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Abstract
This study examines for the first time the adapted parabolic law nonlinearity form of 
(2+1)-dimensional Davey-Stewartson system, an important equation modeling the surface 
water wave packets with finite depth. For the first time, we will investigate the parabolic 
law nonlinearity form. Not only is this a significant aspect, but we will also explore it with 
various parameter values to see its impact on soliton dynamics. In order to transform the 
nonlinear partial differential equation into a form for which the analytical method can be 
applied, the ordinary differential equation structure obtained by first applying wave trans-
formation. In the following stage, we implement the new Kudryashov method and sinh-
Gordon equation expansion techniques to retrieve bright, dark, singular, and different types 
of kink solitons. The effect of parabolic law nonlinearity parameters on the obtained soliton 
types has also been examined. We illustrate the 3D and 2D graphs of some of the obtained 
solutions to gain a physical perspective. The study will contribute to the literature in terms 
of the form of the examined problem, its content and results, and the effectiveness of the 
applied methods.
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1  Introduction

Nonlinear partial differential equations (NLPDEs) are operated in order to model problems 
in various scientific and engineering areas. In addition to modeling NLPDEs, producing 
their analytical solutions is an area of great interest for researchers. Therefore, many tech-
niques have been used in the literature to find the analytical solutions of NLPDEs like the 
F-expansion scheme (Ebaid and Aly 2012; Zhao 2013; Yıldırım 2021), Hirota bilinear 
approach (Hereman and Zhuang 1994; Satsuma 2003; Guo et al. 2020), the unified Riccati 
equation expansion method (Ozisik 2022; Cakicioglu et al. 2023; Ozisik et al. 2023; Esen 
et al. 2022), the generalized projective Riccati equations technique (Shahoot et al. 2018; 
Akram et  al. 2021; Ozdemir 2022), enhanced Kudryashov method (Akbulut et  al. 2022; 
Arnous et  al. 2022; Arnous 2021; Arnous et  al. 2022), generalized Kudryashov method 
(Arnous and Mirzazadeh 2016), the enhanced modified extended tanh expansion scheme 
(Onder et al. 2022; Ozisik et al. 2023), 

(
G′

G2

)
-expansion method (Arshed and Raza 2020), 

exp(−�(�))-expansion method (Raza et al. 2023; Javid and Raza 2019; Raza et al. 2019), 
extended trial equation method (Raza and Javid 2019), trial equation method (Arnous et al. 
2016).

Nonlinear evolution equations (NLEEs) model some of the nonlinear dynamical systems 
in the field of applied sciences such as optics (Mirzazadeh et al. 2015; Arnous and Moraru 
2022; Arnous 2022), plasma (Debnath 1994; Whitham 2011). From these systems, the nonlin-
ear Schrödinger equation (NLSE) is the most basic example of nonlinear integrable systems. 
NLSEs have been utilized to explain the ultrashort pulse propagation in the optical fiber and 
the slow evolution of a nonlinear weak wave packet in deep water (Peregrine 1983). Davey-
Stewartson system (DSS) that was derived by Davey (1974) is an extension of the NLSE. The 
following (2 + 1)−dimensional DSS is studied by many researchers for the surface water wave 
packets with finite depth (Davey 1974; Zedan and Monaquel 2010):

in which �(x, y, t) denotes the amplitude of the wave packet of the surface, �(x, y, t) is the 
velocity potential of the mean flow interacting with the surface wave; moreover, x, y rep-
resent the coordinates of the scaled spatial and t defines the coordinate of the scaled tem-
poral. � represents the surface tension, so � = 1 gives the DSI equation and � = i gives the 
DSII equation (Sun et al. 2018). Furthermore, focusing or defocusing cases are described 
with � = ±1 . A general multiple-soliton solution form and the analytical traveling wave 
solutions for the DSS have been acquired via the simplest equation approach; besides, con-
servation law and the dispersion study have been analyzed in Selima et al. (2016). In Sun 
et al. (2018), through the Kadomtsev-Petviashvili hierarchy reduction, Sun et al. have pro-
duced the semi-rational solutions for eq. (1). Jafari et al. have obtained some novel analyti-
cal solutions including trigonometric and exponential functions for eq. (1) with the help of 
the first integral scheme in Jafari et al. (2012). Periodic and solitary wave solutions for the 
DSS have been derived through the sine-cosine approach in Zedan and Monaquel (2010). 
Gaballah et  al. have produced the novel Jacobi elliptic wave function solutions of DSS 
utilizing the modified Jacobi elliptic function approach in Gaballah et al. (2022). Li et al. 
have acquired the lie symmetry algebra and some analytical solutions with the generalized 

(1)
{

i�t +
1

2
�2(�xx + �2�yy) + �|�|2� − �x� = 0,

�xx − �2�yy − 2�(|�|2)x = 0,
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sub-equation expansion approach for a generalized DSS in Li et al. (2008). Dark, singu-
lar, bright, periodic, and rational solitary wave solutions of the generalized DSS have been 
acquired through the first integral scheme, exp(−Φ(�))−expansion approach and first inte-
gral technique in Arshed et al. (2021). Moreover, the asymptotic attributes for the acquired 
family of the higher-order lump solutions of the DSII equation have been presented in Guo 
et al. (2022). Tang et al. introduced the resonant DSS in 2009 and its analytical solutions 
that define propagation, doubly periodic wave patterns have been produced with the multi-
linear variable separation technique in Tang et al. (2009). Besides, for the (2 + 1)−dimen-
sional resonant DSS, it has been shown that the system is integrable by applying the Pain-
leve test in Liang and Tang (2009). In order to derive bright, dark, and mixed dark-bright 
soliton solutions for the (2 + 1)−dimensional resonant DSS, the sine-Gordon expansion 
technique has been utilized in Ismael et al. (2023). The new optical soliton solutions for 
the conformable coupled resonant DSS have been examined in Alabedalhadi et al. (2022) 
through the ansatz approach. Ismael et al. have produced dark, singular, bright, and singu-
lar solutions of the (2 + 1)−dimensional resonant DSS with M-derivative in Ismael et al. 
(2021).

The new modified sine-Gordon technique has been used to get soliton solutions of vari-
able-coefficient DSS in El-Shiekh and Gaballah (2020a). New Jacobi, periodic, and hyper-
bolic wave solutions have been retrieved for DSS with complex variable coefficients in El-
Shiekh and Gaballah (2020b) via the direct similarity reduction technique.

