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Abstract
This article reveals the different types of optical solitons of non-linear coupled Riemann 
wave equation and Wazwaz Kaur Boussinesq equation. We adopted a direct integration 
technique namely, modified 

(
G

′

G2

)
-expansion. Different sorts of soliton’s existence criteria 

are also presented here. The proposed technique provides the new travelling wave solutions 
with the aid of different types of derivatives such as beta derivative, M-Truncated deriva-
tive and Conformable derivative and also offers special kinds of solutions including 
rational, trigonometric and hyperbolic solutions. In this work, we compared and analysed 
solitary wave solutions obtained by using different types of fractional derivatives. The out-
comes of the study are highly significant for modern communication network technology, 
optical fiber, ion-acoustic, magneto-sound waves in plasma, and stationary media, particu-
larly in the propagation of tidal and tsunami waves.
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1  Introduction

Non-linear partial differential equations with fractional components play an important role 
in describing non-linear processes in science and engineering. It is necessary to obtain an 
exact solution of the differential equations in order to recognise the non-linearities. This 
encourages researchers to explore acceptable methods for determining the exact solutions 
of linear and non-linear differential equations. Indeed, there has been a growing interest 
in fractional calculus and partial fractional differential equations (PFDEs) in recent years. 
Fractional calculus extends the traditional concept of differentiation and integration to non-
integer orders, allowing for the analysis of systems and phenomena with memory and long-
range dependencies. Fractional models and fractional differential equations have found 
applications in various fields, including physics, engineering, finance, biology, modeling 
complex systems, control systems, electrochemical processes, viscoelasticity, mechanics 
and vibrations and many others (Wazwaz 2010; Kopçasız et  al. 2022; Yong et  al. 2011; 
Suret et al. 2020; Shakeel et al. 2023a, b; Losseva et al. 2012; Raza et al. 2021; Arshed 
et al. 2022).

Fractional calculus is indeed a generalization of classical calculus that deals with non-
integer orders of differentiation and integration. This generalization provides a powerful 
framework for analyzing and modelling systems and phenomena that exhibit memory, 
long-range dependencies, and non-local behaviors. In fractional calculus, the concept 
of a fractional derivative (or integral) is extended to include non-integer orders, such as 
fractional or even complex orders. This allows for the development of new mathematical 
formulas that are specifically designed to handle fractional differential equations. These 
equations involve fractional derivatives, and they can describe various processes that don’t 
adhere to classical integer-order behaviors. A number of researches have been done in the 
recent past in which the behaviour of PFDEs and their solutions have been found such as, 
soliton solutions to the space-time-fractional telegraph equation (Arefin et al. 2022), time 
fractional Klein–Gordon equation (Sadiya et al. 2022), fractional-order Phi-4 equation and 
Allen–Cahn equation (Zaman et al. 2022), fractional simplified Camassa–Holm equation 
(Khatun et al. 2022), fractional-coupled Burgers equation (Khatun et al. 2022), fractional 
order nonlinear coupled type Boussinesq equation (Zaman et  al. 2023), space-time frac-
tional Camassa–Holm equation (Arefin et  al. 2023) and fractional space-time advection-
dispersion equation (Aljahdaly et al. 2022) etc.

The use of fractional derivatives to describe memory and hereditary properties has found 
numerous applications in various materials and processes, including polymers. Polymers 
are complex materials with intricate molecular structures, and their behaviors often exhibit 
non-local effects, memory, and time-dependent responses that can be effectively described 
using fractional calculus. In the past few years, the researchers have used some derivatives 
that have fractional order such as Atangana beta and conformable derivatives (Qureshi 
et  al. 2021), Caputo fractional derivative (Almeida 2017; Singh et  al. 2023; Abdulazeez 
and Modanli 2023), �-Hilfer fractional derivative (Sousa and De Oliveira 2018), fractional 
Grünwald–Letnikov derivative (Ortigueira and Machado 2015), Riemann–Liouville defi-
nition of fractional derivative (Atangana and Gómez-Aguilar 2018), k-Riemann–Liouville 
derivative (Romero et al. 2013), Modified Riemann–Liouville derivative (Jumarie 2006), 
Atangana–Baleanu derivative (Atangana and Koca 2016) and Caputo–Liouville general-
ized fractional derivative (Sene 2020).

Finding exact solutions for FPDEs is a significant and challenging area of research 
while finding exact solutions to fractional PDEs is often challenging due to their 
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inherent complexity. Various techniques have been proposed to address the challenges 
of solving FPDEs such as modified double sub-equation method (Yépez-Martínez and 
Rezazadeh 2022), generalized new Auxiliary equation approach (Zhang 2007), Modified 
E-Function technique (Attaullah et al. 2022), new generalized exponential rational func-
tion method (Ghanbari and Inc 2018), modified exponential function method (Muhamad 
et al. 2023), (G

�

G
)-expansion technique (Zafar et al. 2023; Bibi et al. 2023), the ( G

�

G2
,
1

G
)

-expansion method (Mamun Miah et  al. 2017), Kurchatov’s method (Ezquerro et  al. 
2013), sine-cosine method (Taşcan and Bekir 2009), the new exponential-expansion 
scheme (Jaradat and Alquran 2022), right-left-moving wave solutions of two non-lin-
ear PDEs (Jaradat et al. 2018), the extended tanh-coth expansion method and the pol-
ynomial-function technique (Alquran et  al. 2021), the modified exponential-expansion 
algorithm (Jaradat and Alquran 2022), Kudryashov expansion method and simplified 
bilinear method (Jaradat and Alquran 2020), modified rational sine-cosine functions 
(Alquran and Jaradat 2023) and the extended transformed rational function technique 
(Jannat et al. 2022) and many more (Khatun et al. 2023, Shakeel et al. (2023c)). These 
methods involve breaking down the original equation into simpler sub-equations or 
modified versions of them, which can then be solved more easily.

