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Abstract
By using edge caching and edge computing, fog radio access networks (F-RANs) are 
viewed as suitable architectures to serve Internet of Things services. Current research on 
resource management in F-RANs, however, mostly takes into account a static method with 
a single communication mode. Resource management in F-RANs becomes highly diffi-
cult due to network dynamics, resource variety, and linkage of resource management with 
mode selection. This study suggests a unique method for data transmission and optimisa-
tion in radio access networks utilising a machine learning model. Here, photonic integrated 
circuits with dynamic optimisation are used to improve network optimisation. Then, data is 
sent using MASORL, a multi-agent self-organizing reinforcement learning system based 
on a fog edge model. The experimental study is done in terms of network efficiency, scal-
ability, QoS, throughput, and energy consumption. We show how employing team learn-
ing rather than individual learning agents might improve network performance. Finally, 
in order to give scholars in the field a road map, we identify problems and unresolved 
concerns.
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1 Introduction

Future IoT applications may be served effectively by fog radio access networks 
(F-RANs) with the help of edge caching and edge computing. Health monitoring, low-
latency services, analytics on large amounts of data from the Internet of Things, and 
so on are all examples of such offerings (Xiang et al. 2020). In an F-RAN, each piece 
of user equipment (UE) may switch between many different communication modes, 
such as device-to-device (D2D), fog radio access point (FAP), cloud radio access net-
work (C-RAN), and so on. Performance analysis, radio resource allocation, collabora-
tive design of cloud and edge processing, cache size effect, and many other areas of 
study have recently been conducted on F-RANs (Cao et al. 2021a). Network slicing, a 
novel technique being studied in the context of 5G, has the potential to accommodate a 
wide range of use cases and business models. The idea behind network slicing is to cre-
ate customised services by orchestrating and chaining together network slice instances. 
Network slicing helps 5G networks in an economical way by offering flexible support 
of multiple applications (Iturria-Rivera et  al. 2022). Network slicing in radio access 
networks (RANs) are researched as a crucial component of network slicing to further 
enhance end-to-end network performance. Although network slicing is an excellent way 
to address 5G service needs, it still faces enormous difficulties. Traditional core network 
slicing techniques are solely driven by business, ignoring RAN characteristics. Network 
slicing, however, varies depending on the network architecture, such as in heterogene-
ous networks or cloud RANs (CRANs) (Fang et al. 2022). It may be advantageous to 
take into account RAN characteristics and network slicing together. Second, develop-
ing applications have stricter performance requirements. With 4G, many services are 
offered on the same network but with varying requirements. However, it is inefficient 
to use the same network to deliver different services. For instance, Internet of Things 
services demand extremely large connections, yet a high data rate is not crucial. Fur-
thermore, while enormous connections are not necessary for VR applications, they still 
require a high data rate. As a result, 5G employs a cutting-edge technology called net-
work slicing (NS) to create networks that are appropriate for different services in slices. 
Slices are chosen based on criteria including throughput, latency, and dependability. In 
order to meet these needs, slices are also given access to network resources. To imple-
ment NS notion, different network resources must be separated into slices, with each 
slice receiving resources it needs. As opposed to when employing constrained radio 
resources, RAN is confronted with developing a technique that meets the slice require-
ments without lowering efficiency (Shi et al. 2020). To do this, it’s crucial to take into 
account changes in the slice state, such as those related to traffic volume and the quan-
tity of user equipment (UE) attached for control. Additionally, the number of slices pro-
cessed by a base station (BS) fluctuates according to the service utilisation and UE entry 
and exit from the BS coverage area. Therefore, a mechanism that dynamically distrib-
utes radio resources in accordance with the slice status is required. One type of artificial 
intelligence method called deep learning (DL) may model the functioning of organic 
neural systems and provide patterns that can be used to decision-making tasks. Smallest 
component of this system, the neuron, is present in each layer in a predetermined num-
ber. The depth of the structure is determined by the quantity of concealed layers. While 
deep learning (DL) contains several hidden layers as opposed to shallow learning’s sin-
gle hidden layer, this is how the term "deep learning" was coined. The development 
of DL has gone hand in hand with development of technology that can organise vast 
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amounts of data. NLP, wireless networking, and computer vision are just a few of the 
disciplines where it has been successfully used broadly (Vimal et al. 2020).

