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Abstract
In nonlinear optical telecommunication networks and optical switching devices, the study 
of optical solitons is critical. In recent years, coupled nonlinear Schrödinger equations have 
been studied regarding the optical solitons and their collisions. When the coupled nonlin-
ear Schrödinger equations are of Manakov type, the optical solitons collide with each other 
elastically and after collision their polarization may change depending on the polarization 
of incoming optical solitons. In order to develop and improve innovative optical devices, 
enhance the stability of optical communication networks, and minimize fiber losses, it is 
imperative to establish an analytical approach capable of generating a diverse range of opti-
cal solitons. The goal of this manuscript is the utilization of a specific integration scheme 
to produce a diverse range of optical solitons for the Manakov model, with the aim of 
reducing both experimental costs and time. In this study, the extended sinh-Gordon equa-
tion expansion method and the two variable 

(
G

�∕G, 1∕G
)
-expansion method are employed 

to enable a comparison of the solutions and demonstrate the originality of this research. 
For the considered expansion methods, optical soliton solutions such as dark-dark soliton, 
bright-bright soliton, combined dark-bright soliton, multi soliton and periodic solitary 
waves are achieved. Moreover, the graphical demonstration of these solitons is made in 
order to better understand the obtained results.

Keywords Manakov model · Extended sinh-Gordon equation expansion method · The (
G�∕G, 1∕G

)
-expansion method · Exact solutions · Optical solitons

1 Introduction

The coupled nonlinear Schrödinger (CNLS) equations of Manakov type

(1.1)�U1t + �1U1xx + �1
(|U1|2 + |U2|2

)
U1 = 0,

(1.2)�U2t + �2U2xx + �2
(|U1|2 + |U2|2

)
U2 = 0,
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is an integrable system where U1(x, t) and U2(x, t) are complex valued functions, represent-
ing the profile of the soliton pulse. The real constants �i and �i correspond to group velocity 
dispersion and self-steeping nonlinearity, respectively. Manakov proposed the system (1) 
in 1973 to generalize the work of Zakharov and Shabat for constant polarization waves to 
arbitrary polarization of waves. He described that a nonlinear medium can act as a polari-
zation filter upon entering the wave of varying polarization by splitting it into beams of 
constant polarization. Moreove, Manakov also provided the complete integrability of his 
modal by employing inverse scattering transformation (Shabat and Zakharov 1972; Mana-
kov 1974).

The Manakov system has accommodated the development of new models to represent 
complex wave propagations, such as CNLS equations of three or multiple components 
(Kanna and Lakshmanan 2001), Manakov model with variable coefficients, varying poten-
tial and nonlinearities (Zhong et  al. 2015; Su et  al. 2013; Cheng et  al. 2014), modified 
Manakov equations (Tsoy and Akhmediev 2006), coupled optical fiber system (Li and 
Guan 2021), two-component Gross–Pitaevskii equations (Li and Guan 2019) and others. 
The Manakov system has significant applications in biology (Scott 1984), finance (Yan 
2011), fluid dynamics (Dhar and Das 1991), Bose–Einstein condensates (Busch and Anglin 
2001), nonlinear fiber optics (Frisquet et  al. 2015) etc. Yıldırım (2019), Gerdjikov and 
Todorov (2019), Mumtaz et al. (2012), Radhakrishnan et al. (1999), Özışık et al. (2022).

In nonlinear fiber optics, optical solitons are used as signal carriers because optical soli-
tons do not change their shape while propagating and after colliding with other pulses, and 
they emerge as a consequence of the balance among linear and nonlinear effects in the opti-
cal medium. The first prediction of optical solitons in optical fibers was made by Hasegawa 
and Tappert (1973a, 1973b). Optical solitons can be categorized as (i) temporal soliton, 
which arises because of pulse dispersion and refractive nonlinearity’s combined effects, 
and (ii) spatial soliton, arises from the joined effects of beam diffraction and nonlinearity.

In communication networks, optical fiber is prioritized owing to its advantages like 
expanded bandwidth, lower weight, security from short circuits, and severe weather endur-
ance. To make the optical soliton propagation effective, it is necessary to avoid the sig-
nal losses and this problem was tackled by imposing transparent boundary conditions 
on the Manakov system (Sabirov et al. 2021) and other nonlinear Schrödinger equations 
which made the solitons’ propagation reflectionless. Moreover, during the propagation in 
fibers, optical solitons face fiber nonlinearities and group velocity dispersion that broad-
ened the shape of the solitons. Many mathematical systems have been introduced to over-
come these complexities, including Hirota–Satsuma (Alquran et al. 2019), Fokas–Lenells 
(Yıldırım et  al. 2022), Kaup–Newell (Esen et  al. 2022), Biswas–Milovic (Zayed et  al. 
2021), Sasa–Satsuma (Yıldırım 2019), Gergjikov–Ivanov (Li et al. 2021), Triki–Biswas (Li 
and Lian 2022), Biswas–Arshad (Yıldırım 2019), Radhakrishanan–Kundu–Lakshmanan 
(Arnous et al. 2022), Lakshmanan–Porsezian–Daniel (Yıldırım et al. 2021), Schrödin-ger 
Hirota (Ozdemir et al. 2022), Chen–Lee–Liu (Yıldırım et al. 2020), Kudryashov equation 
(Zayed et al. 2021), the AB-system (Meng and Guo 2022), Kundu–Eckhaus (Mirzazadeh 
et al. 2018), Ginzbirg–Landau (Mohammed et al. 2021) and other equations.