Moreover, in the present study, we will use the ( G
�

G2
)-expansion technique (Arshed 

et al. 2018) for the exact optical soliton solution. Additionally, 
(

w

g

)
-expansion technique 

detailed to discuss in the research paper (Wen-An et al. 2009), where w, g are the func-
tions that completely fulfil the requirements of the following equation,

where Λ and �  are the arbitrary constants. The latter technique introduces the generic solu-
tions to Eq. (1.1) and finds the explicit formulas for evaluating the solutions of precise non-
linear evolution problems (NEPs). The extended 

(
w

g

)
-expansion approach (Gepreel 2016) 

is taken to be considered in this investigation, where w, g are the functions that completely 
fulfil the requirements of the following equation

if � ≠ 0 and we take w = (
G�

G
) and g = G , then we have

this change produces numerous new and exact travelling wave solutions to particular NEPs 
with the free parameters �,�  and Λ . To see the research papers (Aljahdaly 2019; Al-Harbi 
et  al. 2023) for the detailed discussion about modified ( G

�

G2
)-expansion technique. This 

method offers exact solutions for a broad array of fractional differential equations. In our 
current study, we apply the modified ( G

�

G2
)-expansion technique, aided by the � -D (Yusuf 

et al. 2019; Atangana and Doungmo Goufo 2014), M-TD (Hussain et al. 2020) and C-D 
(Alharbi et al. 2019) to explore the novel soliton solutions for the NLCRW equation (Ansar 
et al. 2023) and NLWKB equation (Silambarasan and Nisar 2023). In this research work, 
we explored the three fractional order derivatives for the purpose of analysing the effec-
tive solutions of the non-linear coupled Riemann wave equation and Wazwaz Kaur Bouss-
inesq equation. � -D extends the concept of fractional derivatives by introducing param-
eters � and � from the beta function. This derivative allows for greater flexibility compared 

(1.1)gw�
− wg� = Λg2 + �w2,

(1.2)gw�
− wg� = Λw2

+ � g2 + �wg,

(1.3)G��
(Φ) =

ΛG�
(Φ)

2

G(Φ)2
+

2G�
(Φ)

2

G(Φ)
+ �G�

(Φ) + �G(Φ)
2,
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to conventional fractional derivatives like Riemann–Liouville or Caputo derivatives. It’s 
worth noting that the fractional � -D is less commonly used than other definitions. The 
choice of derivative hinges on the specific problem, the modelled behavior, and desired 
solution properties.

Among these techniques, modified ( G
�

G2
)-expansion technique (Al-Harbi et al. 2023) has 

gained attention for its ability to construct exact solutions for time-fractional and space-
time fractional differential equations. This method aims to provide analytical solutions 
for a wide range of fractional differential equations. In this research work, we explore the 
new fractional solutions for the NLCRW equation by utilizing the modified ( G

�

G2
)-expansion 

technique, with the help of �-D. The fractional beta derivative generalizes the concept of 
fractional derivatives by introducing the beta function parameters � and � . It allows for dif-
ferentiation with fractional orders that can be more flexible and versatile than traditional 
fractional derivatives. However, it’s important to note that the fractional beta derivative is 
not as commonly studied or utilized as some other fractional derivative definitions.

In this work, the researchers find the optical soliton solutions for two nonlinear models, 
namely Wazwaz Kaur Boussinesq equation (Ansar et al. 2023) and coupled Riemann wave 
equation (Silambarasan and Nisar 2023) by utilizing the modified ( G

�

G2
)-expansion technique 

(Al-Harbi et  al. 2023) with the help of Conformable, M-truncated and beta derivatives. 
These nonlinear equations have applications in modern communication network technol-
ogy, optical fiber, ion-acoustic, and magneto-sound waves in plasma, homogeneous, and 
stationary media, particularly in the propagation of tidal and tsunami waves. The proposed 
scheme gives five different types of solutions such as M-shaped soliton, W-shaped soliton, 
bright soliton and dark soliton solutions etc.

We divided the present study into six different sections. Section 2 provides definitions 
for beta, conformable, and M-truncated derivatives. Section 3 covers the general steps of 
the proposed scheme, while Sect. 4 covers its applications, graphical discussion and graph-
finding using Mathematica are presented in Sect. 5. The conclusion is presented in the last 
Sect. 6.

2 � Preliminaries

This section provides a compilation of derivative definitions and their fundamental 
attributes.

2.1 � Beta derivative

Definition  Let x ∈ ℝ, t ≥ 0 and u ∶ [x,∞) → ℝ be a continuous function. Then �-deriva-
tive of order � is defined as (Ansar et al. 2023)

where Γ is gamma function defined as: Γ(�) = ∫ ∞

0
t�−1e−tdt

D�u(t) = lim
�→0

u(t + �(t +
1

Γ(�)
)
1−�

) − u(t)

�
, where � ∈ (0, 1]
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Properties of Beta derivative: let �(t) and �(t) be differentiable functions of order � such 
that 0 < 𝛽 ≤ 1 and t ≥ 0 , then 

1.	 D�
(a�(t) + b�(t)) = aD�

(�(t)) + bD�
(�(t)),∀a, b ∈ ℝ.

2.	 D�
(�(t)�(t)) = �(t)D�

(�(t)) + �(t)D�
(�(t)).

