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Abstract
This research presents the wave propagation analysis due to the interaction between electro-
magnetic waves and a finite-width slit embedded in an anisotropic medium. The separated 
field results are obtained in the case of Neumann boundary conditions while employing 
Fourier transform and Wiener–Hopf analysis. The numerical findings using the rectangular 
and polar plots of the far-field are presented to investigate the impacts of various physi-
cal parameters and characteristics of the anisotropic medium. The results provide signifi-
cant insights, including the amplification of oscillations with changes in wave number and 
slit width, the reduction of wave dispersion in anisotropic media, and the observation of 
an extended wavelength with an expanding electron charge density in the separated field. 
Notably, nullity occurs at observation angles of 0 and ?, offering valuable directions for 
future research. These findings enhance comprehension of electromagnetic wave diffrac-
tion in anisotropic media, with implications for optics and telecommunications.

Keywords  Plane wave · Electromagnetic waves · Non-thermal plasma · Wiener–Hopf 
method

List of symbols
EM	� Electromagnetic
F+	� Fourier transform of Hz(x, y) for right of the slit
F−	� Fourier transform of Hz(x, y) for left of the slit
Fl	� Fourier transform of Hz(x, y) for finite width
F

inc	� Fourier transform of incident field
F

ref 	� Fourier transform of reflected field
Hdc	� Magnitude of geomagnetic field vector
Hz(x, y)	� Orthogonal magnetic field to the plane
Htot

z
(x, y)	� Total field

Hinc
z
(x, y)	� Incident field

H
ref
z (x, y)	� Reflected field

H
diff
z (x, y)	� Diffracted field

H
sep
z (x, y)	� Separated field
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Hint
z
(x, y)	� Interaction field

keff 	� Wave propagation constant
l	� Slit parameter for width
x, y, z	� Coordinate axes

Greek symbols
�	� Fourier transform variable of x
�	� Coefficient function of F
�0	� Angle of incidence
i	� Iota
K(�)	� Kernel function
�	� Real part of �
�	� Imaginary part of �
�	� Observational angle (angle of contour transformation)

1  Introduction

The study of wave scattering, diffraction, and gratings caused by periodic patterns is criti-
cal in electromagnetic and optical theory. A variety of numerical and analytical techniques 
have been evolved, and diffraction mechanisms for a wide range of periodic structures have 
been investigated (Nosich 1993). An analytical regularization technique has been devel-
oped for wave scattering and eigenvalue problems and this bases on the conversion of 
a first kind or strongly singular second kind integral equation to a second kind integral 
equation of smoother kernel (Nosich 1999). For electromagnetic field with inhomogene-
ous media, a combination of improved Fourier series expansion method and extrapolation 
method has been used to obtain the correct value of eigenvalue and eigenvectors for the 
case of TM wave (Yamasaki et al. 2005). The exact relativistic outcome has been obtained 
for scattering of electromagnetic wave by a perfectly conducting wedge in uniform transla-
tional motion and the simulation results of Doppler frequency spectra have been presented 
(De Cupis et  al. 2002). A comprehensive study on electromagnetic wave propagation in 
free space and complex geometries has been performed which has explored the compari-
son of simulation results with analytical solutions, experimental data, and other numerical 
methods to ensure the accuracy and reliability of the analysis (Kunnz and Luebbers 1993). 
The Wiener–Hopf method is still useful for modern scientists, and its range of applications 
is expanding (Lawrie and Abrahams 2007). The majority of foregoing published work sub-
ject to this technique demonstrates the Wiener–Hopf technique’s applicability to several 
disciplines of natural sciences and engineering (Noble 1958). It provides a powerful way of 
coping with a diverse range of problems related to scattering that may be tackled through 
Mellin, Laplace, and Fourier transforms. A mathematical model was developed for line and 
point source diffraction of electromagnetic wave theory by conductible half plane (Jones 
1964) which was further applied to acoustic model for line/point source diffraction by con-
sidering rigid half plane (Jones 1972). This innovative idea was used to calculate the scat-
tering by junction of transmissive and soft-hard plane (Ayub et al. 2008). The line source 
diffraction for slit was modelled to figure out the effects of absorption and Mach number on 
the amplitude of the velocity potential (Ayub et al. 2009) which was further extended to a 
three dimensional study in terms of the point source to calculate the diffraction of spheri-
cal waves (Nawaz et al. 2014). The scattering theory of electromagnetic waves for more 
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complex structures such as semi-infinite parallel-plate wave-guide with sinusoidal wall 
corrugation (Zheng and Kobayashi 2009) as well as finite sinusoidal grating (Eizawa and 
Kobayashi 2014) were investigated through combined analysis of Wiener–Hopf method 
and perturbation technique. A series solution of electromagnetic plane wave scattering 
was obtained in terms of the eigenfunctions appearing as the generalized Gamma function 
(Nawaz and Ayub 2015). Also, a few years ago, the boundary diffraction wave theory in 
three-dimensions was used to investigate the plane-wave scattering by a non-continuous 
edge curves (Umul 2019). The Wiener–Hopf technique has benefited in modelling the dif-
fraction of waves by the obstacles in moving fluid (Ayub et al. 2009). This technique also 
works well to calculate the scattering of waves by vibrating objects (Alkinidri et al. 2023).