2  Related works

Radio resources, which include RBs, are split into frequency and temporal domains in 
RAN slicing. The RB allocation to each slice is determined using a method that author 
(Shirmohamadi et  al. 2022) described as an extension to the RB scheduling algorithm. 
Throughput was demonstrated to be higher with the extension approach than it was with-
out one. When assigning RBs to a slice, the current technique does take the fulfilment 
of the slice criteria into account. It’s critical to meet the slice criteria in NS. As a result, 
work (Murti et al. 2021) suggested a mechanism that distributes RBs to slices while tak-
ing the slice needs into account. By allocating RBs from slices without requirements, this 
approach satisfies slice requirements. The effectiveness of the RB distribution, however, 
was not assessed. It’s possible that slices receive more RBs than are required. Author (Chen 
et al. 2018) suggested a solution that takes slice needs and RB consumption efficiency into 
account to overcome issue. With this technique, the slices are divided into four categories 
and given RB allocations. In accordance with the slice criteria, their analysis revealed a 
12% increase in allocation efficiency over the scenario without abstraction. The issue is 
that because the slices are abstracted into four kinds and then given RBs, it was unable to 
entirely segregate RBs for each slice. In other words, the interference of RBs from other 
slices may result in a reduction in the extent to which the slice criteria were met (Shahjalal 
et al. 2023). As a result, it’s crucial to only distribute the necessary amount of RBs to each 
slice, without allowing influence from other slices. In Du et al. (2020), we created an effec-
tive one-dimensional search method to identify the best solution to issue of delay optimum 
computing job offloading inside a MDP framework. The dependency on statistical data on 
channel quality variations and computing job arrivals presents a problem, though. In Yan 
et al. (2020), the author used a Lyapunov optimisation approach to study a dynamic com-
pute offloading policy for a MEC method with wireless energy harvesting-capable mobile 
devices. The similar methodology was used by Chang et al. (2022) and Deka and Sharma 
(2022) to investigate power-delay tradeoff in context of compute job offloading. Only a 
roughly optimum solution can be created by the Lyapunov optimisation. The author cre-
ated an algorithm that uses reinforcement learning and does not require previous knowl-
edge of network data in order to discover the best compute offloading strategy in Zhou 
et al. (2023). Multiple BSs with various data transmission quality are available to offload 
a computing workload when MEC encounters an ultra-dense sliced RAN. The expansion 
of state space in this situation renders the traditional reinforcement learning techniques 
(Cao et al. 2021b) impractical. Based on Lu et al. (2019), suggested RL with MultiPointer 
networks (Mptr-Net) to address offloading issue in MEC, and results revealed that their 
method achieved greater than 98% optimality. To tackle placement problem for virtual net-
work functions (VNF), authors in Lu et  al. (2019) also developed a deep RL technique 
with a sequence-to-sequence method in an effort to reduce power consumption. A deep RL 
technique for dynamic computation as well as radio resource control in vRANmethod was 
suggested in recent work (Filali et al. 2022) as the vrAIn framework. There is currently no 
prior effort to use such techniques for functional split optimisation in vRAN, despite the 
fact that they are promising for tackling complicated combinatorial issues for zero-touch 
optimisation in wireless networks (Koudouridis et al. 2022; Jiang et al. 2019).
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3  System model

In this paper, we’ll take into account an ultra-dense service area served by a virtualized 
RAN with a set B = 1, B of BSs, as shown in Fig. 1. Over the same physical network archi-
tecture, both MEC services and conventional communication services are supported. At 
network’s edge, a MEC server is placed into place, giving the MUs powerful computa-
tional resources. By carefully outsourcing the generated compute jobs via BSs to MEC 
server for execution, MUs can anticipate a significantly enhanced computing experience. 
Consider wireless radio resources are divided into slices for normal communication as well 
as MEC in order to provide inter-slice isolation.