3.	 D�
(
�(t)

�(t)
) =

�(t)D�
(�(t))−�(t)D�

(�(t))

�(t)2
.

4.	 D�
(c) = 0 , for any constant c.

5.	 Considering � = (t +
1

Γ(�)
)
1−��, � → 0 when � → 0 , therefore we get 

 with � =
c

�
(t +

1

Γ(�)
)
� , where c is arbitrary constant. The research (Khalil et al. 2014) 

provided the proofs of the above-mentioned properties of �-derivative.

2.2 � M‑Truncated derivative

The M-TD for u ∶ [x,∞) → ℝ of order � ∈ (0, 1] is defined as (Hussain et al. 2020)

for t > 0 and kE𝜒 (⋅),𝜒 > 0 , where kE� (⋅) is truncated Mittag–Leffler function (Sousa and 
de Oliveira 2017) with one parameter is defined as follows:

Theorem 1  Let 𝛽 ∈ (0, 1],𝜒 > 0, a, b ∈ ℝ and G, H are differentiable functions of order � . 

1.	 D
�

M,�
(aG(�) + bH(�)) = aD

�

M,�
(G(�)) + bD

�

M,�
(H(�)),∀a, b ∈ ℝ.

2.	 D
�

M,�
(G(�)H(�)) = G(�)D

�

M,�
(H(�)) + H(�)D

�

M,�
(G(�)).

3.	 D
�

M,�
(
G(�)

H(�)
) =

G(�)D
�

M,�
(H(�))−H(�)D

�

M,�
(G(�))

H(�)2
.

4.	 D
�

M,�
(c) = 0 , for any constant c.

5.	 D
�

M,�
G(�) =

�1−�

Γ(�+1)

dG

d�
.

2.3 � Conformable derivative

Suppose u ∶ [x,∞) → ℝ be a function then the Conformable derivative (C-D) for the func-
tion u[t] of order � , defined as D�

C,t
u(t) = lim�→0

u(t+�(t)1−� )−u(t)

�
 , for t > 0 and � ∈ (0, 1] . 

Additionally, the properties and theorems associated with C-D are thoroughly addressed in 
the work of reference (Shahen et al. 2020).

D�
(�(t)) =

(
t +

1

Γ(�)

)1−�
d�(t)

dt
,

D
�

M,t
u(t) = lim

�→0

u(t +k E� (�t
−�
)) − u(t)

�
,

kE� (t) =

k∑
i=0

ti

Γ(� i + 1)
.
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Theorem 2  Let � ∈ (0, 1],�, � ∈ ℝ and u, v are differentiable functions of order � at t > 0 . 

1.	 D
�

C,�
(�u(�) + �v(�)) = �D

�

C,�
(u(�)) + �D

�

C,�
(v(�)),∀�, b ∈ ℝ.

2.	 D
�

C,�
(u(�)v(�)) = u(�)D

�

C,�
(v(�)) + v(�)D

�

C,�
(u(�)).

3.	 D
�

C,�
(
u(�)

v(�)
) =

u(�)D
�

C,�
(v(�))−v(�)D

�

C,�
(u(�))

v(�)2
.

4.	 D
�

C,�
(c) = 0 , for any constant c.

5.	 D
�

C,�
u(�) = �1−� du

d�
.

3 � The strategy of scheme

In this section, we describe the general steps of the modified 
(

G′

G2

)
-expansion scheme:

Let’s assume the following travelling wave equation in the form of PDE as

where Q = Q(x, y, t) . Let us assume the below given propagational waves transformation

putting the Eq. (3.2) into Eq. (3.1), then we get the non-linear ODE such as

Where the superscript ′ is derivative w.r.t Φ and we assume the solution of Eq. (3.3) can be 
demonstrate in generalized form as follows:

where G = G(Φ) and satisfy the equation

where Λ,�  and � are the arbitrary constants. Now we find the positive value of N (where 
N is the balance number), the value of the highest order linear term and the highest order 
non-linear term present in the Eq. (3.3). By equating the highest order of both linear term 
and non-linear term involved in the equation. If n is the order of Q(Φ) and DQ(Φ) , then the 
degree of the other expression is given below.

(3.1)F(Q,Qt,Qx,Qy,Qtt,Qxx,Qyy,Qxt …) = 0,

(3.2)Q = Q(Φ),Φ = Φ(x, y, t),

(3.3)F(Q,Q�,Q��,Q���, ...) = 0.

(3.4)Q(Φ) = a0 +

N∑
n=1

[
an

(
G�

G2

)n

+ bn

(
G�

G2

)−n]
,

(3.5)G��
(Φ) =

ΛG�
(Φ)

2

G(Φ)2
+

2G�
(Φ)

2

G(Φ)
+ �G�

(Φ) + �G(Φ)
2,

(3.6)D

[
dgQ(Φ)

dΦg

]
= g + n,D

[
Qg

(
dhQ(Φ)

dΦh

)k
]
= k(h + n) + ng,
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we find all the values of derivatives of the Eq.  (3.4) by using Eq.  (3.5) according to the 

given ODE as in Eq. (3.3). Then collect all terms involving 
(

G′

G2

)j

 , where (j = 0, 1, 2,… , n) 

and setting all the coefficients of 
(

G′

G2

)j

 equal to zero. As a result, we get a system of alge-
braic equations. By using these equations, we find the values of unknown constants by 
using the Mathematica tool.

The general solution of the Eq. (3.5) has three cases such as:

Case:1 If Λ𝜐 > 0 and � = 0 , then we have

where �1,�2 be arbitrary constants.