In optical communication systems, various types of solitons, including dark, bright, 
combined, and multi-solitons, play a crucial role. To ensure seamless signal transmission 
through optical fibers, a diverse array of solitons has been generated through the applica-
tion of various techniques, such as Darboux transformation (Guan and Li 2019), Hirota 
method (Radhakrishnan and Aravinthan 2007), trial equation method (Yıldırım 2019), 
modified simple equation method (Yıldırım 2019), extended simplest equation method 
(Ahmed et al. 2021) and auxiliary equation method (Ozisik et al. 2022), specifically on the 
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Manakov system. Furthermore, the stability aspects of the Manakov system were explored 
through both linear stability analysis and modulation stability analysis (Younas and Ren 
2022; Akram et al. 2023). The primary objective of this research is to achieve a diverse 
range of optical solitons that are beneficial for communication networks, using a single 
integrable method. This approach aims to maintain the simplicity, efficiency, and advance-
ment to describe the propagation channels. In this article, the Manakov system has been 
explored to retrieve the optical soliton solutions using extended sinh-Gordon equation 
expansion method and 

(
G�∕G, 1∕G

)
-expansion method. The first method is based on the 

sinh-Gordon equation and was constructed to find the Jacobi-elliptic function solutions of 
the nonlinear evolution equations (Mathanaranjan 2023, 2022; Mathanaranjan et al. 2022). 
The latter method was proposed by Li et  al. (2010) based on 

(
G�∕G

)
-expansion method 

(Mathanaranjan et al. 2021; Mathanaranjan 2020), to establish the analytical wave solutions 
of nonlinear evolution equations that can be described in two variables, 

(
G�∕G

)
 and (1∕G) , 

where G satisfies the second order linear ordinary differential equation G��(�) + �G(�) = � , 
� and � are unknown constants. Implementation of two well known methods will provide 
an insightful comparison of the obtained results which will be helpful to discuss the nov-
elty of this work.

The remaining article is organized as follows: Sect.  2 is the complete description of 
the extended sinh-Gordon equation expansion method and 

(
G�∕G, 1∕G

)
-expansion method. 

Section 3 exhibits the mathematical analysis of Manakov system. The implementation of 
both methods on the nonlinear ordinary differential equation is in Sect. 4. Section 5 com-
prises the graphical depiction of the solutions and Sect. 6 is the conclusion.

2  Description of methods

The coupled nonlinear partial differential equations with independent variables x and t is 
considered, as

Implementation of traveling wave transformation

where � = x − �t , reduces Eqs. (2.1), (2.2) into ordinary differential equations (ODEs)

The constant � is the velocity of the traveling wave.

2.1  Extended sinh‑Gordon equation expansion method

The sinh-Gordon equation is written, as Chu et al. (2023)

(2.1)P1

(
p1, p1x, p2x, p1t, p2t, p1xx, p2xx, p1xt, p2xt, ...

)
= 0,

(2.2)P2

(
p2, p1x, p2x, p1t, p2t, p1xx, p2xx, p1xt, p2xt, ...

)
= 0.

(2.3)p1(x, t) = q1(�),

(2.4)p2(x, t) = q2(�),

(2.5)Hi

(
qi, q

�
i
, q��

i
, q���

i
, ...

)
= 0, i = 1, 2.
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where u = u(x, t) and � is a nonzero constants. Implementing traveling wave transforma-
tion u(x, t) = r(�) where � = x − �t , the Eq. (2.6) reduces into a nonlinear patial differential 
equation (PDE)

Integration of Eq. (2.7), gives

where m is an integration constant. Setting r
2
= s(�) and − �

�
= n in Eq. (2.8), yields

For distinct values of the parameters m and n, the following solutions are attained:
Case 1: When m = 0 and n = 1 , Eq. (2.9) reduces to an ODE

Simplification of Eq. (2.10) yields the following solutions:

and

where � =
√
−1 is an imaginary number.

Case 2: When m = n = 1 , Eq. (2.9) reduces to an ODE

Simplification of Eq. (2.13) yields the following solutions:

and

The solution of Eq. (2.5) can be considered, as

The solution (2.16) together with Eqs. (2.10)–(2.12) can be presented, as

(2.6)uxt = � sinh(u),

(2.7)r��(�) = −
�

�
sinh (r(�)).

(2.8)
[(

r

2

)�
]2

= −
�

�
sinh

2
(
r

2

)
+ m,

(2.9)s� =

√
m + n sinh

2(s).

(2.10)s� = sinh(s).

(2.11)sinh(s) = ±�sech(�), cosh(s) = − tanh(�)

(2.12)sinh(s) = ±csch(�), cosh(s) = − coth(�)

(2.13)s� = cosh(s).

(2.14)sinh(s) = tan(�), cosh(s) = ± sec(�)

(2.15)sinh(s) = − cot(�), cosh(s) = ± csc(�).

(2.16)qi(s) =

K∑
j=1

cosh
j−1(s)

[
Wj sinh(s) + Vj cosh(s)

]
+ V0.

(2.17)qi(�) =

K∑
j=1

(− tanh(�))j−1
[
±�Wj sech(�) − Vj tanh(�)

]
+ V0,
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and

Similarly, the solution (2.16) along Eqs. (2.13)–(2.15) can be presented, as

and

The value of positive integer K can be determined by implementing homogeneous balanc-
ing principle on Eq.  (2.5). Inserting the value of K in Eq.  (2.16) and using Eq.  (2.10), a 
polynomial equation in s(�) is achieved. Comparing the coefficient of sinhj(s) coshj(s) to 
zero and solving the resulting algebraic system, the values of Wj and Vj are attained. Insert-
ing these values in Eqs. (2.17), (2.18) gives the solitary wave solutions to Eq. (2.5) for Case 
1. The procedure analogous to the first case is followed for the Case 2 using Eq.  (2.13) 
along Eqs. (2.19), (2.20).