The DSS was introduced as an extension of the NLSE. Although (2 + 1)−dimensional 
DSS, generalized DSS, and resonant DSS have been studied before the parabolic law non-
linearity form has been adapted for the first time in this study. The (2 + 1)−dimensional 
DSS (Ebadi et al. 2011) with the parabolic law nonlinearity is reads:

The (2 + 1)−dimensional DSS is one of the complex member of NLPDEs that arises in 
the study of several physical phenomena including nonlinear optics, plasma physics, and 
fluid dynamics. The motivation for examining this model is that the presented system can 
allow estimable mathematical and physical insights into the behavior of solitons, waves, 
and other nonlinear structures. As is known, especially when it comes to events related to 
nonlinear optics and the models designed for them, one of the areas of focus is the control-
lability and management of soliton transmission. At the forefront of the factors affecting 
soliton transmission is nonlinearity, and in the last 20 years, various forms of nonlinear-
ity, with the general heading of self-phase modulation, have found their place in the lit-
erature. Examples such as the parabolic law, power law, dual power law, polynomial law, 
cubic-quintic-septic law, anti-cubic law, triple power law, cubic-quintic-septic-nonic law, 
Kudryashov’s law of refractive index, generalized anti-cubic law, and log law have been 
the subject of examination for many models in the literature. The primary focus is on con-
trolling the form and amplitude of the soliton. In this context, the DSS model under inves-
tigation is also a widely studied area in the literature and has been the subject of many 
studies. Investigating the solutions and dynamics of the DSS with parabolic law may pro-
duce advancements in studying optical solitons and controlling wave patterns. Therefore, 
research in this area can have implications for solving real-world problems. The presented 

(2)
{

i�t + a(�xx + �yy) + b(c1|�|2 + c2|�|4)� − ��� = 0,

�xx + �yy + �(d1|�|2 + d2|�|4)xx = 0.
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model comprises physics, mathematics, and engineering concepts. Hence, another motivat-
ing point is that this study is interdisciplinary and creates connections between different 
branches of science. We emphasize that there is no study on eq. (2) in the literature; there-
fore, we aim to implement the new Kudryashov method (nKM) and sinh-Gordon equa-
tion expansion method (ShGEEM) to the (2 + 1)−dimensional DSS with parabolic law to 
obtain the analytical solutions.

There are various analytical methods in order to acquire the analytical solutions of NLP-
DEs in the literature. We can classify these approaches in many different ways like allow-
ing effective results, and ease of implementation, including different kinds of soliton solu-
tions, not requiring too much mathematical processing. In fact, each method has its own 
advantages and disadvantages. Thus, the selection of the correct and appropriate method 
for the problem under consideration depends on the specific requirements and choice of 
the researcher for their analysis. However, in this article, the reasons for choosing the 
nKM for the presented model are its widespread use and ease of implementation. Moreo-
ver, ShGEEM retrieves more comprehensive and different types of solution functions and 
soliton types.

The remainder of this manuscript is organized as follows: In Sect.  2, utilizing the 
wave transformation we present the mathematical analysis for Eq. (2). The nKM and its 
implementation to Eq. (2) is offered in Sect. 3. We give the definition and application of 
ShGEEM in section 4. In Sect.  5, we achieve the stability analysis. The graphical illus-
trations and interpretations are represented in Sect. 6. Finally, we give the Conclusion in 
Sect. 7.

2 � Mathematical analysis of the adapted system given in Eq. (2)

In this section, in order to produce the ordinary differential equation (ODE), we implement 
the following wave transformation:

in which U(�) and V(�) denote the scalar soliton profile for the complex � and scalar � 
functions, respectively. �(x, y, t) represents the phase component and p1 , p2 are associated 
with the inverse widths of the soliton while v describes the velocity. �1 and �2 are the fre-
quency of the soliton in the direction of x and y, respectively. While � represents the wave 
number, Ω denotes the phase constant.

When we apply the wave transformation in eq. (3) to the first equation of Eq. (2), the 
following ODE is acquired:

(3)
�(x, y, t) = U(�)ei�(x,y,t), �(x, y, t) = V(�),

�(x, y, t) = −�1x − �2y + �t + Ω, � = p1x + p2y − vt,

(4)a
(
p2
1
+ p2

2

)
U�� −

(
a
(
�2

1
+ �2

2

)
+ �

)
U − �UV + bc1U

3 + bc2U
5 = 0,
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which comes from the real part while the imaginary part serves the condition as follows:

When we use the wave transformation in Eq. (3) for the second equation of Eq. (2), we get 
the following relation:

Substituting Eq. (6) into Eq. (4), we derive the following ODE:

When applying the homogeneous balance rule between the highest order terms U′′ and U5 , 
we get m + 2 = 5m , that is m =

1

2
 . Since the m is the balance number and it is considered as 

positive integer, we need to define the following simple transformation:

where P = P(�) is a new function. When we substitute Eqs. (8) into (7), we have the fol-
lowing equation:

Finally, balancing the terms PP′′ and P4 , the balancing constant is found as m = 1.

3 � Explanation and implementation of nKM

In this section, the presentation and application of the nKM method (Kudryashov 2020; 
Ozisik et al. 2022; Albayrak 2023), which is the first of the methods to be used in the arti-
cle, are provided. One of the reasons for choosing the nKM method is that it is a contem-
porary method, easily applicable, secure, and has the capability to produce bright, dark, 
and singular soliton solutions, which are among the fundamental soliton types. The nKM 
method, like many methods commonly used in the literature, is based on an auxiliary dif-
ferential equation, and many methods that use the same auxiliary equation have been used 

(5)v = −2a(�1p1 + �2p2).

(6)V(�) = −
�p2

1
U(�)2

(
d2U(�)2 + d1

)

p2
1
+ p2

2

.

(7)

a
(
p2
1
+ p2

2

)
U�� −

(
a
(
�2

1
+ �2

2

)
+ �

)
U +

(
bc1 +

��p2
1
d1

p2
1
+ p2

2

)
U3

+

(
bc2 +

��p2
1
d2

p2
1
+ p2

2

)
U5 = 0.