The transmission of electromagnetic waves in a hot plasma has piqued the research-
ers curiosity for many years. The aforementioned issue is incredibly important since it 
can provide natural communications networks. The reflection and transmission of radio 
waves from and through the ionosphere, in particular, have got a great deal of attention. 
It is a worth mentioning that non-thermal plasma is defined as plasma with little or no 
pressure change but a fixed temperature. The wave propagation qualities of spacecrafts 
sitting in the non-thermal plasma ionosphere and antenna are critical for signal connec-
tion between ground stations and space vehicles. Researchers have spent the last several 
decades studying traditional diffraction difficulties in the context of non-thermal plasma 
in a variety of configurations. At atmospheric pressure, plasma considered as a reflector as 
well as absorber of electromagnetic radiation (Vidmar 1990). The bidirectional wave trans-
formation of equations formulated for non-thermal plasma were investigated (Tippet and 
Ziolkowski 1991). The propagation of ultra-wide band electromagnetic pulses in a homog-
enous cold plasma was studied (Dvorak et al. 1997). Many researchers expressed a strong 
desire to explore the impact of non-thermal plasma on plane-wave diffraction challenges 
for various geometries. The effects of non-thermal plasma were investigated on plane-wave 
diffraction by a half-plane with Leontovich conditions (Yener and Serbest 2002). In the 
recent years, a rapid advancement in the diffraction theory of electromagnetic waves in the 
vicinity of non-thermal plasma as an anisotropic medium has been observed. To mention 
a few, a parallel plate wave-guide for the diffraction of polarized plane-wave was mod-
elled along with impedance conditions on the surface to investigate the effects of imped-
ance characteristics in the presence of non-thermal plasma (Khan et al. 2014). A similar 
study was also performed to look in to two distinct types of antennas in Ayub et al. (2016). 
Later, a mathematical model for diffraction of EM-waves by a finite length flat plate with 
Dirichlet conditions was devised by assuming a medium of non-thermal plasma (Hussain 
et al. 2018) which was further extended to symmetric plate (Javaid et al. 2020) with same 
assumptions to investigate the impact of symmetry on amplitude of the field. The diffrac-
tion model for EM-wave incident on a non-symmetric finite plate with Neumann condi-
tions in the medium of non-thermal was proposed and investigated (Hussain and Ayub 
2020) which was further extended for symmetric plate (Javaid et al. 2022). These studies 
were performed to analyse to build a comparative analysis with those of Dirichlet case. 
An EM-wave diffraction model was also devised for a slit of finite width with Dirichlet 
surface surrounded by non-thermal plasma (Javaid et  al. 2021). The an-isotropic plasma 
for magnetic line source diffraction was considered for a conductive half-plane (Basdemir 
2020). The most recent mathematical models have been devised on diffraction of EM-
waves by a finite-width non-symmetric strip to observe the effects of impedance and non-
thermal plasma (Hussain et al. 2021) which has been modified to symmetric strip (Hussain 
and Almalki 2023). The Leontovich conditions for slit have been taken into an account to 
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consider the impedance effects on diffraction of incident EM-wave in the existence of non-
thermal plasma (Hussain 2023).

In this analysis, we consider an electromagnetic plane wave interacting with a finite-width 
slit. The slit is assumed to be perfectly conducting and located within an anisotropic medium. 
This study is a new version of the research presented in Javaid et al. (2021), but with differ-
ent boundary conditions. Prior to the incident electromagnetic plane wave, there is no field 
present. The aim of this investigation is to examine and develop the comparative analysis of 
the anisotropic plasma medium on the diffraction of electromagnetic waves by a finite slit that 
is uniformly aligned along the horizontal axis and symmetric about the vertical axis. This 
model can be thought of as radio signals being transmitted between two antenna plates posi-
tioned apart from each other, which behave as a finite-width slit surrounded by an anisotropic 
medium.