2.2  The 
(

G′

G
,
1

G

)
‑expansion method

The second order ordinary differential equation is considered, as

and setting

gives

where � and � are contants and � = d

d�
 . The general solutions of Eq. (2.21) can be written as 

follow:
For 𝛾 < 0 , the general solution is given, as

and it gives

(2.18)qi(�) =

K∑
j=1

(− coth(�))j−1
[
±Wj csch(�) − Vj coth(�)

]
+ V0.

(2.19)qi(�) =

K∑
j=1

(± sec(�))j−1
[
Wj tan(�) ± Vj sec(�)

]
+ V0,

(2.20)qi(�) =

K∑
j=1

(± csc(�))j−1
[
−Wj cot(�) ± Vj csc(�)

]
+ V0.

(2.21)G��(�) + �G(�) = �,

(2.22)� =
G �

G
, � =

1

G

(2.23)� � = −�2 + �� − � , �� = −��

(2.24)G(�) = B1 sinh
�√

−� �
�
+ B2 cosh

�√
−� �

�
+

�

�
,

(2.25)�2 =
−�

�2�1 + �2

(
�2 − 2�� + �

)
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where B1 and B2 are arbitrary constants and �1 = B2

1
− B2

2
.

For 𝛾 > 0 , the general solution is given, as

and it gives

where B1 and B2 are arbitrary constants and �2 = B2

1
+ B2

2
.

For � = 0 , the general solution is given, as

and it gives

where B1 and B2 are arbitrary constants.
The solution of Eq. (2.5) can be written in a polynomial of � and � variables, as

where cj   (j = 0, 1, 2, ...,K) and dj   (j = 1, 2, ...,K) are unknown constants that satisfy the 
c2
K
+ d2

K
≠ 0 condition. Implementation of homogeneous balancing principle on Eq. (2.5) 

gives the value of positive integer K. For the case 𝛾 < 0 , a polynomial in � and � is yielded 
by substituting Eq. (2.30) in Eq. (2.5) along Eqs. (2.23) and (2.25). Equating each coeffi-
cient of the polynomial to zero gives an algebraic set of equations that provides the values 
of c0 , cj and dj . The traveling wave solution of Eqs. (1.1), (1.2) is deduced by inserting the 
values of c0 , cj and dj into Eq.  (2.30). Similar steps are followed for the cases 𝛾 > 0 and 
� = 0 using Eqs. (2.23), (2.27) and (2.29) into Eq. (2.30).

3  Mathematical analysis

A complex wave transformation for Eqs. (1.1), (1.2) is defined as follows:

with

(2.26)G(�) = B1 sin
�√

� �
�
+ B2 cos

�√
� �

�
+

�

�

(2.27)�2 =
�

�2�2 − �2

(
�2 − 2�� + �

)

(2.28)G(�) =
�

2
�2 + B1� + B2,

(2.29)�2 =
1

B2

1
− 2�B2

(
�2 − 2��

)
,

(2.30)qi(�) = c0 +

K∑
j=1

cj �
j +

K∑
j=1

dj �
j−1�

(3.1)U1(x, t) = q1(�)e
��1(x,t),

(3.2)U2(x, t) = q2(�)e
��2(x,t),

(3.3)� = x − �t,
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where �i , qi , ki , �i , � and �i (i = 1, 2) are real valued and representing phase component, 
amplitude, frequency, wave number, velocity and phase constant, respectively.

Placing Eqs.  (3.1), (3.2) in Eqs.  (1.1), (1.2) with i = 1, 2 and î = 3 − i , the imaginary 
part

and the real part

are deduced. Setting qi = qî , Eq. (3.6) becomes

4  Wave solutions of Manakov model

4.1  Implementation of extended ShGEEM

The extended sinh-Gordon equation expansion method is executed in this segment to ana-
lyze the solitary wave solutions of Eqs. (1.1), (1.2).

Case 1: s� = sinh(s)

Exertion of balancing principle on the linear term q′′
i
 and nonlinear term q3

i
 of Eq. (3.7) 

gives K = 1 . For K = 1 , Eqs. (2.16)–(2.18) become

and

where W1 and V1 can not be simultaneously zero.
Inserting Eq. (4.1) into Eq. (3.7) and associating all the coefficients of sinhj(s) coshj(s) 

to zero, a set of algebraic equations is obtained.

(3.4)�i = −kix + �it + �i,

(3.5)� = −2�iki,

(3.6)𝛼iq
��
i
−
(
𝛼ik

2

i
+ 𝜔i

)
qi + 𝛽iq

3

i
+ 𝛽iqiqî = 0,

(3.7)�iq
��
i
−
(
�ik

2

i
+ �i

)
qi + 2�iq

3

i
= 0.