Consider a typical single Base Station (BS) downlink cellular network system. Time is 
divided into TTI units of 1 ms, indexed by t, 1, 2,… For each TTI, bandwidth is split up 
into a number of PRBs, designated as F = 1, 2,…, F. Consider cellular network is divided 
into a collection of N network slices, where N = 1, 2,…, N.

3.1  Signal transmission model

We may easily use Shannon’s capacity formulation to evaluate data rate in traditional ser-
vices, such eMBB with large transmitted packet sizes. The new uRLLC or MTC service, 
however, differs from typical services in that it transmits little packets (between 32 and 
200 bytes in size). Shannon’s capacity theory cannot adequately describe data rate in short 
packet transmissions. Instead, finite block length theory may be utilized to approximation 
possible data rate of short packet transmission by Eq. (1)

Instantaneous data rate of UE i ∈ Un can therefore be expressed as Eq. (2)

(1)Vi,j,t = 1 −

(

1 + pi,j,t
|||
hi,j,t

|||

2

∕N0

)−2

Fig. 1  Three cells in the con-
ventional C-RAN architecture, 
one RRH in every cell, and a 
centralised connection to the 
BBU pool
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where the binary variable si,j,t is set to 0 if the UE i is not assigned the j-th PRB and to 
1 otherwise. Additionally, only one UE may simultaneously acquire a PRB. FCFS policy 
dictates that every UE have a data queue at BS where it can keep incoming packets before 
transmitting them. At t-th TTI, queue length of UE i ∈ Un is designated as qi,t and evolved 
as follows by Eq. (3)

where  Ai,t is instantaneous packet arrival for UE i during t-th TTI and Zn is overall packet 
size (in bits). Additionally, active UEs in slice n are defined as collection of UEs having a 
nonzero queue length. Transmission-related latency as well as scheduling-related latency 
make up majority of the packet delay. In formula (4), the data rate of the UE determines the 
transmission delay, but the scheduling strategy determines the queuing latency. The packet 
delay in our system model is calculated by adding transmission delay as well as queuing 
delay. In order to mimic delay of m-th (m = 1, 2,…) packet arriving at i-th UE’s buffer

When UE’s average packet arrival rate is low in slice n, queuing delay is almost nil, 
which causes transmission delay to predominate over packet delays. Applications classify 
a data packet as dropping out from the perspective of service provisioning when its latency 
exceeds a maximum tolerated packet delay that has been set. Typically, packet losses are 
what define how reliable a transmission is. As a result, the likelihood that packet delay is 
in excess of a predetermined maximum packet delay threshold is defined as PDR of m-th 
incoming packet at i-th UE’s buffer in system model by Eq. (5)

where, Dmax
n

 is maximum tolerant packet delay of every UE in slice n. Packet latency of 
UE, as stated in formula (5), should be taken into consideration as one crucial QoS param-
eter during service provisioning. In the meantime, PDR of UE, as stated in formula (6), 
measures communication dependability, which is another crucial QoS parameter. We will 
thus utilise packet delay as well as PDR as two important metrics to assess QoS perfor-
mance of the service in the next section.

3.1.1  Photonic integrated circuits with dynamic optimization

By regulating light for lasing, switching, and optical filtering as well as for the trapping and 
emission of photons, ultra-small cavities play a crucial part in photonic integrated circuits. 
Ring resonators as well as photonic crystal micro-cavities are the most often used structures. 
One-dimensional (1D) micro-cavities are ideal for very dense packing since they have a very 
tiny footprint. Nowadays, Mach–Zehnder modulators have mostly been used to show high per-
formance electrooptical modulation in silicon. These modulator devices are in the mm range 
in length. Recently, ring resonator-based electro-optic modulators have been shown. The tiny 