(8)U =
√
P,

(9)
a
(
p2
1
+ p2

2

)2(
P�
)2

− 2a
(
p2
1
+ p2

2

)2
PP�� + 4

(
p2
1
+ p2

2

)[(
�2

1
+ �2

2

)
a + �

]
P2

+
[
4
(
−��d

1
− bc

1

)
p2
1
− 4p2

2
bc

1

]
P3 +

[
4
(
−��d

2
− bc

2

)
p2
1
− 4p2

2
bc

2

]
P4 = 0.
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in the literature in recent years. Moreover, many of these methods contain a large num-
ber of solution functions. At this point, one of the advantages of the nKM method is that 
it does not contain repeating soliton solutions. Additionally, the ability of the nKM to be 
applied to a wide range of NLPDE equations constitutes another advantageous point. These 
fundamental features have been the main factors in selecting the nKM method. The nKM 
(Kudryashov 2020; Ozisik et al. 2022; Albayrak 2023) offers that the solution of eq. (2) in 
the following structure:

in which Λs are real constants to be determined, provided that Λm ≠ 0 . m denotes the bal-
ancing constant found as m = 1 in eq. (2). Therefore, eq. (10) becomes,

where �(�) is the solution of the following formula:

in which � and � are real values. Additionally, the solution of eq. (12) is given as follows 
(Kudryashov 2020; Ozisik et al. 2022):

in which � is a nonzero constant. Equation (13) gives the bright soliton when � = 4�2 and 
the singular soliton for � = −4�2.

When substituting Eqs.  (11) with   (12) into Eq.  (9), collecting all �s(�) coefficients and 
equating them to zero, we reach the following algebraic system:

where M =
(
��d2 + bc2

)
 , N =

(
��d1 + bc1

)
 , S =

(
p2
1
+ p2

2

)
 and R =

(
�2

1
+ �2

2

)
 . The solu-

tion sets of eq. (14) are derived as follows: Set 1:

(10)P(�) =

m∑
s=0

Λs�
s(�),

(11)P(�) = Λ0 + Λ1�(�),

(12)��
2

(�) = �2�2(�)[1 − ��2(�)],

(13)�(�) =
4�

4�2e�� + �e−��
,

(14)

�0(�) ∶
((
−Mp2

1
− p2

2
bc2

)
Λ2

0
+
(
−Np2

1
− p2

2
bc1

)
Λ0 + S(aR + �)

)
Λ2

0
= 0,

�1(�) ∶
(
8
(
Mp2

1
+ p2

2
bc2

)
�2

0
+ 6

(
Np2

1
+ p2

2
bc1

)
�0 +

(
a�2S − 4aR − 4�

)
S
)
Λ1Λ0 = 0,

�2(�) ∶
(
24

(
Mp2

1
+ p2

2
bc2

)
Λ2

0
+ 12

(
Np2

1
+ p2

2
bc1

)
Λ0 +

(
a�2S − 4aR − 4�

)
S
)
Λ2

1
= 0,

�3(�) ∶
((
−4

(
Mp2

1
+ p2

2
bc2

)
Λ0 − Np2

1
− p2

2
bc1

)
Λ2

1
+ a�2�S2Λ0

)
Λ1 = 0,

�4(�) ∶
(
−4

(
Mp2

1
+ p2

2
bc2

)
Λ2

1
+ 3a�2�S2

)
Λ2

1
= 0,



Davey‑Stewartson system and investigation of the impacts of…

1 3

Page 7 of 23  246

Set 2:

Set 3:

Set 4:

where K =
(
c1d2 − c2d1

)
 . After we substitute the sets in Eqs. (15)–(18) into Eq. (11) with 

Eq. (13) and utilize Eqs. (3),  (8), we acquire the following analytical solutions for Eq. (2):

where p1 , � are given in eq. (15).

where p1 , p2 are described in Eq. (16).

(15)p1 =

√
−bc1

N
p2, Λ0 = 0, Λ1 =

√
−3�d1(aR+�)

bK
, � = 2

√
(aR+�)N

a��d1p
2

2

,

(16)� =
−3aR�d1−bKΛ

2

1

3d1�
, Λ1 = Λ1, p1 =

2bΛ1

√
3a���c1K

3a����d1
, p2 =

2Λ1

√
−3a���bKN

3a����d1
,

�1 = �1, �2 = �2, Λ0 = 0,

(17)
� = −

4bΛ2

1
KN

3a��p2
2
d2
1
�2
, � = −

a[�d1(−p22�
2+4R)�+4bc1R]
4N

, p1 =

√
−bc1

N
p2,

p2 = p2, Λ0 = 0, Λ1 = Λ1

(18)

� =
4c1Λ

2

1
b2K

3a��d2
1
�2p2

1

, � = −
a[4bc1 R+��d1�

2p2
1]

4bc1
, � = �, p2 =

√
−

N

bc1
p1, Λ0 = 0, Λ1 = Λ1.

(19)�1,1(x, y, t) =

�
4

√
−3�d1 (aR+�)

bK
�

4�2e��+�e−��

� 1

2

× ei(�t−x�1−y�2+Ω),

(20)�1,1(x, y, t) = −
4��p2

1

S

�√
−3�d1 (aR+�)

bK

4�2e��+�e−��

��
d1 + d2

�
4

√
−3�d1 (aR+�)

bK
�

4�2e��+�e−��

��
,

(21)�1,2(x, y, t) =

√
4Λ1�

4�2e��+�e−��
× e

i

(
−3aR�d1−bKΛ

2
1

3d1�
t−x�1−y�2+Ω

)

,

(22)�1,2(x, y, t) = −
�p2

1

S

(
4Λ1�

4�2e��+�e−��

)(
d1 + d2

(
4Λ1�

4�2e��+�e−��

))
,

(23)�1,3(x, y, t) =

⎛⎜⎜⎝
4Λ1�

4�2e��−
4bΛ2

1
KN

3a��p2
2
d2
1
�2
e−��

⎞⎟⎟⎠

1

2

× e
i

�
−

a[�d1(−p22�
2+4R)�+bc1R]
4N

t−x�1−y�2+Ω

�

,

(24)�1,3(x, y, t) = −
�p2

1

S

⎛⎜⎜⎝
4Λ1�

4�2e��−
4bΛ2

1
KN

3a��p2
2
d2
1
�2
e−��

⎞⎟⎟⎠

⎛⎜⎜⎝
d1 + d2

⎛⎜⎜⎝
4Λ1�

4�2e��−
4bΛ2

1
KN

3a��p2
2
d2
1
�2
e−��

⎞⎟⎟⎠

⎞⎟⎟⎠
,
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where p1 is given in Eq. (17).

where p2 is represented in Eq.  (18). In Eqs. (19)–(26), v = −2a(�1p1 + �2p2) , 
� = p1x + p2y − vt which are given in Eqs. (5) and  (3), respectively.