(4.1)qi(s) = W1 sinh(s) + V1 cosh(s) + V0,

(4.2)qi(�) = ±�W1sech(�) − V1 tanh(�) + V0,

(4.3)qi(�) = ±W1csch(�) − V1 coth(�) + V0,

12�
i
V0V1W1 = 0,

6�
i
V0V

2

1
+ 6�

i
V0W

2

1
= 0,

2�
i
V1 + 2�

i
V
3

1
+ 6�

i
V1W

2

1
= 0,

2�
i
W1 + 6�

i
V
2

1
W1 + 2�

i
W

3

1
= 0,

−�
i
V0 − k

2

i
�
i
V0 + 2�

i
V
3

0
− 6�

i
V0W

2

1
= 0,

−�
i
V1 − 2�

i
V1 − k

2

i
�
i
V1 + 6�

i
V
2

0
V1 − 6�

i
V1W

2

1
= 0,

−�
i
W1 − �

i
W1 − k

2

i
�
i
W1 + 6�

i
V
2

0
W1 − 2�

i
W

3

1
= 0.
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The following results are obtained by resolving the above system.
Set 1: V0 = 0 , V1 = −

�
√
�i√
�i

 , W1 = 0 , ki = −
√
−�i−2�i√

�i
.

Putting the values given in Set 1 into Eqs. (4.2) and (4.3) and using Eq. (3.5), the solu-
tions to Manakov system are attained as follows:

and

Set 2: V0 = 0 , V1 = −
�
√
�i

2
√
�i

 , W1 = −
�
√
�i

2
√
�i

 , ki = −
√
−2�i−�i√

2�i
.

Inserting the values given in Set 2 into Eqs. (4.2) and (4.3) and using Eq. (3.5), the solu-
tions to Manakov system are attained as follows:

and

(4.4)U11
(x, t) =

√
−�1√
�1

tanh

�
x −

2�1

√
−�1 − 2�1√
�1

t

�
× e

�

�√
−�1−2�1√

�1
x+�1t+�1

�

,

(4.5)U21
(x, t) =

√
−�2√
�2

tanh

�
x −

2�2

√
−�2 − 2�2√
�2

t

�
× e

�

�√
−�2−2�2√

�2
x+�2t+�2

�

,

(4.6)
U12

(x, t) =

√
−�1√
�1

coth

�
x −

2�1

√
−�1 − 2�1√
�1

t

�

× e
�

�√
−�1−2�1√

�1
x+�1t+�1

�

,

(4.7)
U22

(x, t) =

√
−�2√
�2

coth

�
x −

2�2

√
−�2 − 2�2√
�2

t

�

× e
�

�√
−�2−2�2√

�2
x+�2t+�2

�

.

(4.8)

U13
(x, t) =

�
±

√
�1

2
√
�1

sech

�
x −

2�1

√
−2�1 − �1√
2�1

t

�

+

√
−�1

2
√
�1

tanh

�
x −

2�1

√
−2�1 − �1√
2�1

t

��

× e
�

�√
−2�1−�1√

2�1
x+�1t+�1

�
,

(4.9)

U23
(x, t) =

�
±

√
�2

2
√
�2

sech

�
x −

2�2

√
−2�2 − �2√
2�2

t

�

+

√
−�2

2
√
�2

tanh

�
x −

2�2

√
−2�2 − �2√
2�2

t

��

× e
�

�√
−2�2−�2√

2�2
x+�2t+�2

�
,
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Set 3: V0 = 0 , V1 = 0 , W1 = −
�
√
�i√
�i

 , ki = −
√
−�i+�i√

�i
.

Putting the values given in Set 3 into Eqs. (4.2) and (4.3) and using Eq. (3.5), the solu-
tions to Manakov system are attained as follows:

and

Case 2: s� = cosh(s)

Implementation of balancing principle on the linear term q′′
i
 and nonlinear term q3

i
 of 

Eq. (3.7) gives K = 1 . For K = 1 , Eqs. (2.16), (2.19) and (2.20) become

(4.10)

U14
(x, t) =

�
∓

√
−�1

2
√
�1

csch

�
x −

2�1

√
−2�1 − �1√
2�1

t

�

+

√
−�1

2
√
�1

coth

�
x −

2�1

√
−2�1 − �1√
2�1

t

��

× e
�

�√
−2�1−�1√

2�1
x+�1t+�1

�
,

(4.11)

U24
(x, t) =

�
∓

√
−�2

2
√
�2

csch

�
x −

2�2

√
−2�2 − �2√
2�2

t

�

+

√
−�2

2
√
�2

coth

�
x −

2�2

√
−2�2 − �2√
2�2

t

��

× e
�

�√
−2�2−�2√

2�2
x+�2t+�2

�
.

(4.12)
U15

(x, t) = ±

√
�1√
�1

sech

�
x −

2�1
√
−�1 + �1√
�1

�

× e
�

�√
−�1+�1√

�1
x+�1t+�1

�

,

(4.13)
U25

(x, t) = ±

√
�2√
�2

sech

�
x −

2�2
√
−�2 + �2√
�2

�

× e
�

�√
−�2+�2√

�2
x+�2t+�2

�

,

(4.14)U16
(x, t) = ∓

√
−�1√
�1

csch

�
x −

2�1
√
−�1 + �1√
�1

�
× e

�

�√
−�1+�1√

�1
x+�1t+�1

�

,

(4.15)U26
(x, t) = ∓

√
−�2√
�2

csch

�
x −

2�2
√
−�2 + �2√
�2

�
× e

�

�√
−�2+�2√

�2
x+�2t+�2

�

.

(4.16)qi(s) = W1 sinh(s) + V1 cosh(s) + V0,
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and

where W1 and V1 can not be simultaneously zero.
Inserting Eq.  (4.16) into Eq.  (3.7) and comparing all the coefficients of 

sinh
j(s) coshj(s) to zero, a set of algebraic equation is obtained.

Solving this system the following results are obtained. Set 4:   V0 = 0 ,    
V1 =

�
√
�i√
�i

 ,  W1 = 0 ,  ki = −
√
−�i−�i√

�i
.