(2)ri,t =

F∑

j=1

si,j,t ⋅ ri,j,t, ( bits per TTI)

(3)qi,t+1 = max
{
qi,t − ri,t∕Zn, 0

}
+ Ai,t,

(4)Di,m = Wi,m + �i,m, (in TTI)

(5)𝛽i,t = Pr
{
Di,m > Dmax

n

}
, i ∈ Un,
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modulators have modulation frequencies greater than 10 Gb/s and ring diameters as low as 
12 m. If the rings are further shrunk to an order of magnitude smaller than for ring resona-
tors. However, only a modulation frequency of 250 Mb/s has been proven thus far. Therefore, 
more research is necessary to boost modulation speed. The creation of such miniature electro-
optic modulators is our key priority. For the arrangement of the modulators to be optimised 
for modulation frequency, loss reduction, and extinction ratio, we systematically iterated a 
number of design parameters. With a unique diode arrangement that decreases absorption and 
offers extremely low energy consumption per bit, goal was to attain 10 GHz modulation fre-
quency. The cavity’s waveguide is a component of a p-i-n diode. Free carriers are injected into 
or drained from the cavity by providing a voltage to the diode. Through so-called free car-
rier plasma dispersion effect, voltage modifies silicon’s refractive index in waveguide. Spec-
tral location of the transmission peak is shifted by the cavity’s refractive index change, which 
enables modulation of the transmitted light’s intensity. With this architecture, it has the lowest 
footprint yet demonstrated and could support a data throughput of 25 GBd.

The binary indication  xij(t) indicates if the UE i’s request j is fulfilled at time t. Following 
are restrictions for allocating resources to network slices by Eq. (6)

where F(t), P C (t), and P T (t) represent, respectively, computing, transmit, and avail-
able communication (frequency-time blocks) resources at gNodeB at time t. certain 
of gNodeB’s resources could already is allotted to certain requests that haven’t finished 
processing, thus some resources might not be accessible. Picking  Fij(t), PC

ij
(t), and PT

ij
 for 

resource allocation optimisation at time t is the narrow aim by Eq. (7)

We then take into account the temporal horizon optimisation problem. From time  t1 to time 
t, the resources are updated as follows by Eq. (8)

where, At time  t1, the resources related to frequency, CPU usage, and transmit power are 
freed. Every request has a lifespan of  lij, and if service begins at time t to fulfil it, request 
will finish at time t +  lij. Define R(t) as collection of requests that have ended at time t. 
Released as well as allocated resources at time t are represented by Eq. (9)

(6)

∑

i,j

Fijxij(t) ≤ F(t), (i, j) ∈ A(t),

∑

i,j

PC
ij
xij(t) ≤ PC(t), (i, j) ∈ A(t),

∑

i,j

PT
ij
xij(t) ≤ PT (t), (i, j) ∈ A(t),

(7)max
∑

ij

wijxij(t), (i, j) ∈ A(t)

(8)

F(t) = F(t − 1) + Fr(t − 1) − Fa(t − 1).

PC(t) = PC(t − 1) + PC
r
(t − 1) − PC

a
(t − 1),

PT (t) = PT (t − 1) + PT
r
(t − 1) − PT

a
(t − 1),



Photonic integrated circuits based optimization and enhancing…

1 3

Page 7 of 16 236

This issue can be resolved offline on the unrealistic presumption that the gNodeB is 
aware of all upcoming requests.

3.1.2  Fog edge model based multi agent self‑ organizing reinforcement learning:

Figure 1 depicts the scenario that was taken into consideration for this work. It is pred-
icated on an F-RAN architecture with three layers: a cloud computing layer, a network 
access layer, and a terminal layer. BBU pool enables centralised signal processing at the 
cloud computing layer. Additionally, there are single-antenna  L1 distributed RRHs con-
nected to the BBU pool at network access layer. Additionally, there are  M0 F-APs set up 
with L0antennas. Fog computing allows for the execution of collaborative radio signal pro-
cessing at dispersed F-APs in addition to the centralised BBU pool.