4 � Description and enforcement of ShGEEM

In this section, efforts are being made to introduce and implement the ShGEEM, which 
is chosen as the second method (Yan 2003a, b; Mathanaranjan et al. 2022; Seadawy et al. 
2018; Kumar et al. 2018; Foroutan et al. 2018; Kumar et al. 2018, 2019). In addition to 
being an effective method, the SHGEEM also has the capability to be applied to many 
problems. The ease of application and reliability of the method are among its other advan-
tages. We take into account the following solution form in order to apply the proposed 
scheme:

where �s and Υs are real values. Moreover, Θ = Θ(�) satisfies the following equation:

where C represents the integration constant. Considering the C = 0 , eq. (28) gives the fol-
lowing solutions:

Since we determined the balancing constant as m = 1 in eq. (2), therefore, eq. (27) converts 
into:

After substituting Eqs. (31) and  (28) into Eq. (9), we produce a polynomial. If the coeffi-
cients of coshi(Θ)sinhj(Θ), i = 0,… , 4, j = 0, 1 are equated to zero, the following algebraic 
system is derived:

(25)�1,4(x, y, t) =

⎛
⎜⎜⎝

4Λ1�

4�2e��+
4c1Λ

2
1
b2K

3a��d2
1
�2p2

1

e−��

⎞
⎟⎟⎠

1

2

× e
i

�
−

a[4bc1R+��d1�2p21]
4bc1

t−x�1−y�2+Ω

�

,

(26)�1,4(x, y, t) = −
�p2

1

S

⎛
⎜⎜⎝

4Λ1�

4�2e��+
4c1Λ

2
1
b2K

3a��d2
1
�2p2

1

e−��

⎞
⎟⎟⎠

⎛
⎜⎜⎝
d1 + d2

⎛
⎜⎜⎝

4Λ1�

4�2e��+
4c1Λ

2
1
b2K

3a��d2
1
�2p2

1

e−��

⎞
⎟⎟⎠

⎞
⎟⎟⎠
,

(27)P(Θ) = �0 +

m∑
s=1

coshs−1(Θ)
[
�scosh(Θ) + Υssinh(Θ)

]
,

(28)
dΘ

d�
=
√
sinh2(Θ) + C,

(29)sinh(Θ) = csch(�), cosh(Θ) = coth(�),

(30)sinh(Θ) = isech(�), cosh(Θ) = tanh(�).

(31)P(Θ) = �0 + �1cosh(Θ) + Υ1sinh(Θ).
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where M =
(
��d2 + bc2

)
 , N =

(
��d1 + bc1

)
 , S =

(
p2
1
+ p2

2

)
 and R =

(
�2

1
+ �2

2

)
 . Solving 

the system given in Eq. (32), the solution sets are retrieved as follows:
 Family 1:

(32)

cosh0(Θ)sinh0(Θ):
[(

−24M�20 − 12N�0 + 4ap22 + 4aR + 4�
)

p21 + 2ap41
+2p22

(

−12�20bc2 − 6�0bc1 + ap22 + 2aR + 2�
)]

Υ2
1 + 4

(

Mp21 + p22bc2
)

Υ4
1

−p22
(

ap22�
2
1 + 4�20

(

−�20bc2 − �0bc1 + aR + �
))

− ap41�
2
1

+
[

−2ap22�
2
1 − 4

(

−M�20 − N�0 + aR + �
)

�20
]

p21 = 0,

cosh0(Θ)sinh1(Θ):

⎛

⎜

⎜

⎜

⎜

⎝

2
[

(

4M�0 + N
)

p21 + 4p22
(

�0c2 +
c1
4

)

b
]

Υ2
1

+
[(

−8M�20 − 6N�0 + 2ap22 + 4(aR + �)
)

p21
+ap41 +

(

−8�20bc2 − 6�0bc1 + ap22 + 4(aR + �)
)

p22
]

�0

⎞

⎟

⎟

⎟

⎟

⎠

Υ1 = 0,

cosh1(Θ)sinh0(Θ):

⎛

⎜

⎜

⎜

⎜

⎝

3
(

(

4M�0 + N
)

p21 + 4p22
(

�0c2 +
c1
4

)

b
)

Υ2
1

+
[(

−4M�20 − 3N�0 + 2ap22 + 2aR + 2�
)

p21 + ap41
+p22

(

−4�20bc2 − 3�0bc1 + ap22 + 2aR + 2�
)]

�0

⎞

⎟

⎟

⎟

⎟

⎠

�1 = 0,

cosh1(Θ)sinh1(Θ):
⎛

⎜

⎜

⎝

4
(

Mp21 + p22bc2
)

Υ2
1 +

[

−12M�20 − 6N�0 + 2ap22 + 2aR + 2�
]

p21
+ap41 +

[

−12�20bc2 − 6�0bc1 + ap22 + 2aR + 2�
]

p22

⎞

⎟

⎟

⎠

�1Υ1 = 0,

cosh2(Θ)sinh0(Θ): − 8
(

(

��d2 + c2b
)

p21 + p22bc2
)

Υ4
1

−2
⎛

⎜

⎜

⎝

(

−12M�20 − 6N�0 + 2ap22 + 2aR + 2�
)

p21
+ap41 + p22

(

−12�20bc2 − 6�0bc1 + ap22 + 2aR + 2�
)

⎞

⎟

⎟

⎠

�21

+
⎛

⎜

⎜

⎝

(

−24M�21 + 24M�20 + 12N�0 − 10ap22 − 4aR − 4�
)

p21 − 5ap41
−p22

(

24
(

c2b�21 − �20bc2
)

− 12�0bc1 + 5ap22 + 4aR + 4�
)

⎞

⎟

⎟

⎠

Υ2
1 = 0,

cosh2(Θ)sinh1(Θ):
⎛

⎜

⎜

⎝

(

(

4M�0 + N
)

p21 + p22
(

4�0c2 + c1
)

b
)

Υ2
1 +

(

3
(

4M�0 + N
)

�21 + 2ap22�0
)

p21
+a�0p41 + p22

(

12
(

�0c2 +
c1
4

)

b�21 + ap22�0
)

⎞

⎟

⎟

⎠

Υ1 = 0,

cosh3(Θ)sinh0(Θ):
⎛

⎜

⎜

⎝

3
[

(

4M�0 + N
)

p21 + 4p22
(

�0c2 +
c1
4

)

b
]

Υ2
1 +

(

(

4M�0 + N
)

�21 + 2ap22�0
)

p21
+p22

(

(

4�0c2 + c1
)

b�21 + ap22�0
)

+ a�0p41

⎞

⎟

⎟

⎠

�1 = 0,

cosh3(Θ)sinh1(Θ):
((

8Mp21 + 8p22bc2
)

Υ2
1 +

(

8M�21 + 6ap22
)

p21 +
(

8c2b�21 + 3ap22
)

p22 + 3ap41
)

�1Υ1 = 0,

cosh4(Θ)sinh0(Θ):

3
(

ap41 +
(

8M�21 + 2ap22
)

p21 + 8p22�
2
1bc2 + ap42

)