Putting the values specified in Set 4 into Eqs. (4.17) and (4.18) and using Eq. (3.5), 
the solutions to Manakov system are attained as follows:

and

Set 5:  V0 = 0,  V1 = −
�
√
�i

2
√
�i

,  W1 = −
�
√
�i

2
√
�i

,  ki =
√
−2�i+�i√

2�i
.

Inserting the values specified in Set 5 into Eqs. (4.17) and (4.18) and using Eq. (3.5), 
the solutions to Manakov system are attained as follows:

(4.17)qi(�) = W1 tan(�) ± V1 sec(�) + V0,

(4.18)qi(�) = −W1 cot(�) ± V1 csc(�) + V0,

12�
i
V0V1W1 = 0,

6�
i
V0V

2

1
+ 6�

i
V0W

2

1
= 0,

2�
i
V1 + 2�

i
V
3

1
+ 6�

i
V1W

2

1
= 0,

2�
i
W1 + 6�

i
V
2

1
W1 + 2�

i
W

3

1
= 0,

−�
i
V0 − k

2

i
�
i
V0 + 2�

i
V
3

0
− 6�

i
V0W

2

1
= 0,

−�
i
W1 − k

2

i
�
i
W1 + 6�

i
V
2

0
W1 − 2�

i
W

3

1
= 0,

−�
i
V1 − �

i
V1 − k

2

i
�
i
V1 + 6�

i
V
2

0
V1 − 6�

i
V1W

2

1
= 0.

(4.19)U17
(x, t) = ±

√
−�1√
�1

sec

�
x −

2�1
√
−�1 − �1√
�1

t

�
× e

�

�√
−�1−�1√

�1
x+�1t+�1

�

,

(4.20)U27
(x, t) = ±

√
−�2√
�2

sec

�
x −

2�2
√
−�2 − �2√
�2

t

�
× e

�

�√
−�2−�2√

�2
x+�2t+�2

�

,

(4.21)U18
(x, t) = ±

√
−�1√
�1

csc

�
x −

2�1
√
−�1 − �1√
�1

t

�
× e

�

�√
−�1−�1√

�1
x+�1t+�1

�

,

(4.22)U28
(x, t) = ±

√
−�2√
�2

csc

�
x −

2�2
√
−�2 − �2√
�2

t

�
× e

�

�√
−�2−�2√

�2
x+�2t+�2

�

.
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and

Set 6:  V0 = 0,  V1 = 0,  W1 = −
�
√
�i√
�i

,  ki =
√
−�i+2�i√

�i
.

Putting the values prescribed in Set 6 into Eqs. (4.17) and (4.18) and using Eq. (3.5), the 
solutions to Manakov system are attained as follows:

(4.23)

U19
(x, t) =

�
−

√
−�1

2
√
�1

tan

�
x +

2�1

√
−2�1 + �1√
2�1

t

�

∓

√
−�1

2
√
�1

sec

�
x +

2�1

√
−2�1 + �1√
2�1

t

��

× e
�

�
−

√
−2�1+�1√

2�1
x+�1t+�1

�
,

(4.24)

U29
(x, t) =

�
−

√
−�2

2
√
�2

tan

�
x +

2�2

√
−2�2 + �2√
2�2

t

�

∓

√
−�2

2
√
�2

sec

�
x +

2�2

√
−2�2 + �2√
2�2

t

��

× e
�

�
−

√
−2�2+�2√

2�2
x+�2t+�2

�
,

(4.25)

U110
(x, t) =

�√
−�1

2
√
�1

cot

�
x +

2�1

√
−2�1 + �1√
2�1

t

�

∓

√
−�1

2
√
�1

csc

�
x +

2�1

√
−2�1 + �1√
2�1

t

��

× e
�

�
−

√
−2�1+�1√

2�1
x+�1t+�1

�
,

(4.26)

U210
(x, t) =

�√
−�2

2
√
�2

cot

�
x +

2�2

√
−2�2 + �2√
2�2

t

�

∓

√
−�2

2
√
�2

csc

�
x +

2�2

√
−2�2 + �2√
2�2

t

��

× e
�

�
−

√
−2�2+�2√

2�2
x+�2t+�2

�
.

(4.27)
U111

(x, t) = −

√
−�1√
�1

tan

�
x +

2�1

√
−�1 + 2�1√
�1

t

�

× e
�

�
−

√
−�1+2�1√

�1
x+�1t+�1

�

,
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and

4.2  Implementation of 
(

G′

G
,
1

G

)
‑expansion method

Exertion of the homogeneous balancing principle on the linear term q′′
i
 and nonlinear term 

q3
i
 of Eq. (3.7) yields K = 1 and Eq. (2.30) becomes

The three cases will be discussed to attain the solitary wave solutions of Eqs. (1.1), (1.2).
Hyperbolic function solution: For 𝛾 < 0 , insertion of Eq.  (4.31) together with 

Eqs.  (2.23) and (2.25) into Eq.  (3.7) gives a polynomial in � and � . The values of 
unknowns are attained by simultaneously solving the system of equations which is yielded 
by equating all the coefficients of � and � equal to zero.

Set 7: c0 = 0 ,   c1 = −
�
√
�i

2
√
�i

,  d1 = −
√
�i

√
�2+�2�1

2
√
�i�

 ,   �i =
1

2
(−2k2

i
�i + �i�).