Figure 2 The terminal layer has  K1 single antenna F-UEs and  K0 single antenna con-
ventional UEs, whose sets are designated as  K0 and  K1. Traditional UEs, which aim for 
low power consumption as well as unpredictable bursty traffic arrivals, include industrial 
monitoring devices and sensors used in agricultural fields. F-UEs can be laptops or cell 
phones, both of which always have a sizable buffer. A network slice instance is built, con-
sisting of several modes and related physical resources, to offer each F-UE a high data 
rate. In C-RAN mode, RRHs collaborate to receive uplink data, while BBU pool offers 
centralised baseband processing and signal detection. Additionally, F-APs are set up for 
local services to lessen load on fronthaul. Similar to this, network slice instance tailored 
for conventional UEs offers both CRAN mode as well as F-AP mode. However, goal is to 
keep classic UEs’ transmission latency consistent and power consumption low. F-UEs can 
also help both network slice instances by using D2D mode. Particularly, F-UEs aggregate 
data in slice instance for conventional UEs to enable more traditional UEs to connect at 
once while relaying data traffic of other F-UEs to increase coverage of slice instance for 
F-UEs. There are N subchannels available for allocation, each having a bandwidth of W0. 
Both orthogonal as well as multiplexed subchannel techniques are taken into account in 
this article. In the former, strict isolation between slice instances is made possible by the 
allocation of subchannel n to a maximum of one standard UE i or F-UE j. with contrast, 
with the latter, numerous conventional UEs and F-UEs can share subchannel n. With this 
approach, a complex mode selection as well as resource allocation would ensure isolation 

(9)

Fr(t) =
∑

(i,j)∈R(t)

Fij,

PC
r
(t) =

∑

(i,j)∈R(t)

PC
ij
,

PT
r
(t) =

∑

(i,j)∈R(t)

PT
i,j

Fa(t) =
∑

i,j

Fij,

PC
a
(t) =

∑

i,j

PC
ij,
,

PT
a
(t) =

∑

i,j

PT
i,j

max
∑

t

∑

ij

wijxij(t), (i, j) ∈ A(t)
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between slice instances. Although a mechanism for allocating orthogonal subchannels pri-
marily ensures slice isolation in present efforts. It is still important to look at a multiplexed 
subchannel allocation technique in order to increase spectrum utilisation by Eq. (10)

RL must make judgements throughout time in order to maximise the expected value of 
the return or to choose best course of action. Here are our explanations of our return and 
policy policies by Eq. (11)

Similarly, action-value function is decomposed as fol-
lows:q�(s, a) = ��

[
Rt+1 + �q�

(
St+1,At+1

)
∣St = s,At = a

]
 . Additionally, we may observe 

the connection between  vπ(s) and  qπ(s, a):

The Bellman equation compares one state’s state-value function to those of other 
states. As demonstrated in Eq. (15), Bellman equation for  qπ(s, a),

(10)ℙ
[
St+1 = s�∣St = s

]
= ℙ

[
St = s�∣St−1 = s

]

(11)
Gt = Rt+1 + �Rt+2 +⋯ =

∞∑

k=0

�kRt+k+1

q�(s, a) = ��

[
Gt∣St = s,At = a

]

(12)v�(s) =
∑

�∈Δ

�(a∣s)qn(s, a)

(13)q�(s, a) = R
a
s
+ �

∑

s�∈S

Psx�v�
(
s�
)

(14)vπ(s) =
∑

a∈A

�(a∣s)

(

R
a
s
+ �

∑

s�∈S

P
a
ss�
vπ
(
s�
)
)

Fig. 2  The RAN slicing architecture’s single antenna system concept, which creates network slices for con-
ventional UEs and F-UEs
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Using the theorem by Eq. (16), we can quickly get an ideal policy by increasing q(s, 
a) over all actions.

Finding best value function is the last remaining problem. This issue is resolved 
using Bellman optimality equation. Equation (17) demonstrates that optimal state-value 
function and have a relationship that are found.