Υ2
1 + 4

(

Mp21 + p22bc2
)

Υ4
1

+
(

3ap41 +
(

4M�21 + 6ap22
)

p21 + p22
(

4c2b�21 + 3ap22
))

�21 = 0,

(33)
d1 =

(2aS−bc1�1)S

�1��p
2

1

, d2 = −
(4c2b�2

1
+3aS)S

4��p2
1
�2

1

, � = a(S − R),

p1 = p1, p2 = p2, �0 = �1, �1 = �1, Υ1 = 0.
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Family 2:

Family 3:

where K =
(
c1d2 − c2d1

)
 . If Eqs. (33), (34), (35) are substituted into Eq. (31) by consider-

ing Eqs. (3), (8), (29), (30) the following solutions are acquired:
-With the set in Eq. (33):

-With the set in Eq. (34):

-With the set in Eq. (35):

(34)� =
(−Υ2

1
bc2−3aR)d1+bc1d2Υ2

1

3d1
, p1 =

2
√
−3a��c1K Υ1b

3a��d1
, p2 =

2
√
3a��bKN Υ1

3a��d1
,

�1 = �1, �2 = �2, �0 = 0, �1 = 0, Υ1 = Υ1.

(35)

c1 =
−2��d1p

2

1
�1+ap

4

1
+2p2

1
ap2

2
+ap4

2

2�1bS
, c2 =

−16p2
1
�2

1
��d2−3ap

4

1
−6p2

1
ap2

2
−3ap4

2

16b�2

1
S

, � =
a(p21+p

2

2
−4�2

1
−4�2

2)
4

,

�0 = �1, �1 = �1, Υ1 = �1,

(36)�2,1(x, y, t) =
√
−�1(coth(�) − 1) ei((S−R)at−�1x−�2y+Ω),

(37)�2,1(x, y, t) =
(4bc2�2

1
coth(�)+3a coth(�)S−4c2b�

2

1
+5ap2

1
+5ap2

2
−4bc1�1)(coth(�)−1)

4�
,

(38)�2,2(x, y, t) =
√
�1(tanh(�) + 1) ei((S−R)at−�1x−�2y+Ω),

(39)�2,2(x, y, t) =
(4bc2�2

1
tanh(�)+3aS tanh(�)+4c2b�

2

1
−5aS+4bc1�1)(tanh(�)+1)

4�
.

(40)�2,3(x, y, t) =

√
Υ1

sinh(�)
× e

i
((−(bc2Υ21+3aR)t−3(�1x+�2y−Ω))d1+btc1d2Υ

2
1)

3d1 ,

(41)�2,3(x, y, t) =
(d1 sinh(�)+d2Υ1)c1Υ1b

sinh(�)2�d1
,

(42)�2,4(x, y, t) =

√
Υ1i

cosh(�)
× e

i
((−(bc2Υ21+3aR)t−3(�1x+�2y−Ω))d1+bc1d2Υ

2
1
t)

3d1 ,

(43)�2,4(x, y, t) =
i(id2Υ1+d1 cosh(�))c1Υ1b

cosh(�)2�d1
.

(44)�2,5(x, y, t) =

√
�1(1−cosh(�)+sinh(�))

sinh(�)
× e

i

(
a(S−4R)t

4
−�1x−�2y+Ω

)
,

(45)�2,5(x, y, t) = −
p2
1
��1((2d2�1+d1) cosh(�)−(2d2�1+d1) sinh(�)+d1)

(cosh(�)+1)(p21+p
2

2)

(46)�2,6(x, y, t) =

√
�1(i+sinh(�)+cosh(�))

cosh(�)
× e

i

(
a(S−4R)t

4
−�1x−�2y+Ω

)
,



Davey‑Stewartson system and investigation of the impacts of…

1 3

Page 11 of 23  246

In Eqs.(36)–(47) v = −2a
(
p1�1 + p2�2

)
 and � = −vt + p1x + p2y.

It can be declared that all the acquired solutions satisfy the presented system. Although 
Eqs. (42),(43), (46) and (47) are solutions offered by the ShGEEM and given mathemati-
cally, they have not been evaluated in the article due to the definition given in Eq. (3).

5 � Modulation instability

Substitute the followings into the Eq. (2);

where Φ0 and Ψ0 are normalized optical power. Then linearized equations in terms of 
Φ1(x, y, t) and Ψ1(x, y, t) are obtained as follows;

Substitute the followings into the linearized PDEs in Eq. (49):

where � , �1 and �2 are real values. Collecting the coefficients of ei(�t−x�1−y�2) and 
e−i(�t−x�1−y�2) and create a coefficient matrix as follows:

where

Solve the � in Eq. (51) in according to det(M) = 0:

(47)�2,6(x, y, t) = −
p2
1
��1(−(2d2�1+d1) sinh(�)−(2d2�1+d1) cosh(�)+id1)

(− sinh(�)+i)S
.

(48)
�(x, y, t) =

(
Φ0 + �Φ1(x, y, t)

)
e−iΨ0t,

�(x, y, t) =Ψ0 + �Ψ1(x, y, t),

(49)

�

(
a

(
�2

�x2
Φ1

)
+ a

(
�2

�y2
Φ1

)

+i
(
�

�t
Φ1

)
+
(
(5bc2Φ

3

0
+ 3bc1Φ0 + 1)Φ0 − �Ψ0

)
Φ1− �Ψ1Φ0

)
= 0,

�

(
�2

�x2
Ψ1+

�2

�y2
Ψ1+ 2�d1

(
�2

�x2
Φ1

)
Φ0 + 4�d2

(
�2

�x2
Φ1

)
Φ3

0

)
= 0.

(50)
Φ1(x, y, t) =A1e

i(�t−x�1−y�2) + A2e
−i(�t−x�1−y�2),

Ψ1(x, y, t) =B1e
i(�t−x�1−y�2) + B2e

−i(�t−x�1−y�2),

(51)M =

[
M11 M12

M21 M22

]
,

(52)

M11 =5bc2Φ4
0�A2 + 3bc1Φ2

0�A2 − a�A2�
2
1 − a�A2�

2
2 − �Ψ0�A2 − ��B2Φ0 + Φ0�A2 + �A2�,

M12 =5A1Φ4
0bc2� + 3A1Φ2

0bc1� − A1a��2
1 − A1a��2

2 − A1Ψ0�� − B1Φ0�� + A1Φ0� − A1��,
M21 = − 4�d2�A2�

2
1Φ

3
0 − 2�d1�A2�

2
1Φ0 − �B2�

2
1 − �B2�

2
2 ,

M22 = − 4A1Φ3
0�d2��

2
1 − 2A1Φ0�d1��2

1 − B1��
2
1 − B1��

2
2 .
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where

Since Eq.  (53) does not have a structure containing any complex form, it does not have 
an instability state. Therefore, modulation instability does not occur and the solutions of 
Eq. (2) are stable.