Putting the values stated in Set 7 into Eq. (4.31) and using Eq. (2.24), the solution to 
Manakov system is attained, as

(4.28)
U211

(x, t) = −

√
−�2√
�2

tan

�
x +

2�2

√
−�2 + 2�2√
�2

t

�

× e
�

�
−

√
−�2+2�2√

�2
x+�2t+�2

�

,

(4.29)U112
(x, t) =

√
−�1√
�1

cot

�
x +

2�1

√
−�1 + 2�1√
�1

t

�
× e

�

�
−

√
−�1+2�1√

�1
x+�1t+�1

�

,

(4.30)U212
(x, t) =

√
−�2√
�2

cot

�
x +

2�2

√
−�2 + 2�2√
�2

t

�
× e

�

�
−

√
−�2+2�2√

�2
x+�2t+�2

�

.

(4.31)qi(�) = c0 + c1� + d1�.

(4.32)

U113
(x, t) =

⎡
⎢⎢⎣
−

√
−�1

2
√
�1

⎛
⎜⎜⎝
B1

√
−� cosh

�√
−�(x + 2�1k1t)

�
+ B2

√
−� sinh

�√
−�(x + 2�1k1t)

�
�

�
+ B1 sinh

�√
−�(x + 2�1k1t)

�
+ B2 cosh

�√
−�(x + 2�1k1t)

�
⎞⎟⎟⎠

−

√
�1

2
√
�1�

⎛⎜⎜⎝

√
�2 + �2�1

�

�
+ B1 sinh

�√
−�(x + 2�1k1t)

�
+ B2 cosh

�√
−�(x + 2�1k1t)

�
⎞⎟⎟⎠

⎤⎥⎥⎦

× e
�

�
−k1x+

−2k2
1
�1+�1�

2
t+�1

�

,
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where �1 = B2

1
− B2

2
.

Precisely if B1 = 0 , B2 > 0 and � = 0 then from Eqs.  (4.32), (4.33), the following 
solution is attained:

If B1 > 0 , B2 = 0 and � = 0 then from Eqs. (4.32), (4.33), the following solution is attained:

Trigonometric function solution: For 𝛾 > 0 , the insertion of Eq.  (4.31) together with 
Eqs.  (2.23) and (2.27) into Eq.  (3.7) yields a polynomial in � and � . The values of 
unknowns are deduced by resolving the system of equations which is obtained by equating 
all the coefficients of � and � to zero.

Set 8: c0 = 0 ,   c1 = −
�
√
�i

2
√
�i

,  d1 = −
√
�i

√
�2−�2�2

2
√
�i�

 ,   �i =
1

2
(−2k2

i
�i + �i�).

Putting the values specified in Set 8 into Eq. (4.31) and using Eq. (2.26), the solution 
to Manakov system is attained, as

(4.33)

U213
(x, t) =

⎡
⎢⎢⎣
−

√
−�2

2
√
�2

⎛
⎜⎜⎝
B1

√
−� cosh

�√
−�(x + 2�2k2t)

�
+ B2

√
−� sinh

�√
−�(x + 2�2k2t)

�
�

�
+ B1 sinh

�√
−�(x + 2�2k2t)

�
+ B2 cosh

�√
−�(x + 2�2k2t)

�
⎞⎟⎟⎠

−

√
�2

2
√
�2�

⎛⎜⎜⎝

√
�2 + �2�1

�

�
+ B1 sinh

�√
−�(x + 2�2k2t)

�
+ B2 cosh

�√
−�(x + 2�2k2t)

�
⎞⎟⎟⎠

⎤⎥⎥⎦

× e
�

�
−k2x+

−2k2
2
�2+�2�

2
t+�2

�

,

(4.34)

U114
(x, t) =

�√
�1�

2
√
�1

tanh
�√

−�(x + 2�1k1t)
�
−

√
−�1�

2
√
�1

sech
�√

−�(x + 2�1k1t)
��

× e
�

�
−k1x+

−2k2
1
�1+�1�

2
t+�1

�

,

(4.35)

U214
(x, t) =

�√
�2�

2
√
�2

tanh
�√

−�(x + 2�2k2t)
�
−

√
−�2�

2
√
�2

sech
�√

−�(x + 2�2k2t)
��

× e
�

�
−k2x+

−2k2
2
�2+�2�

2
t+�2

�

.

(4.36)

U115
(x, t) =

�√
�1�

2
√
�1

coth
�√

−�(x + 2�1k1t)
�
−

√
�1�

2
√
�1

csch
�√

−�(x + 2�1k1t)
��

× e
�

�
−k1x+

−2k2
1
�1+�1�

2
t+�1

�

,

(4.37)

U215
(x, t) =

�√
�2�

2
√
�2

coth
�√

−�(x + 2�2k2t)
�
−

√
�2�

2
√
�2

csch
�√

−�(x + 2�2k2t)
��

× e
�

�
−k2x+

−2k2
2
�2+�2�

2
t+�2

�

.
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where �2 = B2

1
+ B2

2
.