In order to create a Bellman optimality equation for v and q, express q(s, a) in terms 
of v(s) using Eqs. (18).

For the purpose of clarity, this research solely takes into account the deterministic 
case. Alternatively, the problem may be formulated stochastically, which would need 
thinking about anticipated returns for probabilistic transitions. Our method as well as 
conclusions are easily applied to stochastic MDPs if expectations are determined with 
accuracy. Controller selects actions to take in accordance with its policy h: X U using 
 uk = h(xk). From any initial state  (x0) and current time (k = 0), the controller’s goal is to 
find a method that maximises the discounted return by Eq. (19).

Discounted return accurately captures reward accumulated by controller over time. 
Long-term performance improvement is the aim of learning, which merely makes use of 
feedback on immediate, one-step performance by Eq. (20)

(15)qπ(s, a) = ℝ
a
s
+ �

∑

s�∈S

pss�
∑

a�∈A

�
(
a�∣s�

)
qn
(
s�, a�

)
.

v∗(s) = max�v�(s)

q∗(s, a) = max
�

q�(s, a)

� ≥ �� if vm(s) ≥ vm(s),∀s

(16)�̃�𝜋(a∣s) =

{
1 if a = arg mq∗(s, a)

0 a ∈ ⋅A

(17)

v∗(s) = max
a

q∗(s, a)

q∗(s, a) = R
a
s
+ �

∑

s�∈S

Pss�v∗
(
s�
)

(18)
v∗(s) = max

a

(

R
a
s
+ �

∑

s�∈S

Pss�v∗
(
s�
)
)

q∗(s, a) = ℝ
a
s
+ �

∑

s�∈S

P
a
ss�
max
a�

q∗
(
s�, a�

)
.

(19)R =

∞∑

k=0

�krk+1 =

∞∑

k=0

�k�
(
xk, uk

)
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Lipschitz continuity of Q is established utilizing Q-value iteration algorithm, called 
Q-iteration, which makes use of an a priori task model in form of transition as well as 
reward functions f. There is a finite  LQ that has the property by Eq. (21)

|||
�(x, u) − �

(
x, u

)|||
≤ L�

(
∥ x − x∣+ ∥ u − u ∥

)
 for second term by Eq. (22)

Lipschitz continuity of Q` and f. There-
fore,L�

∑�+1

k=0
�kLf ∣LQt+1

= L� + �LQt
Lf = L� + �Lf L�

∑�

k=0
�k and induction is complete. 

Taking limit as � → ∞, it follows that LQ = L�
∑∞

k=0
�kLf .

Algorithm for MASORL

1: start replay memory Ok with a size of U , mini-batch Ok with a size of S , and the Q-function with 
two sets �k and �̂k of random weights, for k = 1

2: repeat
3: After deploying �k , observe cost p

(
�
k, �k

)
 and new network state xk+1 ∈ X

5: Store �k =
(
�
k, �k , p

(
�
k , �k

)
, �k+1

)
 in Ok

7: Update �k+1 with gradient given by (19)
8: Regularly do �̂k+1 = �

k

9. Update epoch index by k ← k + 1

10. until A predefined stopping condition is gratified

(20)

Qh(x, u) = �(x, u) +

∞∑

k=1

�k�
(
xk, h

(
xk
))

Q∗(x, u) = �(x, u) + �maxw�∈UQ
∗
(
f (x, u), u�

)

[T(Q)](x, u) = �(x, u) + �maxu�∈UQ
(
f (x, u), u�

)

(21)

|||
Q∗(x, u) − Q∗

(
x, u

)|||
≤ LQ

(
∥ x − x ∥ + ∥ u − u ∥

)

|||
[
T
(
Q

�

)]
(x, u) −

[
T
(
Q

�

)](
x, u

)|||

=
||||
�(x, u) + � max

u�
Q

�

(
f (x, u), u�

)