Case:2 If Λ𝜐 < 0 and � = 0 , then we have

Case:3 If Λ ≠ 0, � = � = 0 , then we have

Case:4 If � ≠ 0,Δ ≥ 0 , then we have

where Δ = � 2
− 4Λ�.

Case:5 If 𝛶 ≠ 0,Δ < 0 , then we have

(3.7)
G�

(Φ)

G(Φ)2
=

√
Λ�

�
�1 cos

�
Φ

√
Λ�

�
+ �2 sin

�
Φ

√
Λ�

��

�

�
�2 cos

�
Φ

√
Λ�

�
− �1 sin

�
Φ

√
Λ�

�� ,

(3.8)
G�

(Φ)

G(Φ)2
= −

√�Λ��
�
�1 sinh

�
2Φ

√�Λ��
�
+ �1 cosh

�
2Φ

√�Λ��
�
+ �2

�

�

�
�1 sinh

�
2Φ

√�Λ��
�
+ �1 cosh

�
2Φ

√�Λ��
�
− �2

� ,

(3.9)
G�

(Φ)

G(Φ)2
= −

�1

Λ(�1Φ + �2)
,

(3.10)
G�

(Φ)

G(Φ)2
= −

�

2Λ
−

√
Δ

�
�1 cosh

�√
Δ

2Φ

�
+ �2 sinh

�√
Δ

2Φ

��

2Λ
�
�1 sinh

�√
Δ

2Φ

�
+ �2 cosh

�√
Δ

2Φ

�� ,

(3.11)
G�

(Φ)

G(Φ)2
= −

�

2Λ
−

√
−Δ

�
�1 cos

�√
−Δ

2Φ

�
− �2 sin

�√
−Δ

2Φ

��

2Λ
�
�2 cos

�√
−Δ

2Φ

�
+ �1 sin

�√
−Δ

2Φ

�� ,
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4 � Applications of modified 
(

G′

G2

)
‑expansion scheme

4.1 � Coupled Riemann wave equation

Consider the ( 2 + 1)-dimensional non-linear CRW equation (Ansar et al. 2023) of the form

where p, q and r are the nonzero parameters. This model can be expressed in the sense of �
-derivative such as

Here p, q and r are also the nonzero parameters that discuss the interaction between a long 
wave propagation and a Riemann wave. Where D�

�,t
 is � -D of U(x, y, t) and the term � shows 

the fractional parameter and 0 < 𝜅 ≤ 1.
In M-TD, the suggested model has the following structure.

where D�
M,t

 is M-TD with � is fractional order.
In C-D, the suggested model has the following structure.

where D�
C,t

 is C-D with � is conformable operator.
Consider the wave transformation and there are three different definitions for the travel-

ling wave parameter �.
In �-D, � takes on the following form

where �, � and � ≠ 0.
In M-TD, � takes on the following form

in C-D, � takes on the following form

convert the Eqs.  (4.2),  (4.3) and  (4.4) into ODE by using the wave transforma-
tion (4.5), (4.6) and (4.7) and we have

using the zero integration by the second equation of (4.8), we obtain

(4.1)Ut + pUxxy + qUEx + rEUx = 0,Ex = Uy,

(4.2)D�
�,t
Ut + pUxxy + qUEx + rEUx = 0,Ex = Uy,

(4.3)D�
M,t

Ut + pUxxy + qUEx + rEUx = 0,Ex = Uy,

(4.4)D�
C,t
Ut + pUxxy + qUEx + rEUx = 0,Ex = Uy,

(4.5)
U(x, y, t) = U(� ), � = �x + �y −

�

(
t +

1

Γ(�)

)�

�
,

(4.6)U(x, y, t) = U(� ), � = �x + �y − �
Γ(� + 1)

�
t� ,

(4.7)U(x, y, t) = U(� ), � = �x + �y −
�

�
t� ,

(4.8)p�2�U���
+ q�UE�

+ r�EU�
− �U�

= 0, �U�
= �E�,
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after integration, we substitute the Eq. (4.9) into the 1st Eq. of (4.8) and we have

where U��
=

d2U

d�2
 . Applying the balancing method, balancing the highest linear and non-lin-

ear terms of Eq. (4.10) and we get the balance number is N = 2 . By using the balance num-
ber, we can express the Eq. (3.4) as

where G = G(� ) , and a0, a1, a2, b1, b2 are the unknown constants whose values we want to 
find. We substitute the Eq. (4.11) with the aid of Eq. (3.5) into the Eq. (3.10) and after sub-

stitution, we have collected all such coefficients like power as 
(

G�

G2

)j

, (j = 0,±1,±2,±3,…) . 
Due to this, we attain with the help of Mathematica an algebraic system of equations such 
as

we solve the equations of an algebraic system (4.12) and we get the following outcomes
Set:1

we putting the above values of unknown constants in the Eq.  (4.11) and have different 
types of solutions mentioned in (3.7), (3.8), (3.9), (3.10) and (3.11).