If B1 = 0 , B2 > 0 and � = 0 then from Eqs.  (4.38), (4.39), the following solution is 
attained:

If B1 > 0 , B2 = 0 and � = 0 then from Eqs. (4.38), (4.39), the following solution is attained:

(4.38)

U116
(x, t) =

⎡
⎢⎢⎣
−

√
−�1

2
√
�1

⎛
⎜⎜⎝
B1

√
� cos

�√
�(x + 2�1k1t)

�
− B2

√
� sin

�√
�(x + 2�1k1t)

�
�

�
+ B1 sin

�√
�(x + 2�1k1t)

�
+ B2 cos

�√
�(x + 2�1k1t)

�
⎞
⎟⎟⎠

−

√
�1

2
√
�1�

⎛⎜⎜⎝

√
�2 − �2�2

�

�
+ B1 sin

�√
�(x + 2�1k1t)

�
+ B2 cos

�√
�(x + 2�1k1t)

�
⎞⎟⎟⎠

⎤⎥⎥⎦

× e
�

�
−k1x+

−2k2
1
�1+�1�

2
t+�1

�

,

(4.39)

U216
(x, t) =

⎡
⎢⎢⎣
−

√
−�2

2
√
�2

⎛
⎜⎜⎝
B1

√
� cos

�√
�(x + 2�2k2t)

�
− B2

√
� sin

�√
�(x + 2�2k2t)

�
�

�
+ B1 sin

�√
�(x + 2�2k2t)

�
+ B2 cos

�√
�(x + 2�1k1t)

�
⎞⎟⎟⎠

−

√
�2

2
√
�2�

⎛⎜⎜⎝

√
�2 − �2�2

�

�
+ B1 sin

�√
�(x + 2�2k2t)

�
+ B2 cos

�√
�(x + 2�2k2t)

�
⎞⎟⎟⎠

⎤⎥⎥⎦

× e
�

�
−k2x+

−2k2
2
�2+�2�

2
t+�2

�

,

(4.40)
U117

(x, t) =

�√
−�1�

2
√
�1

tan
�√

�(x + 2�1k1t)
�
−

√
−�1�

2
√
�1

sec
�√

�(x + 2�1k1t)
��

× e
�

�
−k1x+

−2k2
1
�1+�1�

2
t+�1

�

,

(4.41)
U217

(x, t) =

�√
−�2�

2
√
�2

tan
�√

�(x + 2�2k2t)
�
−

√
−�2�

2
√
�2

sec
�√

�(x + 2�2k2t)
��

× e
�

�
−k2x+

−2k2
2
�2+�2�

2
t+�2

�

.

(4.42)

U118
(x, t) =

�
−

√
−�1�

2
√
�1

cot
�√

�(x + 2�1k1t)
�
−

√
−�1�

2
√
�1

csc
�√

�(x + 2�1k1t)
��

× e
�

�
−k1x+

−2k2
1
�1+�1�

2
t+�1

�

,

(4.43)

U218
(x, t) =

�
−

√
−�2�

2
√
�2

cot
�√

�(x + 2�2k2t)
�
−

√
−�2�

2
√
�2

csc
�√

�(x + 2�2k2t)
��

× e
�

�
−k2x+

−2k2
2
�2+�2�

2
t+�2

�

.
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Rational function solution: For � = 0 , the insertion of Eq. (4.31) together with Eqs. (2.23) 
and (2.29) into Eq.  (3.7) yields a polynomial in � and � . The values of unknowns are 
deduced by resolving the system of equations which is obtained by equating all the coef-
ficients of � and � to zero.

Set 9: c0 = 0 ,   c1 = −
�
√
�i

2
√
�i

,  d1 =
�
√
�i

√
B2

1
−2�B2

2
√
�i

 ,   �i = −k2
i
�i.

Putting the values specified in Set 9 into Eq. (4.31) and using Eq. (2.28), the solution to 
Manakov system is attained, as

5  Graphical observations

The obtained solutions of Manakov model using extended ShGEEM and 
(
G�∕G, 1∕G

)
-expansion method are graphically exhibited in this segment. The deduced hyperbolic, trig-
onometric and rational functions represent dark-dark soliton, bright-bright soliton, com-
bined dark-bright soliton, multi solitons and periodic solitary waves under suitable para-
metric values.

In Fig. 1, the solution U11
(x, t) , U21

(x, t) is exhibited graphically for the parametric values 
taken as �1 = �1 = �2 = 1, �2 = 2, k1 = −1, k2 = −

√
2, �1 = −3, �2 = −4, �1 = �2 = 1 . 

Figure 1a represents modulus |U11
| and |U21

| in 3D, Fig. 1b refers to the 2D plot of |U11
| 

and |U21
| , and Fig. 1c is the density plot of |U11

| and |U21
| . Furthermore, Fig. 2d–f belong 

to imaginary value of U11
 and U21

 while Fig. 2g–i refer to real value of U11
 and U21

 in 3D, 2D 
and density plot, respectively.

Figure 2 is graphical representation of the solution U13
(x, t) , U23

(x, t) for the parametric 
values taken as �1 = 1, �1 = −2, �2 = 2, �2 = −3, k1 = − 1

√

6
, k2 = − 1

√

2
, �1 = −2,

�2 = −3, �1 = �2 = 1 . Figure  2a is the illustration of modulus |U13
| and |U23

| in 3D, 
Fig. 2b refers to the 2D plot of |U13

| and |U23
| , and Fig. 2c is the density plot of |U13

| and 
|U23

| . Furthermore, Fig. 2d–f belong to imaginary value of U13
 and U23

 while Fig. 2g–i refer 
to real value of U13

 and U23
 in 3D, 2D and density plot, respectively.

Figure  3 is the graphical illustration of the solu-
tion U15

(x, t) , U25
(x, t) for the parametric values taken as 

�1 = 1, �1 = −1, �2 =
1

2
, �2 = −

1

2
, k1 = −

√
2, k2 = −

√
3, �1 = �2 = −1, �1 = �2 = 1  . 

Figure 3a is the representation of modulus |U15
| and |U25

| in 3D, Fig. 3b is the depiction of 
|U15

| and |U25
| in 2D, and Fig. 3c is the density plot of |U15

| and |U25
| . Figure 3d–f corre-

spond to imaginary value of U15
 and U25

 and Fig. 3g–i belong to real value of U15
 and U25

 in 
3D, 2D and density plot, respectively.