2 � Problem statement

We investigate the diffraction pattern of plane electromagnetic waves due to a finite-width slit 
in non-thermal plasma, as illustrated in Fig. 1. Furthermore, Neumann conditions are assumed 
on the slit and angle of incidence is �0 . The total field can be represented in terms of incident, 
reflected and diffracted fields as follows:

where the incident and refracted fields are defined as

(1)Htot
z
(x, y) = Hinc

z
(x, y) − Href

z
(x, y) + Hdiff

z
(x, y),

(2)Hinc
z
(x, y) = e−ikeff (x cos �0+y sin �0),

(3)Href
z
(x, y) = e−ikeff (x cos �0−y sin �0).

Fig. 1   Geometrical interpretation of the model
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Suppose that medium is slightly lossy, and constant Keff  appearing in above equations is 
complex in such a way (0 < ℑ𝔪{keff } ≪ ℜ𝔢{keff }) . At the end, for real Keff  solution could 
be determined by taking its imaginary part to zero. The Helmholtz equation for Htot

z
(x, y) 

with existence of non-thermal plasma (Hussain 2023) is expressed as

Substituting the value of Htot
z
(x, y) from (1), we get the equation for diffracted field 

as follows:

In order to establish the Wiener–Hopf equation, conditions at x − ±l in conjunction with 
continuity relations are used. Neumann boundary conditions on a finite-width slit are spec-
ified as

along with

To ensure the validity of the mixed boundary value problem presented in this study on non-
thermal plasma, it is vital to consider the radiation conditions mentioned in Noble (1958). 
These conditions, denoted as (8), (9) and (10), are as follows:

3 � Problem transformation

Following results are obtained with the use of Fourier Transforms:

where � = � + i�.
For larger x, the diffracted field is interpreted as follows:

(4)[�xx + �yy + k2
eff
]Htot

z
(x, y) = 0.

(5)[�xx + �yy + k2
eff
]Hdiff

z
(x, y) = 0.

(6)�yH
tot
z
(x, y) = 0, for |x| ≥ l, and y = 0±,

(7)Htot
z
(x, 0+) = Htot

z
(x, 0−) = 0, at |x| < l,

(8)
√
r
�
�rH

diff
z

(x, y) − ikeffH
diff
z

(x, y)
�
→ 0 for r → ∞,

(9)Htot
z
(x, 0) =

{
−1 + O(x + l)1∕4 for x ⟶ −l−,

−1 + O(x − l)1∕4 for x ⟶ l+,

(10)�yH
tot
z
(x, 0) =

{
O(x + l)−3∕4 for x ⟶ −l−,

O(x − l)−3∕4 for x ⟶ l+.

(11)
F(�, y) =

1√
2�

∞

∫
−∞

ei�xHz(x, y)dx

= ei�lF+(�, y) + e−i�lF−(�, y) + Fl(�, y),
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The regions of regularity in the complex plane for F+(�, y) and F−(�, y) are 
ℑ𝔪{𝛽} > −ℑ𝔪{keff } and ℑ𝔪{𝛽} < ℑ𝔪{keff cos 𝜃0} . From Fig. 2, we can see the com-
mon region −ℑ𝔪{keff } < ℑ𝔪{𝛽} < ℑ𝔪{keff cos 𝜃0} of analyticity, where Fl(�, y) is also 
analytic and hence, we can define

(12)Hz(x, y) =

⎧
⎪⎨⎪⎩

O
�
e−ℑ𝔪{keff}x

�
for x ⟶ ∞,

O
�
eℑ𝔪{keff}x cos �0

�
for x ⟶ −∞.

(13)F±(�, y) = ±
1√
2�

±∞

∫
±l

ei�(x∓l)Hz(x, y)dx,

(14)Fl(�, y) =
1√
2�

l

∫
−l

ei�xHz(x, y)dx,

(15)

F
inc(�, y) =

exp(−iykeff sin �0)√
2�

�
exp[il(� − keff cos �0)] − exp[−il(� − keff cos �0)]

i(� − keff cos �0)

�
,

(16)

F
ref (�, y) =

exp(iykeff sin �0)√
2�

�
exp[il(� − keff cos �0)] − exp[−il(� − keff cos �0)]

(� − keff cos �0)

�
.