(4.9)E =
�U

�
,

(4.10)2�2p�U��
+ �(q + r)U2

− 2�U = 0,

(4.11)U(� ) = a0 + a1

(
G�

G2

)
+ a2

(
G�

G2

)2

+ b1

(
G�

G2

)−1

+ b2

(
G�

G2

)−2

,

(4.12)

2a1b1q� + 2a1b1r� − 2a0� + 4a2�
2p��2 + 2a1�

2p��� + a2
0
q� + a2

0
r� + 2b1Λ�

2p��

2a2b2q� + 2a2b2r� + +4b2Λ
2�2p� = 0,

4b1�
2p��2 + 20b2�

2p��� + 2b1b2q� + 2b1b2r� = 0,

2a0b2q� + 2a0b2r� − 2b2� + 16b2Λ�
2p�� + 6b1�

2p���

+ 8b2�
2p�� 2

+ b2
1
q� + b2

1
r� = 0,

2a0b1q� + 2a1b2q� + 2a0b1r� + 2a1b2r� − 2b1� + 4b1Λ�
2p��

+ 12b2Λ�
2p�� + 2b1�

2p�� 2
= 0,

2a2b1q� + 2a2b1r� − 2a1� + 4a1Λ�
2p�� + 12a2�

2p���

+ 2a1�
2p�� 2

+ 2a0a1q� + 2a0a1r� = 0,

− 2a2� + 16a2Λ�
2p�� + 6a1Λ�

2p�� + 8a2�
2p�� 2

+ a2
1
q�

+ 2a0a2q� + a2
1
r� + 2a0a2r� = 0,

4a1Λ
2�2p� + 20a2Λ�

2p�� + 2a1a2q� + 2a1a2r� = 0,

12b2�
2p��2 + b2

2
q� + b2

2
r� = 0,

12a2Λ
2�2p� + a2

2
q� + a2

2
r� = 0,

a0 = −
12Λ�2p�

q + r
, a1 = −

12Λ�2p�

q + r
, a2 = −

12Λ2�2p

q + r
, b1 = b2 = 0,

� = �2p�� 2
− 4Λ�2p��,
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Case:1 if Λ𝜐 > 0 and � = 0 , then we have trigonometric solution as

where � = �x + �y −
�

(
t+

1

Γ(�)

)�

�
 , � = �x + �y − �

Γ(�+1)

�
t� and � = �x + �y −

�

�
t�.

Case:2 if Λ𝜐 < 0 and � = 0 , then we get hyperbolic function as

Case:3 if Λ ≠ 0, � = � = 0 , then we attain rational function as

Case:4 if � ≠ 0,Δ ≥ 0 , where Δ = � 2
− 4Λ� then we attain

Case:5 if 𝛶 ≠ 0,Δ < 0 , then we have

(4.13)

U1a(� ) = −
12Λ�2p�

q + r
−

12Λ�2p�

q + r

⎛
⎜⎜⎜⎝

√
Λ�

�
�2 sin

�
�
√
Λ�

�
+ �1 cos

�
�
√
Λ�

��

�

�
�2 cos

�
�
√
Λ�

�
− �1 sin

�
�
√
Λ�

��
⎞
⎟⎟⎟⎠

−
12Λ2�2p

q + r

⎛
⎜⎜⎜⎝

√
Λ�

�
�2 sin

�
�
√
Λ�

�
+ �1 cos

�
�
√
Λ�

��

�

�
�2 cos

�
�
√
Λ�

�
− �1 sin

�
�
√
Λ�

��
⎞
⎟⎟⎟⎠

2

,

(4.14)

U1b(� ) = −
12Λ�2p�

q + r
−

12Λ�2p�

q + r

×

⎛
⎜⎜⎜⎝

−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+ �1 cosh

�
2�

√�Λ��
�
+ �2

�

�

�
�1 sinh

�
2�

√�Λ��
�
+ �1 cosh

�
2�

√�Λ��
�
− �2

�
⎞⎟⎟⎟⎠

−
12Λ2�2p

q + r

⎛⎜⎜⎜⎝
−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+ �1 cosh

�
2�

√�Λ��
�
+ �2

�

�

�
�1 sinh

�
2�

√�Λ��
�
+ �1 cosh

�
2�

√�Λ��
�
− �2

�
⎞⎟⎟⎟⎠

2

,

(4.15)

U1c(� ) = −
12Λ�2p�

q + r
−

(
−�1

)(
12Λ�2p�

)

(q + r)
(
Λ

(
��1 + �2

)) −

(
−

�1

Λ(��1+�2)

)
2
(
12Λ2�2p

)

q + r
,

(4.16)
U1d(� ) = −

12Λ�2p�

q + r
−

�
12Λ�2p�

��
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+�1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+�2 cosh

�√
Δ

2�

�� −
�

2Λ

�

q + r

−

�
12Λ2�2p

��
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+�1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+�2 cosh

�√
Δ

2�

�� −
�

2Λ

�2

q + r
,
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Set:2

we put the above solutions of unknown constants in the Eq. (4.11).
Case:1 if Λ𝜐 > 0 and � = 0 , then we have

Case:2 if Λ𝜐 < 0 and � = 0 , then we get

Case:3 if Λ ≠ 0, � = � = 0 , then we attain rational function as

(4.17)

U1e(� ) = −
12Λ�2p�

q + r
−

�
12Λ�2p�

��
−

√
−Δ

�
�1 cos

�√
−Δ

2�

�
−�2 sin

�√
−Δ

2�

��

2Λ
�
�1 sin

�√
−Δ

2�

�
+�2 cos

�√
−Δ

2�

�� −
�

2Λ

�

q + r

−

�
12Λ2�2p

��
−

√
−Δ

�
�1 cos

�√
−Δ

2�

�
−�2 sin

�√
−Δ

2�

��

2Λ
�
�1 sin

�√
−Δ

2�

�
+�2 cos

�√
−Δ

2�

�� −
�

2Λ

�2

q + r
,

a0 = −

2�2p
(
2Λ� + � 2

)
q + r

, a1 = a2 = 0, b1 = −
12�2p��

q + r
, b2 = −

12�2p�2

q + r
,

� = �2p�
(
4Λ� − � 2

)
,

(4.18)