(4.44)

U119
(x, t) = −

√
−�1√
�1

�(x + 2�1k1t) + B1 −
�

B2

1
− 2�B2

�(x + 2�1k1t)
2 + 2B1(x + 2�1k1t) + 2B2

× e�(−k1x−k
2

1
�1t+�1),

(4.45)

U219
(x, t) = −

√
−�2√
�2

�(x + 2�2k2t) + B1 −
�

B2

1
− 2�B2

�(x + 2�2k2t)
2 + 2B1(x + 2�2k2t) + 2B2

× e�(−k2x−k
2

2
�2t+�2).
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Figure 4 is the graphical representation of the solution U114
(x, t) , U214

(x, t) for the para-
metric values taken as �1 = 1, �1 = 2, �2 = 1, �2 = 4, � = −1, k1 = 1, k2 = 2, �1 = − 3

2
,

�2 = − 9
2
, �1 = �2 = 1 . Figure  4a illustration of modulus |U114

| and |U214
| in 3D, Fig.  4b 

exhibits |U114
| and |U214

| in 2D, and Fig. 4c depicts the density plot of |U114
| and |U214

| . Fur-
thermore, Fig. 4d–f refer to imaginary value of U114

 and U214
 while Fig. 4g–i belong to real 

value of U114
 and U214

 in 3D, 2D and density plot, respectively.
Figure 5 is the graphical illustration of the solution U117

(x, t) , U217
(x, t) for the paramet-

ric values taken as �1 = 1, �1 = 2, �2 = 1, �2 = 4, � = 1, k1 = 1, k2 = 2, �1 = − 1
2
,

�2 = − 7
2
, �1 = �2 = 1 . Figure 5a representation of modulus |U117

| and |U217
| in 3D, Fig. 5b is 

the depiction of |U117
| and |U217

| in 2D, and Fig. 5c is the density plot of |U117
| and |U217

| . Fig-
ure 5d–f correspond to imaginary value of U117

 and U217
 and Fig. 5g–i refer to real value of U117

 
and U217

 in 3D, 2D and density plot, respectively.

Fig. 1  Graphical simulations for U11
(x, t) and U21

(x, t) at �1 = �1 = �2 = 1, �2 = 2, k1 = −1,
k2 = −

√

2, �1 = −3, �2 = −4, �1 = �2 = 1
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6  Discussion and conclusion

In this article, optical solitons and other solitary wave solutions of the Manakov model 
are evaluated by employing the extended sinh-Gordon equation expansion method and (
G�∕G, 1∕G

)
-expansion method. By executing these expansion methods, rational, trigo-

nometric and hyperbolic functions are obtained. At some specific values of the param-
eters of the assumed system, dark-dark soliton, bright-bright soliton, combined dark-
bright soliton, multi solitons and periodic solitary waves are obtained. These soliton 
solutions have fundamental applications in applied sciences, especially in nonlinear 
fiber optics since they can carry large amount of data at high speed owing to their stabil-
ity during wave propagation. Bright solitons are extensively studied in optical commu-
nications and recently the transmission of dark solitons in optical fibers was discovered. 
Despite the fact that dark solitons have fewer fiber losses and less sensitivity to noise, 
bright solitons are preferred in communication network systems owing to their high 
intensity peaks. Combined dark-bright solitons represent a category of higher-order 
solitons that find application in optical fiber systems, ensuring the stable transmission 

Fig. 2  Graphical simulations for U13
(x, t) and U23

(x, t) at �1 = 1, �1 = −2, �2 = 2, �2 = −3,
k1 = − 1

√

6
, k2 = − 1

√

2
, �1 = −2, �2 = −3, �1 = �2 = 1
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of optical signals across extended distances (Bezgabadi and Bolorizadeh 2021). Fur-
thermore, these soliton configurations possess the capacity to manipulate light proper-
ties through self-phase modulation effects, rendering them valuable for the advancement 
of optical devices. Multi-solitons, on the other hand, serve as tools for exploring noise 
characteristics and can be employed to reduce the duration of solitons in fiber-optic 
transmission systems (Zhang et al. 2019). Additionally, some of the wave results of the 
Manakov system are presented graphically to get a better understanding of the nature 
and propagation of solitary waves. The visual representation clearly demonstrates that 
the extended ShGEEM yields more accurate and valuable outcomes for the Manakov 
model when compared to the 

(
G�∕G, 1∕G

)
-expansion method and prior literature. Given 

Fig. 3  Graphical simulations for U15
(x, t) and U25

(x, t) at �1 = 1, �1 = −1, �2 =
1
2
, �2 = − 1

2
,

k1 = −
√

2, k2 = −
√

3, �1 = �2 = −1, �1 = �2 = 1
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the significance of Manakov solitons in the field of optics, it is advantageous to possess 
a single method capable of obtaining all soliton types. Such a method would enhance 
efficiency, simplicity, facilitate interdisciplinary applications, reduce experimental costs, 
and contribute to technological advancements. In future, the proposed extended sinh-
Gordon equation expansion method can be utilized to explore the dynamical behavior 
of other nonlinear mathematical models arising in optics. Moreover, the findings of this 
work can be utilized to suggest new numerical and laboratory experiments for optical 
devices and fiber optics.

Fig. 4  Graphical simulations for U114
(x, t) and U214

(x, t) at �1 = 1, �1 = 2, �2 = 1, �2 = 4, � = −1,
k1 = 1, k2 = 2, �1 = − 3

2
, �2 = − 9

2
, �1 = �2 = 1
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