6 � Results and discussion

In this section, we showcase our results through graphical illustrations and provide interpretations 
of the gathered insights. Figs. 1a and  1b illustrate the 3D portraits for |�1,1(x, 1, t)| and �1,1(x, 1, t) 
at � = 2, c1 = 2, d1 = 1, c2 = 0.3, d2 = 1, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1,
� = 2, � = 1, � = 16, p2 = 2, Ω = 1 . We plot the 2D graphs in Fig.  1c–f to inves-
tigate the effects of the parameters c1 , c2 , d1 and d2 to the behavior of the soliton. 
The 2D views of |�1,1(x, 1, 1)| (continuous lines) and �1,1(x, 1, 1) (dashed lines) at 
� = 2, d1 = 1, c2 = 0.3, d2 = 1, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1, � = 2, � = 1,
� = 16, p2 = 2, Ω = 1 for c1 = 0.5, 0.75, 1.5 is depicted in Fig.  1c. We demon-
strate the 2D plots of |�1,1(x, 1, 1)| (continuous lines) and �1,1(x, 1, 1) (dashed lines) at 
� = 2, d1 = 1, c1 = 2, d2 = 1, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1, � = 2, � = 1,
� = 16, p2 = 2, Ω = 1 for c2 = 0.25, 0.75, 1.5 in Fig.  1d. The 2D 
views of |�1,1(x, 1, 1)| (continuous lines) and �1,1(x, 1, 1) (dashed lines) 
at � = 2, c1 = 2, c2 = 0.3, d2 = 1, a = 1, b = −0.4, �1 = 2, b = −0.4,
�1 = 2, �2 = 1, � = 1, �2 = 1, � = 1, � = 2, � = 1, � = 16, p2 = 2, Ω = 1 for 
d1 = 1, 2, 3 is plotted in Fig.  1e. We illustrate the 2D plots of |�1,1(x, 1, 1)| (continu-
ous lines) and �1,1(x, 1, 1) (dashed lines) at � = 2, d1 = 1, c1 = 2, c2 = 0.3, a = 1,
� = 2, � = 1, � = 16, p2 = 2, Ω = 1 for d2 = 0.25, 0.5, 1 in Fig.  1f. We can observe that 
Fig. 1 represents the bright soliton for |�1,1(x, 1, t)| and the dark soliton for �1,1(x, 1, t) . For 
increasing values of c1 in Fig. 1c, we can see that both the soliton represented with |�1,1(x, 1, 1)| 
moves to the right and the amplitude of the soliton decreases. Depending on the increasing val-
ues of c1 , the shape of the soliton turns into a more degenerate form, in a sense it gives a view 
whose apex approaches the horizontal axis. A similar view occurs for Fig. 1e but for decreasing 
values of d1 . In Figs. 1d and f, the observation obtained with the previous examination is fol-
lowed for increasing values of c2 and decreasing values of d2 without observing any horizontal 
movement of the soliton. However, the form of the soliton gives the view of more deformation 
in both graphs, that is, a view almost approaching the horizontal axis is formed. It is seen from 
Fig. 1c that the amplitude of the dark soliton decreases and moves to the right depending on the 
increasing values of c1 for �1,1(x, 1, 1) . A similar behavior occurs for decreasing values of d1 
in Fig. 1e. On the other hand, the amplitude of the soliton increases depending on the increase 
in c2 without a horizontal position change in Fig. 1d. A similar view appears due to decreasing 
values of d2 in Fig. 1f.

(53)� =
−(A1B2 − A2B1)

(
a�4

1
+ Ω1�

2

1
+ Ω2�

2

2

)

Ω3�
2

1
+ �2

2
(A1B2 + A2B1)

,

(54)

Ω1 =
(
−4��d2 − 5bc2

)
Φ4

0
+
(
−2��d1 − 3bc1

)
Φ2

0
− Φ0 + 2a�2

2
+ �Ψ0,

Ω2 = − 5bc2Φ
4

0
− 3bc1Φ

2

0
+ a�2

2
+ �Ψ0 − Φ0,

Ω3 =8A1A2Φ
3

0
�d2 + 4A1A2Φ0�d1 + A1B2 + A2B1.
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We demonstrate the 3D views of |�1,2(x, 1, t)| and �1,2(x, 1, t) for the parameter values 
� = 2, c1 = 2, d1 = 1, c2 = 0.3, d2 = 1, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1, � = 2,
� = 1, � = 16, p2 = 2, Ω = 1, � = 2, Λ1 = 1 in Fig.  2a and b, respectively. We depict 
the 2D graphs for |�1,2(x, 1, 1)| (continuous lines) and �1,2(x, 1, 1) (dashed lines) with 
� = 2, d1 = 1, c2 = 0.3, d2 = 1, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1, � = 2,
� = 1, � = 16, p2 = 2, Ω = 1, � = 2, Λ1 = 1 at c1 = 0.25, 0.75, 1.5 in Fig.  2c. It can be 
observed from Fig. 1c that depending on the decrease in c1 , the skirts of the soliton repre-
sentation for |�1,2(x, 1, 1)| open horizontally, and the bright soliton appearance gradually 

Fig. 1   The graphs of �
1,1
(x, 1, t) and �

1,1
(x, 1, t) in Eqs. (19),  (20) under the effects of c

1
, c

2
, d

1
 and d

2
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turns into a compacton-like appearance. Moreover, depending on the decrease in c1 , the dark 
soliton view for �1,2(x, 1, 1) deforms, gradually approaches the horizontal axis (decreases in 
amplitude), and the apex also shows a position change to the right. For c2 = 0.25, 0.75, 1.5 , 
the 2D plots of |�1,2(x, 1, 1)| (continuous lines) and �1,2(x, 1, 1) (dashed lines) are illustrated 
in Fig. 2d at � = 2, c1 = 2, d1 = 1, d2 = 1, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1, � = 2,
� = 1, � = 16, p2 = 2, Ω = 1, � = 2, Λ1 = 1 . From Fig.  2d we can see 
inverse effect from Fig.  2c because the skirts of the soliton for |�1,2(x, 1, 1)| 
and �1,2(x, 1, 1) open horizontally while c2 increases. We plot the 2D graphs 