U2a(� ) = −

2�2p
�
2Λ� + � 2

�
q + r

−

�
12�2p��

��√
Λ�

�
�2 sin

�
�
√
Λ�

�
+�1 cos

�
�
√
Λ�

��

�

�
�2 cos

�
�
√
Λ�

�
−�1 sin

�
�
√
Λ�

��
�−1

q + r

−

�
12�2p�2

��√
Λ�

�
�2 sin

�
�
√
Λ�

�
+�1 cos

�
�
√
Λ�

��

�

�
�2 cos

�
�
√
Λ�

�
−�1 sin

�
�
√
Λ�

��
�−2

q + r
,

(4.19)

U2b(� ) = −

2�2p
�
2Λ� + � 2

�
q + r

−

�
12�2p��

��
−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
+�2

�

�

�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
−�2

�
�−1

q + r

−

�
12�2p�2

��
−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
+�2

�

�

�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
−�2

�
�−2

q + r
,
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Case:4 if � ≠ 0,Δ ≥ 0 , where Δ = � 2
− 4Λ� then we ascertain

Case:5 if 𝛶 ≠ 0,Δ < 0 , then we have

4.2 � Wazwaz Kaur Boussinesq equation

Consider the ( 2 + 1)-dimensional non-linear WKB equation (Silambarasan and Nisar 
2023) of the form

here, � = �(x, y, t) and �i, i = 1, 2, 3 are the nonzero constants. This non-linear model can 
be expressed as in the sense of �-derivative such as

where D�
�,t

 is � -D of �(y, z, t) and the term � shows the fractional parameter and 0 < 𝜅 ≤ 1.
In M-TD, the suggested model has the following structure.

(4.20)
U2c(� ) = −

2�2p
(
2Λ� + � 2

)
q + r

−

(
−

�1

Λ(��1+�2)

)−1(
12�2p��

)

q + r

−

(
−

�1

Λ(��1+�2)

)−2(
12�2p�2

)

q + r
,

(4.21)

U2d(� ) = −

2�2p
�
2Λ� + � 2

�
q + r

−

�
12�2p��

��
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+�1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+�2 cosh

�√
Δ

2�

�� −
�

2Λ

�−1

q + r

−

�
12�2p�2

��
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+�1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+�2 cosh

�√
Δ

2�

�� −
�

2Λ

�−2

q + r
,

(4.22)

U2e(� ) = −

2�2p
�
2Λ� + � 2

�
q + r

−

�
12�2p��

��
−

√
−Δ

�
�1 cos

�√
−Δ

2�

�
−�2 sin

�√
−Δ

2�

��

2Λ
�
�1 sin

�√
−Δ

2�

�
+�2 cos

�√
−Δ

2�

�� −
�

2Λ

�−1

q + r

−

�
12�2p�2

��
−

√
−Δ

�
�1 cos

�√
−Δ

2�

�
−�2 sin

�√
−Δ

2�

��

2Λ
�
�1 sin

�√
−Δ

2�

�
+�2 cos

�√
−Δ

2�

�� −
�

2Λ

�−2

q + r
,

(4.23)�tt + �3�ty − �1�
2
xx
− �xx − �2�xxxx +

1

4
�2
3
�yy = 0,

(4.24)D�
�,t
�tt + �3D

�
�,t
�ty − �1�

2
xx
− �xx − �2�xxxx +

1

4
�2
3
�yy = 0,
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where D�
M,t

 is M-TD with � is fractional order.
In C-D, the suggested model has the following structure.

where D�
C,t

 is C-D with � is conformable operator.
Consider the wave transformation �(x, y, t) = �(�) and � = u(x + y + �t) , where u is 

represent the wave number and � represent the frequency. There are three different types of 
definitions for the travelling wave parameter �.

In �-D, � takes on the following form

In M-TD, � takes on the following form

In C-D, � takes on the following form

Convert the PDE’s represents in Eq. (4.24), (4.25) and (4.26) into ODE by using the wave 
transformations showed in (4.27), (4.28) and (4.29) and we get

here, Eq. (4.30) is integrable and also integrates twice with respect to � and taking integra-
tion constant equal to zero and we attain the ODE such as

in Eq. (4.31), compare the highest linear term and non-linear term according to the balanc-
ing principle and we get balance number N = 2 . Initially, we assume the solution of the 
Eq. (4.31) by using Eq. (3.4) as

where G = G(�) , and a0, a1, a2, b1, b2 are the unknown constants whose values we want to 
find. According to the Eq. (4.31), we substitute the Eq. (4.32) with the help of Eq. (3.5) 
into the Eq. (4.31). After substitution, we have collected all such coefficients like power as (
G�

G2

)i

, (i = 0,±1,±2,±3,…) . Due to this process, we attain an algebraic system of equa-

(4.25)D�
M,t

�tt + �3D
�
M,t

�ty − �1�
2
xx
− �xx − �2�xxxx +

1

4
�2
3
�yy = 0,

(4.26)D�
C,t
�tt + �3D

�
C,t
�ty − �1�

2
xx
− �xx − �2�xxxx +

1

4
�2
3
�yy = 0,

(4.27)�(x, y, t) = �(�),� = u

⎛⎜⎜⎜⎝
x + y +

�

�
t +

1

Γ(�)

��

�

⎞⎟⎟⎟⎠
.

(4.28)�(x, y, t) = �(�),� = u

(
x + y + �

Γ(� + 1)

�
t�
)
.

(4.29)�(x, y, t) = �(�),� = u

(
x + y +

�

�
t�
)
.