Fig. 2   Illustration of analytic continuation for the model



A mathematical study of electromagnetic waves diffraction…

1 3

Page 7 of 17  213

The following transformed boundary value problem is obtained by applying the Fourier 
transformation to Eqs. (5–7):

where D2
y
=

d2

dy2
 and �(�) =

√
k2
eff

− �2.

and

4 � Solution of the Wiener–Hopf equation

The solution to the transformed boundary value problem (17), fulfilling the radiation con-
ditions, is as follows:

Now using Eqs. (18–20), following Wiener–Hopf equation is obtained:

The factorisation of K(�) (which can be seen in Appendix A) is required to solve the above 
equation. From Eq. (21), we equate the terms which are regular in their corresponding 
regions by creating a common region of analyticity. Hence, by analytic continuation, we 
get an entire function P(�) and by Liouville’s theorem, P(�) must be equal to zero (Noble 
1958), yielding the following results:

where G1,2(±�), T(±�), C1,2 are given in appendix A.
Solving Eqs. (20) and (21), diffracted field is given by

where

Inverse Fourier transformation of Eq. (23), yields the diffracted field as:

(17)
(
D2

y
+ �2

)
F = 0

(18)
�yF(�, 0

+) = �yF
ref (�, 0) − �yF

inc(�, 0),

�yF(�, 0
−) = 0,

(19)F±(�, 0
+) = F±(�, 0

−).

(20)F(𝛽, y) =

{
A1(𝛽) exp(−i𝛾y) y ≥ 0,

A2(𝛽) exp(i𝛾y) y < 0.

(21)exp(i𝛽l)F�

+
(𝛽, 0) + exp(−i𝛽l)F�

−
(𝛽, 0) +K(𝛽)F̃l(𝛽, 0) = −iG(𝛽).

(22)F±(�, 0) =
A√
2�

[K±(�)G1,2(±�) +K±(�)T(±�)C1,2],

(23)F
±(�, y) = −

1

K(�)

[
exp(i�l)F+(�, 0) + exp(−i�l)F−(�, 0) + Fl(�, 0)

]
e−i�|y|,

(24)Fl(�, 0) = iG(�).
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Inserting (23) in (25), we have

Diffracted field Hz(x, y) further bifurcates in the separated and interaction fields Hsep
z (x, y) 

and Hint
z
(x, y) , respectively as,

where

The separated field given by (28) depicts diffraction separately at the edges x = ±l whereas 
the interaction field represented by Eq. (29) explains the interaction of one end with the 
other.

5 � Diffracted field

The diffracted field due to slit of finite width for the far field can be obtained asymptotically by 
coping with the integral appearing in (25). Polar coordinates are introduced for the evaluation 
of Eq. (25) with the following transformation:

Now we employ the method of stationary phase (Copson 1967) for Eq. (25), and the fol-
lowing result is obtained:

(25)Hz(x, y) =
1√
2�

∞

∫
−∞

F(�, y) exp(−i�x − i��y�)d�.

(26)

Hz(x, y) = −
1√
2𝜋

∞

∫
−∞

1

K(𝛽)

�
exp(i𝛽l)F+(𝛽, 0) + F̃l(𝛽, 0)

+ exp(−i𝛽l)F−(𝛽, 0)

�
exp(−i𝛽x − i𝛾�y�)d𝛽.

(27)Hz(x, y) = Hsep
z

(x, y) + Hint
z
(x, y),

(28)Hsep
z

(x, y) =
1

2�

∞

∫
∞

A

K(�)

⎧
⎪⎨⎪⎩

K+(�) exp[i(�−keff cos �0)l]

K+(keff cos �0)(�−keff cos �0)

−
K+(−�) exp[−i(�−keff cos �0)l]

K+(−keff cos �0)(�−keff cos �0)

⎫
⎪⎬⎪⎭
exp(−i�x − i��y�)d�,

(29)Hint
z
(x, y) =

1

2�

∞

∫
−∞

A

K(�)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

exp(i�l)K+(�)T(�)C1
− exp[i(� + keff cos �0)l]

×K+(�)R1(�)

+ exp(−i�l)K−(�)T(−�)C2
− exp[−i(� + keff cos �0)l]

×K−(�)R2(−�)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

exp(−i�x − i��y�)d�.

(30)𝛽 = −keff cos(𝜙 + i𝜂), 0 < 𝜙 < 𝜋, −∞ < 𝜂 < ∞.