−�
(
x, u

)
− � max

u
Q

�

(
f
(
x, u

)
, u�

)|||||

≤
||
|
�(x, u) − �

(
x, u

)|||

+ �
||||
max
u�

[
Q

�

(
f (x, u), u�

)
− Q

�

(
f
(
x, u

)
, u�

)]||||

(22)

�
|
|||
max
u�

[
Q

�

(
f (x, u), u�

)
− Q

�

(
f
(
x, u

)
, u�

)]||||
≤ � max

u�
LQt

∥ f (x, u) − f
(
x, u

)
∥

= �LQi
∥ f (x, u) − f

(
x, u

)
∥
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4  Experimental analysis

This section includes a summary of suggested system’s performance. Suggested system is 
implemented in Java. The Java platform’s physical setup consists of an Intel i5/i7 proces-
sor, 4 GB of RAM, and a 3.20 GHz CPU speed. A mathematical paradigm is suggested in 
the design concept to increase security of cloud storage. Security model works in tandem 
with the end user and the data owner in this strategy. Even when cloud storage is problem-
atic, the owner’s data is safeguarded during data uploading as well as data transmission 
to the right user. Assume that there is no intercellular interference created. The 1Mbit file 
size is the default. Transmission rate in backhaul link is set to R = 100 Mbps for simplicity. 
The reward decay is set to 0.9 and learning rate is set to 0.001. Assuming nothing else, we 
set U = 50, F = 500, and N = 5. Benchmark schemes for simulations are standard method, 
as well as learning schemes. Operational states of a particular processor as well as UE 
are then altered, if necessary, based on a greedy scheme action selection. The controller 
then adjusts the precoding and cache state in line with the transition matrix for each D2D 
transmitter transit. HPN will assist those UEs with unsatisfactory QoS in D2D mode access 
C-RAN whenever it receives any QoS violation data from UEs, and controller will turn on 
all of processors. State change, action, and resulting decrease in system power consump-
tion, which is reward, are then recorded in controller’s replay memory. In order to reduce 
MSE between goal Q values as well as predicted Q values of DQN, controller will update 
DQN after a number of interactions by training over a batch of interaction data randomly 
picked from replay memory. Additionally, controller will adjust the DQN weights to the 
intended DQN for every longer duration. A dense NN called the adopted DQN is built 
from an input layer, two hidden layers, and an output layer. Input layer has 14 neurons, 
whereas output layer has 96 neurons. Every hidden layer has 24 neurons, and ReLu is used 
as activation function. Table 1 contains a list of all other simulation-related parameters.

It is evident that a lower value of results in higher performance. This is due to the fact 
that a larger will result in about identical selection probabilities for various actions, even 
if difference between their Q values widens over the course of learning. Additionally, it 
is demonstrated that, when compared to τ = τ0/log(1 + tepi), a logarithmic decreasing 
τ = 0.1 and τ = 0.5 improves performance. This is due to the fact that logarithmic decrease 
tends to reduce its value as episode tepi rises, which causes a gradual selection of the best 

Table 1  Simulation parameters

Parameter Value Parameter Value

Steps to update DQN 480 Discounted factor 0.99
Capacity of re−
play memory

5000 UE

efficiency

1

20

Adam optimizer 0.0001 RRH power effi−
ciency

1

40

Steps to update DQN 3 Noise 10−13

W

Every DQN batch size 32 To populate in action selection 1000
Linearly anealing 3000 Fronthaul transmis−

sion power for every

UE

5w
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solutions with a larger likelihood. As can be seen, value of goal power-minus-rate function 
is severely constrained when overall amount of computing resources is restricted. Power-
minus-rate lowers dramatically when computing resource rises, which may be result of fol-
lowing factors. First, more conventional UEs/F-UEs may be supplied locally as the amount 
of computing resources grows. The power minus-rate may be reduced by increasing mode 
selection flexibility; secondly, with higher computational power, UEs/F-UEs that typically 
chose D2D mode can switch to FAP mode. Since the F-UE is not conveying data, it uses 
less energy, which causes the power-minus-rate to drop even lower.