(4.30)−4u2�2�
(4)

+

(
4�2 − 4��3 + �2

3
− 4

)
�(2) − 8�1

(
��(2) +

(
�(1)

)2)
= 0,

(4.31)−4u2�2�
(2)

− 4�1�
2
+

(
4�2 − 4��3 + �2

3
− 4

)
� = 0,

(4.32)

�(�) = a0 + a1

(
G�

(�)

G(�)2

)
+ a2

(
G�

(�)

G(�)2

)2

+ b1

(
G�

(�)

G(�)2

)−1

+ b2

(
G�

(�)

G(�)2

)−2

,
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tions and by solving this system of equations by using Mathematica software, we get the 
following outcomes

Set:1

we putting the values of unknown constants in the Eq. (4.32), that are included in (Set:1) 
and the term 

(
G′

G2

)
 involved in Eq. (4.32) have different types of solutions represents in Eqs

. (3.7), (3.8), (3.9), (3.10) and (3.11), then we have
Case:1 if Λ𝜐 > 0 and � = 0 , then we have trigonometric solution as

where � = u

(
x + y +

�

(
t+

1

Γ(�)

)�

�

)
,� = u

(
x + y + �

Γ(�+1)

�
t�
)
 and � = u

(
x + y +

�

�
t�
)
.

Case:2 if Λ𝜐 < 0 and � = 0 , then we get hyperbolic function as

Case:3 if Λ ≠ 0, � = � = 0 , then we ascertain rational function as

a0 = −

u2�2
(
2Λ� + � 2

)
�1

, a1 = a2 = 0, b1 = −

6u2��2�

�1
,

� =
1

2

(
�3 − 2

√
4Λ�u2�2 + u2�2

(
−� 2

)
+ 1

)
,

b2 = −

6u2�2�2
�1

,

(4.33)

�1a(�) = −

u2�2
�
2Λ� + � 2

�
�1

−

�
6u2��2�

��√
Λ�

�
�2 sin

�
�
√
Λ�

�
+�1 cos

�
�
√
Λ�

��

�

�
�2 cos

�
�
√
Λ�

�
−�1 sin

�
�
√
Λ�

��
�−1

�1

−

�
6u2�2�2

��√
Λ�

�
�2 sin

�
�
√
Λ�

�
+�1 cos

�
�
√
Λ�

��

�

�
�2 cos

�
�
√
Λ�

�
−�1 sin

�
�
√
Λ�

��
�−2

�1
,

(4.34)

�1b(�) = −

u2�2
�
2Λ� + � 2

�
�1

−

�
6u2��2�

��
−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
+�2

�

�

�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
−�2

�
�−1

�1

−

�
6u2�2�2

��
−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
+�2

�

�

�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
−�2

�
�−2

�1
,
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Case:4 if � ≠ 0,Δ ≥ 0 , where Δ = � 2
− 4Λ� then we get

Case:5 if 𝛶 ≠ 0,Δ < 0 , then we have

Set:2

we putting the values of unknown constants in the Eq. (4.32), that are included in (Set:2) 
and we get

Case:1 if Λ𝜐 > 0 and � = 0 , then we have

(4.35)
�1c(�) = −

u2�2
(
2Λ� + � 2

)
�1

−

(
−

�1

Λ(��1+�2)

)−1(
6u2��2�

)

�1

−

(
−

�1

Λ(��1+�2)

)−2(
6u2�2�2

)

�1
,

(4.36)

�1d(�) = −

u2�2
�
2Λ� + � 2

�
�1

−

�
6u2��2�

��
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+�1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+�2 cosh

�√
Δ

2�

�� −
�

2Λ

�−1

�1

−

�
6u2�2�2

��
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+�1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+�2 cosh

�√
Δ

2�

�� −
�

2Λ

�−2

�1
,

(4.37)

�1e(�) = −

u2�2
�
2Λ� + � 2

�
�1

−

�
6u2��2�

��
−

√
−Δ

�
�1 cos

�√
−Δ

2�

�
−�2 sin

�√
−Δ

2�

��

2Λ
�
�1 sin

�√
−Δ

2�

�
+�2 cos

�√
−Δ

2�

�� −
�

2Λ

�−1

�1

−

�
6u2�2�2

��
−

√
−Δ

�
�1 cos

�√
−Δ

2�

�
−�2 sin

�√
−Δ

2�

��

2Λ
�
�1 sin

�√
−Δ

2�

�
+�2 cos

�√
−Δ

2�

�� −
�

2Λ

�−2

�1
,

a0 = −

u2�2
(
2Λ� + � 2

)
�1

, a1 = −

6Λu2�2�

�1
, a2 = −

6Λ2u2�2
�1

,

� =
1

2

(
2

√
4Λ�u2�2 + u2�2

(
−� 2

)
+ 1 + �3

)
,

b1 = b2 = 0,
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Case:2 if Λ𝜐 < 0 and � = 0 , then we get hyperbolic function as

Case:3 if Λ ≠ 0, � = � = 0 , then we ascertain rational function as

Case:4 if � ≠ 0,Δ ≥ 0 , then we get

Case:5 if 𝛶 ≠ 0,Δ < 0 , then we have

(4.38)

�2a(�) = −

u2�2
�
2Λ� + � 2

�
�1

−

�
6Λu2�2�

��√
Λ�

�
�2 sin

�
�
√
Λ�

�
+ �1 cos

�
�
√
Λ�

���

�1
�
�

�
�2 cos

�
�
√
Λ�

�
− �1 sin

�
�
√
Λ�

���

−

�
6Λ2u2�2

��√
Λ�

�
�2 sin

�
�
√
Λ�

�
+�1 cos

�
�
√
Λ�

��

�

�
�2 cos

�
�
√
Λ�

�
−�1 sin

�
�
√
Λ�

��
�2

�1
,

(4.39)