Fig. 2   The plots of �
1,2
(x, 1, t) and �

1,2
(x, 1, t) in Eqs. (21),  (22) under the influences of c

1
, c

2
, d

1
 and d

2
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for |�1,2(x, 1, 1)| (continuous lines) and �1,2(x, 1, 1) (dashed lines) at the values 
� = 2, c1 = 2, c2 = 0.3, d2 = 1, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1, � = 2, � = 1,
� = 16, p2 = 2, Ω = 1, � = 2, Λ1 = 1 for d1 = 1, 2, 3 in Fig.  2e. In Fig.  2e, as d1 
increases, the width of the soliton acquired for |�1,2(x, 1, 1)| increases horizontally 
and the bright soliton view gradually converts to the compacton-like shape. Further-
more, it can be examined from Fig.  2e that the amplitude of the soliton decreases 
and the apex of the soliton shifts to the right as d1 increases. Figure  2f shows the 
2D views of |�1,2(x, 1, 1)| (continuous lines) and �1,2(x, 1, 1) (dashed lines) with 
� = 2, c1 = 2, d1 = 1, c2 = 0.3, a = 1, b = −0.4, �1 = 2, �2 = 1, � = 1, � = 2, � = 1,
� = 16, p2 = 2, Ω = 1, � = 2, Λ1 = 1 at d2 = 0.25, 0.5, 1 . Depending on the decrease 
in d2 , the width of the soliton for |�1,2(x, 1, 1)| and �1,2(x, 1, 1) increases horizontally in 
Fig. 2f; besides the amplitude of the soliton for �1,2(x, 1, 1) (dashed lines) decreases. It can 
be seen from Fig. 2 that it represents the compacton-like shape.

Figure  3a and b illustrate the 3D plots for |�2,1(x, 1, t)| and �2,1(x, 1, t) at 
�1 = 2, p1 = 1, p2 = 2, �1 = 0.2, �2 = 3, a = 0.8, b = 0.2, c1 = 0.2, c2 = 0.01,
�
1
= 2, p

1
= 1, p

2
= 2, �

1
= 0.2, �

2
= 3, a = 0.8, b = 0.2, c

1
= 0.2, c

2
= 0.01, � = 1, � = 0.2, Ω = −1   , 

respectively. We depict the 2D plots in Fig.  3c–f so that we examine the effects of the 
parameters �1, �2, p1, p2 to behavior of the soliton. The 2D views for |�2,1(x, 1, 1)| (con-
tinuous lines) and �2,1(x, 1, 1) (dashed lines) are illustrated in Fig.  3c using the values 
�1 = 2, p1 = 1, p2 = 2, �2 = 3, a = 0.8, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2, Ω = −1 with �1 = 1, 2, 3 . 
We display the 2D plots of |�2,1(x, 1, 1)| (continuous lines) and �2,1(x, 1, 1) (dashed lines) in 
Fig.  3d at �1 = 2, p1 = 1, p2 = 2, �1 = 0.2, a = 0.8, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2, Ω = −1 
at �2 = 0.25, 0.5, 1 . We demonstrate the 2D views for |�2,1(x, 1, 1)| (con-
tinuous lines) and �2,1(x, 1, 1) (dashed lines) in Fig.  3e with the values 
�1 = 2, p2 = 2, �1 = 0.2, �2 = 3, a = 0.8, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2, Ω = −1 
for p1 = 1, 2, 3 . Moreover, the 2D visualizations of |�2,1(x, 1, 1)| (con-
tinuous lines) and �2,1(x, 1, 1) (dashed lines) are plotted in Fig.  3f at 
�1 = 2, p1 = 1, �1 = 0.2, �2 = 3, a = 0.8, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2, Ω = −1 for 
p2 = 1, 2, 3 . It can be seen from Fig. 3c that depending on the increase in �1 , the soliton views 
for both |�2,1(x, 1, 1)| and �2,1(x, 1, 1) move to the left. The same effect is observed for �2 in 
Fig. 3d and for p2 in Fig. 3f. We can examine the inverse effect for p1 in Fig. 3e because accord-
ing to the increase in p1 , the soliton views for both |�2,1(x, 1, 1)| and �2,1(x, 1, 1) move to the 
right. We can analyze from Fig. 3 that it shows the singular soliton.

The 3D portraits of |�2,2(x, 1, t)| and �2,2(x, 1, t) are represented at the param-
eter values �1 = 2, p1 = 1, p2 = 2, �1 = 0.2, �2 = 3, a = 0.8, Ω = −1, b = 0.2,
c1 = 0.2, c2 = 0.01, � = 1, � = 0.2 in Fig. 4a and b, respectively. Figure 4a shows the 
kink soliton view as Fig.  4b represents the view of a combination of dark and kink 
soliton. We plot the 2D views of |�2,2(x, 1, 1)| (continuous lines) and �2,2(x, 1, 1) (dashed 
lines) at �1 = 2, p1 = 1, p2 = 2, �2 = 3, a = 0.8, Ω = −1, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2 
for �1 = 0.1, 0.2, 0.3 in Fig.  4c. We can observe from Fig.  4c that depending on the 
increasing values of �1 in the |�2,2(x, 1, 1)| graph, the kink soliton view turns into a 
smoother form; besides, there is no change in the levels of the lower and upper 
skirts (flats) of the soliton, that is, in the amplitude of the soliton. For �2,2(x, 1, 1) , 
depending on the increase in �1 , the kink-dark soliton view does not change in gen-
eral, but the lower peak (hole) point of the dark soliton shows a position change to 
the left. However, both the upper side (upper left flatness) and lower side (lower 
right flatness) of the kink soliton remain at the same level (amplitude) horizontally 
depending on the decreasing or increasing values of x. The 2D plots for |�2,2(x, 1, 1)| 
(continuous lines) and �2,2(x, 1, 1) (dashed lines) are depicted with the values 
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�1 = 2, p1 = 1, p2 = 2, �1 = 0.2, a = 0.8, Ω = −1, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2 
for �2 = 0.25, 0.5, 1 in Fig.  4d. It can be understood from Fig.  4d that the 
kink soliton view for |�2,2(x, 1, 1)| is preserved, and the soliton for |�2,2(x, 1, 1)| 
moves to the left depending on the increasing values of �2 . The same effect is 
observed for the soliton view of �2,2(x, 1, 1) in Fig.  4d, that is, there is a move-
ment to the left according to an increase in �2 . We represent the 2D views of 
|�2,2(x, 1, 1)| (continuous lines) and �2,2(x, 1, 1) (dashed lines) in Fig.  4e at the val-
ues �1 = 2, p2 = 2, �1 = 0.2, �2 = 3, a = 0.8, Ω = −1, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2 for 