4.1  Comparative analysis

Table 2 displays the results of a topological study of the network. In this case, we examine 
two network parameters: UE density and device density. Throughput, scalability, network 
efficiency, quality of service, and energy usage have all undergone parametric study.

Number of UE analysis is shown in Fig.  3. For comparison, existing Q-Learning 
achieved throughput of 91%, scalability of 45%, network efficiency of 81%, quality of ser-
vice (QoS) of 41%, energy consumption of 36%, and MDP achieved throughput of 93%, 
scalability of 48%, network efficiency of 83%, quality of service (QoS) of 43%, energy 
consumption of 39%.

From above Fig. 4 analysis carried out based on number of devices. Proposed technique 
attained throughput of 96%, scalability of 59%, network efficiencyof 91%, QoS of 51%, 
energy consumption of 49%, while existing Q-Learning attained throughput of 92%, scala-
bilityof 53%, network efficiency of 86%, QoS of 46%, energy consumption of 43%, MDP 
attained throughput of 94%, scalabilityof 55%, network efficiencyof 89%, QoS of 49%, 
energy consumption of 45%.

Since the number of slices the agent controlled was fixed in previous techniques, retrain-
ing the model was required if the number of slices changed between training and evalua-
tion. As a result, under the suggested technique, one agent allots rbs to a single slice, and 
the agent is called several times when there are numerous slices. Rb allocation that is inde-
pendent of the number of slices is actualized by this design. Additionally, the agent learns 
to maximise the number of slices in which the criteria are fulfilled while improving the 
efficiency of rb utilisation. This is done by satisfying the slice requirement with the least 
amount of rb allocation necessary. Two different sorts of slice designs are presented here: 
one creates slices by loosely categorising services, while the other creates a slice for each 
type of service. In this study, we employ the design that establishes a slice for every service 

Table 2  Analysis based on network parameters

Network parameters Techniques Throughput scalability Network 
efficiency

QoS Energy 
consump-
tion

Number of UE Q-Learning 91 45 81 41 36
MDP 93 48 83 43 39
MASORL 95 51 85 45 42

Number of devices Q-Learning 92 53 86 46 43
MDP 94 55 89 49 45
MASORL 96 59 91 51 49
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category. It is possible that numerous criteria are established for the same item in a slice 
when defining slices by broadly categorising services. By designating the tightest criteria 
for services in a slice as the slice requirements, the suggested solution may be used in this 
situation. Additionally, because each service has its own slice, there are fewer users per 
slice than there would be if the slices were determined by broadly categorising the ser-
vices. When there are one or more ues in the slice, a slice is created, and when there are 
zero ues, the slice is terminated. This indicates that slices are created and terminated more 
often than when the slices are determined by approximately categorising services.

Fig. 3  a–e Analysis for number of UE
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5  Conclusion

This study suggests a unique technique for radio access network data transmission that 
uses Photonic Integrated Circuits (PICs) with dynamic optimisation and multi-agent self-
organizing reinforcement learning (MASORL) based on the fog edge model. To discover 
the best course of action without having prior knowledge of network dynamics, we first 
suggest a double DQN based model computing offloading technique. A Q-function decom-
position approach is then integrated with double DQN, which results in a unique learning 
method for solution of stochastic computing offloading. This is driven by additive nature 

Fig. 4  a–e analysis for number of devices
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of utility function. Compared to the baseline rules, numerical studies demonstrate that our 
suggested learning techniques significantly enhance computation offloading performance. 
The connection between the concealed layer’s size and processing speed has to be looked 
into. Investigating factors that influence training outcomes, such as learning rate and batch 
size, is also crucial. In this study, we demonstrated that the simulator is capable of per-
forming the ideal RB allocation. The slice state could alter in ways that are unique to a real 
world, though, as the simulator cannot accurately replicate a genuine environment. How-
ever, because it takes a lot of time as well as money to train a model exclusively in a real 
environment, it is not practicable.
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