wave 
features with varying parameter values. From Figs. 2 and 3 we observe that the amplitude 
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Fig. 2   Effect of � (for � ≤ 4 ) on the anti-kink and kink wave features of Eq. (20) for � = 0.2 , � = 0.1 and 
U = 0.2

Fig. 3   Effect of � (for 𝜅 > 4 ) on the anti-kink and kink wave features of Eq. (20) for � = 0.2 , � = 0.1 and 
U = 0.2
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of both anti-kink and kink waves tends to increase as the parameter � increases from 2 to 4. 
However, beyond � value 4, the amplitude starts to decrease. Additionally, from Fig. 4, we 
can observe that increasing the parameter � results in a higher amplitude for both anti-kink 
and kink waves. Furthermore, Fig. 5 illustrates that amplitude of anti-kink and kink waves 
increases as the parameter U increases. Finally, Fig. 6 shows that smoothness of anti-kink 
and kink waves improves with increasing values of the parameter � . The electron-acoustic 
periodic waves correspond to periodic orbits of the dynamical system (22). These waves 
refer to the waves with a repeating pattern that controls their frequency and wavelength.

Fig. 4   Effect of � on the anti-kink and kink wave features of Eq. (20) for � = 2 , � = 0.1 and U = 0.2

Fig. 5   Effect of U on the anti-kink and kink wave features of Eq. (20) for � = 0.2 , � = 0.1 and � = 2

Fig. 6   Effect of U on the anti-kink and kink wave features of Eq. (20) for � = 0.2 , U = 0.2 and � = 2
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4.2 � Periodic wave solutions

Using the Numerical method, the periodic wave solution is obtained. The graph for peri-
odic wave features and effect of various parameters are shown in Figs. 7-11

The Figs.  7-11 provide insights into the behavior of periodic wave features with vary-
ing parameter values. From Figs. 7 and 8 we observe that amplitude as well as width of the 
waves tend to increase as the parameter � increases from 2 to 4. However, beyond � value 4, 

Fig. 7   Effect of � (for � ≤ 4 ) on the Periodic wave feature of the dynamical system (22) for the parameters 
� = 0.2 , � = 0.1 and U = 0.2 with initial condition (−0.02, 0)

Fig. 8   Effect of � (for � ≥ 4 ) on the periodic wave feature of the dynamical system (22) for the parameters 
� = 0.2 , � = 0.1 and U = 0.2 with initial condition (−0.02, 0)
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amplitude starts to decrease while width of the wave increases. Additionally, from Fig. 9, we 
can observe that increasing the parameter � results in a higher amplitude and width of the 
waves. Furthermore, Fig. 10 illustrates that the amplitude of periodic waves increases while 
the width decreases as the value of the parameter U increases. Finally, Fig. 11 shows that the 
amplitude of the periodic waves remains the same but the width increases with increasing 
values of the parameter � . The electron-acoustic anti-kink and kink waves are produced by 
violent changes in the electrostatic potential due to the presence of small but finite effect of the 
ratio of electron collision frequency to the plasma frequency. The Higher is the amplitude of 
the wave, the higher is the energy of the wave.

Fig. 9   Effect of � on the periodic wave feature of the dynamical system (22) for the parameters � = 2 , 
� = 0.1 and U = 0.2 with initial condition (−0.02, 0)

η
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ψ
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-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02
U=0.2 U=0.21 U=0.22

Fig. 10   Effect of U on the periodic wave feature of the dynamical system (22) for the parameters � = 0.2 , 
� = 0.1 and � = 2 with initial condition (−0.02, 0)
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5 � Conclusion

Electron-acoustic waves with two-temperature electrons with a fixed ion background, where 
hot electrons follow kappa distribution have been considered. Applying the method of reduc-
tive perturbation, the Burgers equation has been obtained. Using traveling wave transforma-
tion, the dynamical system has been obtained from the plasma system. Phase plane analysis 
was used to study different kinds of electron-acoustic wave features for the considered plasma 
system. Moreover, periodic wave features and shock wave features (anti-kink and kink) have 
been investigated corresponding to the periodic orbits and heteroclinic orbits obtained in the 
phase portrait. Impact of the superthermal parameter ( � ), speed of the travelling wave (U), 
� = nc0∕nh0 (where nc0 denote the number density of cold electrons in equilibrium and nh0 
denote the number density of hot electrons in equilibrium) and � are shown on the electron-
acoustic periodic and shock waves structures. We have chosen the values of the parameter 
based on the environment of the auroral region (Dutta et al. 2012). So the results of the works 
are helpful to understand nonlinear Electron-acoustic wave features in the auroral region. The 
polar magnetosphere is known to have EAWs (Cattell et  al. 1999), including electrostatic 
shock waves (Mozer et  al. 1977). Observations of these shock waves in the polar magne-
tosphere provide valuable insights into their physics. Therefore, the outcomes of this study 
could be helpful in understanding the dynamics of shock waves specifically in the polar mag-
netosphere. Studying the variations in electric potential that results from the transmission of 
compressional shock waves hold great significance within the auroral plasma region. Previous 
investigations showed that in auroral plasma, the physical mechanism responsible for particle 
acceleration is attributed to the presence of anti-kink and kink wave characteristics (Temerin 
et al. 1982; Ergun et al. 2004; Bostron 1992).

Appendix

Here we have shown some steps for the derivation of the dynamical system (22) from the 
Burgers Eq. (20).

η
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ψ

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02
ν=0.1 ν=0.2 ν=0.3

Fig. 11   Effect of � on the periodic wave feature of the dynamical system (22) for the parameters � = 0.2 , 
U = 0.2 and � = 2 with initial condition (−0.02, 0)
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From equation (21) we get

Now using Eqs. (26)-(28) in the Burgers Eq. (20), we get

Integrating the above Eq. (29) with respect to � , we get

where c1 is an integrating constant.
Using boundary conditions   � → 0 , d�

d�
→ 0 as � → ∞ or � → −∞ , we get   c1 = 0.

Then we have

Now using Eq. (30) in Eq. (29), we get

Now taking d�
d�

= z , we get the dynamical system (22).
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