Fig. 3   The plots for �
2,1
(x, 1, t) and �

2,1
(x, 1, t) in Eqs. (36) and  (37) under the effects of �

1
, �

2
, p

1
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p1 = 1, 2, 3 . We can interpret from Fig.  4e that with the increase of p1 , the soliton 
for |�2,2(x, 1, 1)| (solid lines) changes position to the right, but this change is not pro-
portional to the increase in p1 (red to green). At the same time, there is no change 
in the left and right flatness levels of the soliton for |�2,2(x, 1, 1)| . Moreover, for 
�2,2(x, 1, 1) , with the increase of p1 , the soliton reflects both a rightward movement 
and a vertical amplitude increase. With a similar interpretation, we can not say that 
these increments are directly proportional to p1 . The 2D graphs for |�2,2(x, 1, 1)| 
(continuous lines) and �2,2(x, 1, 1) (dashed lines) are displayed in Fig.  4f with 

Fig. 4   The plots for �
2,2
(x, 1, t) , �

2,2
(x, 1, t) in Eqs. (38) and  (39) with the effects of �

1
, �

2
, p

1
 and p

2
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�1 = 2, p1 = 1, �1 = 0.2, �2 = 3, a = 0.8, Ω = −1, b = 0.2, c1 = 0.2, c2 = 0.01, � = 1, � = 0.2 at 
p2 = 1, 2, 3 . It can be analyzed from Fig. 4f that although the soliton for |�2,2(x, 1, 1)| 
moves to the left, there is no change in the left and right flatness levels of the soliton 
for |�2,2(x, 1, 1)| as in Fig.  4e while p2 increases. Contrary to Fig.  4e, the soliton for 
�2,2(x, 1, 1) moves to the left with an increase of p2 . Furthermore, Fig.  4f gives the 
view of amplitude increment vertically with increment in p2.

We represent the 3D portraits of |�2,5(x, 1, t)| and �2,5(x, 1, t) at 
�1 = 2,Υ1 = 1, p1 = 1, p2 = 2, �1 = 0.1, �2 = 3, a = 0.8, b = 0.2, � = 1, � = 0.4, Ω = −1 

Fig. 5   The graphs of �
2,5
(x, 1, t) , �

2,5
(x, 1, t) in Eqs. (44),  (45) under the effects of �

1
, �

2
, p

1
 and p
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in Fig.  5a and b, respectively. We can observe that Fig.  5a and b dis-
play the kink soliton. In Fig.  5c, the 2D views for |�2,5(x, 1, 1)| (con-
tinuous lines) and �2,5(x, 1, 1) (dashed lines) are depicted using 
�1 = 2,Υ1 = 1, p1 = 1, p2 = 2, �2 = 3, a = 0.8, b = 0.2, � = 1, � = 0.4, Ω = −1 
with �1 = 0.1, 0.2, 0.3 . It is seen from Fig.  5c that for both |�2,5(x, 1, 1)| 
graph and �2,5(x, 1, 1) graph, the lower and upper flatness levels of the 
soliton, that is, the amplitude of the soliton, do not change and there is a 
very small movement to the left with the increase of �1 . We illustrate the 
2D plots of |�2,5(x, 1, 1)| (continuous lines) and �2,5(x, 1, 1) (dashed lines) via 
�1 = 2,Υ1 = 1, p1 = 1, p2 = 2, �1 = 0.1, a = 0.8, b = 0.2, � = 1, � = 0.4, Ω = −1 
for �2 = 0.25, 0.5, 1 in Fig.  5d. Similar to the observation in Fig.  5c, it can 
be interpreted from Fig.  5d that the amplitude of the soliton does not change 
for both |�2,5(x, 1, 1)| graph and �2,5(x, 1, 1) graph, while the soliton moves 
to the left with the increase of �2 . Moreover, Fig.  5e demonstrates the 2D 
views of |�2,5(x, 1, 1)| (continuous lines) and �2,5(x, 1, 1) (dashed lines) with 
�1 = 2,Υ1 = 1, p2 = 2, �1 = 0.1, �2 = 3, a = 0.8, b = 0.2, � = 1, � = 0.4, Ω = −1 
at p1 = 1, 2, 3 . Figure  5e shows that the solitons for both |�2,5(x, 1, 1)| and 
�2,5(x, 1, 1) move the the right with the increment of p1 . Depending on the increase 
in p1 , the amplitude of the soliton does not change for |�2,5(x, 1, 1)| graph, while 
the amplitude of the soliton increases for �2,5(x, 1, 1) graph according to Fig.  5e. 
The 2D plots of |�2,5(x, 1, 1)| (continuous lines) and �2,5(x, 1, 1) (dashed lines) at 
�1 = 2,Υ1 = 1, p1 = 1, �1 = 0.1, �2 = 3, a = 0.8, b = 0.2, � = 1, � = 0.4, Ω = −1 are 
depicted for p2 = 1, 2, 3 in Fig. 5f. Unlike Fig. 5e, in  5f, the movement of the soliton 
is to the left for both |�2,5(x, 1, 1)| graph and �2,5(x, 1, 1) graph depending on the p2 
increment. Furthermore, with the increment of p2 , while there is no change in the 
amplitude of the soliton for |�2,5(x, 1, 1)| graph, the amplitude of the soliton decreases 
for �2,5(x, 1, 1) graph in Fig. 5f.

In conclusion for this section, it should be noted that the graphs presented above 
and the examinations conducted pertain to the parabolic law nonlinearity form of the 
(2+1)-DSS model, which has been introduced for the first time in this study. In this 
regard, the results obtained have been presented for the first time in this study. Moreo-
ver, before proceeding to the graphic presentations of the conducted studies, it has 
been verified that all the solution functions obtained satisfy the main equation.

7 � Conclusion

In this research article, the (2+1)-dimensional Davey-Stewartson system, which has a dis-
tinctive importance among NLPDEs and is the subject of many studies, has been inves-
tigated by adapting its parabolic law nonlinearity form. The examination was conducted 
using two effective methods, nKM and ShGEEM, and bright, dark, singular, and various 
kink-type soliton solutions were obtained. The 3D and 2D plots of some of the acquired 
solutions were depicted by using the appropriate parameter values. Moreover, the effect 
of parameters related to the parabolic law nonlinearity form has been investigated and 
interpreted with detailed graphical presentations. The acquired results provided us that the 
generated system is a model that produces different types of solitons and gives analytical 
solutions. The model that is worked on awaits the researchers’ interest to obtain different 
types of solitons using other methods, to study the fractional forms, to investigate multiple 



	 H. Esen et al.

1 3

246  Page 20 of 23

soliton solutions, to conduct bifurcation analysis, and to research its stochastic forms as 
open problems in this field.
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