�2b(�) = −

u2�2
�
2Λ� + � 2

�
�1

−

�
6Λu2�2�

��
−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+ �1 cosh

�
2�

√�Λ��
�
+ �2

��

�1
�
�

�
�1 sinh

�
2�

√�Λ��
�
+ �1 cosh

�
2�

√�Λ��
�
− �2

��

−

�
6Λ2u2�2

��
−

√�Λ��
�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
+�2

�

�

�
�1 sinh

�
2�

√�Λ��
�
+�1 cosh

�
2�

√�Λ��
�
−�2

�
�2

�1
,

(4.40)

�2c(�) = −

u2�2
(
2Λ� + � 2

)
�1

−

�1

(
6Λu2�2�

)

�1
(
Λ

(
��1 + �2

)) −

(
−

�1

Λ(��1+�2)

)2(
6Λ2u2�2

)

�1
,

(4.41)

�2d(�) = −

u2�2
�
2Λ� + � 2

�
�1

−

6Λu2�2�

�1

⎛⎜⎜⎜⎝
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+ �1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+ �2 cosh

�√
Δ

2�

�� −
�

2Λ

⎞⎟⎟⎟⎠

−

�
6Λ2u2�2

��
−

√
Δ

�
�2 sinh

�√
Δ

2�

�
+�1 cosh

�√
Δ

2�

��

2Λ
�
�1 sinh

�√
Δ

2�

�
+�2 cosh

�√
Δ

2�

�� −
�

2Λ

�2

�1
,



A comparative study of two fractional nonlinear optical model…

1 3

Page 17 of 22  259
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Fig. 1   The 2-D and 3-D W-type wave representation of U
2b for the specific values of 

p = 0.6, � = 0.2,� = 0.4,Λ = −1.2, � = 1,�
1
= 1,� = 0,�

2
= 3, q = 0.3, r = 0.2 . a � -D with fractional 

order is 0.6, b M-TD with fractional order is 0.6 and � = 1.3 , c C-D with fractional order is 0.6

Fig. 2   The 2-D and 3-D dark type wave form representation of �
1b for the specific values of 

u = 0.9,�
1
= 0.2,�

2
= 0.5,�

3
= 0.1,Λ = 0.1, � = −1.5,� = 0,�

1
= 2,�

2
= 1 . a � -D with fractional order 

is 0.7, b M-TD with fractional order is 0.7 and � = 1.5 , c C-D with fractional order is 0.7
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5 � Graphical results and discussion

In this research, some fractional derivative operators were used to solve the non-linear cou-
pled Riemann wave equation and Wazwaz Kaur Boussinesq equation. The solutions were 
attained by employing the reliable integration technique known as modified ( G

�

G2
)-expansion 

with the aid of conformable, Beta and M-truncated derivative operators. The results of this 
method’s multiple solutions generation are contrasted in 2D and 3D graphs for three differ-
ent derivative operators. This method provides the different types of optical solitary wave 
solutions including dark soliton, bright soliton, dark-bright soliton, and W-shaped soliton 
solutions. C-D and the fractional derivatives, such as � -D and M-TD, can be compared 
perfectly using 2-dimensional graphs, which is quite useful. We observe that the solitary 
waves tiny shifts when the change fractional derivative operator is without changing the 
shape of the curve. This demonstrates that their travelling wave solutions are symmetric. A 
single solution can lead to the production of multiple types of solutions if the parameters 
take on various specific values. The modified ( G

�

G2
)-expansion technique was used to obtain 

the soliton solutions. They provide a visual representation of the spatial and temporal 
behaviour of solitary waves. The analytical solution’s graphs make it abundantly evident 
that the modified ( G

�

G2
)-expansion method is more reliable and effective (Figs. 1, 2 and 3).

6 � Conclusion

Modified ( G
�

G2
)-expansion technique has been successfully applied to construct new trave-

ling optical wave solutions for the non-linear CRW equation and NLWKB equation. The 
ability to find new solutions using this technique can provide valuable insights into the 
behavior of non-linear problems described by fractional differential equations. We con-
struct new solitary wave solutions such as dark, dark-bright and W-type soliton solutions 
with the help of C-D, � -D and M-TD. In this work, the fractional derivatives are success-
fully compared and analysed. This demonstrates the effectiveness and reliability of C-D 
and the fractional derivatives such as � -D and M-TD, but the � derivative works better than 

Fig. 3   The 2-D and 3-D dark-bright type wave form of �
2d for the specific values of 

u = 0.2,�
1
= 0.2,�

2
= 0.5,�

3
= 0.5,Λ = 0.2, � = 0.1,� = 2,�

1
= 1,�

2
= 2 . a � -D with fractional order is 

0.6, b M-TD with fractional order is 0.6 and � = 0.8 , c C-D with fractional order is 0.6
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the other two derivatives. The solitary wave solutions that have been found will be useful 
in the study of issues involving engineering, mechanical theory, tsunamis, and tidal waves. 
Graphically it has been observed that the solitary waves tiny shifts when the change frac-
tional derivative operator is without changing the shape of the curve. This demonstrates 
that their travelling wave solutions are symmetric. Modified ( G

�

G2
)-expansion technique, 

involves assuming an expansion for the solution and using algebraic manipulation to deter-
mine the functions in the expansion. The success of this method in constructing solutions 
for the non-linear CRW and WKB equations indicates its versatility in dealing with vari-
ous types of fractional differential equations and capturing the dynamics of such models 
accurately.
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