(31)Hz(r,�) ∼
ikeff√
keff r

F(−keff cos�,±r sin�) sin� exp
�
ikeff r + i

�

4

�
.
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Incorporating the same polar coordinates, the transformation and subsequently the method 
of stationary phase are used to assess and yield the Hsep

z  and Hint
z

 as follows:

where f sep
(
−keff cos�

)
 and f int

(
−keff cos�

)
 are given in Appendix B.

From Eq. (31), we can clearly see that the asymptotic expressions for far field can be 
obtained by letting keff r → ∞ and the resulting expressions will hold true for any observa-
tional angle. The Hsep

z  is investigated in order to characterize both the field diffracted by the 
corners of a slit and the influence of the geometrical wave field. The Hsep

z  gives the physical 
evidence for the diffraction in non-thermal plasma. Hint

z
 , on the other hand, provides no 

distinct physical information due to contact at one extremity with the other, which has been 
counted by Hsep

z  . As a result, we have only talked about the Hsep
z  because it conveyed a full 

physical comprehension of diffracted wave at the established boundaries. Additionally, we 
have revealed that the Hint

z
 is created by diffraction from the corners of slit at x = ±l . As a 

consequence, we merely examine the Hsep
z  , as illustrated visually in the next section.

6 � Results

In this section, we elaborate the EM-waves by finite-width slit graphically by the variation 
of physical parameters in an an-isotropic media with Neumann case versus the � . For the 
ionosphere, we take the value of �p as 56.4 MHz and �c as 8.78 MHz. Also, the values 
of � are taken between 80 MHz and 600 MHz as given in Table 1. The values of �1 and 
�2 for different frequencies � in the ionosphere of non-thermal plasma have been com-
puted numerically and are presented in Table 1. In the ionosphere, the plasma frequency 
�p represents the natural oscillation frequency of the plasma electrons, and the cyclotron 
frequency �c represents the frequency at which the electrons rotate in the Earth’s mag-
netic field. As the frequency � increases, the value of �2 becomes comparably very small 
compared to �1 . This can be attributed to the fact that at higher frequencies, the effect of 
the plasma electrons’ natural oscillation becomes dominant over their rotation in the mag-
netic field. In an isotropic medium without spatial dispersion, we can assign equal values 
to �1 and �3 , and set �2 to zero. This implies that the medium behaves the same way in all 
directions and does not exhibit any anisotropy. In the presence of a non-gyrotropic aniso-
tropic medium, we set �1 to 1, �3 to a non-zero value, and �2 to zero. This indicates that the 

(32)

{Hsep
z

,Hint
z
}(r,�) ∼

1√
2�

ikeff√
keff r

{fsep,−fint}(−keff cos�) sin� exp
�
ikeff r + i

�

4

�
,

Table 1   Values of �1 and �2 for 
corresponding �

� (in MHz) �1 �2

80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
599.75 0.991157 0.000129
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medium exhibits anisotropy in certain directions, but does not exhibit any rotation or gyra-
tion. In the case of a gyrotropic anisotropic medium, the values of �1 and �2 can be obtained 
from Table 1. This indicates that the medium exhibits both anisotropy and rotation or gyra-
tion, which can occur in the presence of a magnetic field. Therefore, the values of �1 and �2 
for different frequencies provide information about the anisotropic and gyrotropic proper-
ties of the ionosphere of non-thermal plasma.

The graphical analysis is elaborated to explore the influence of physical parameters on dif-
fracted field due to a finite-width slit lying in the ionosphere of non-thermal plasma. These 
physical parameters are �0 , k, l and �1. Fig. 3 (rectangular plot) and Fig. 4 (polar plot) depict 
the pattern of the Hsep

z  for variation of �0 , and it gets maxima for �0 = �∕6 , �∕4 , �∕3 , occur-
ring at � = 5�∕6 , 3�∕4 , 2�∕3 , respectively. These maxima actually predict the shadow of 
reflecting boundaries. As the angle of incidence changes, the diffracted wavefronts and 
their interference patterns alter accordingly. In this case, the larger amplitude for �0 = �∕3 

Fig. 3   Rectangular plot: The separated field for �0 in the (a) isotropic and (b) anisotropic medium

Fig. 4   Polar plot: The separated field for �0 in the (a) isotropic and (b) anisotropic medium
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suggests that the diffraction pattern will be more pronounced at this angle. This means that 
the wave will spread out more and exhibit stronger interference effects, resulting in a larger 
amplitude in the observed pattern. The difference in amplitude at different incidence angles 
can be attributed to the interference of waves diffracted from different parts of the slit. At 
�0 = �∕3 , the diffracted waves from different parts of the slit constructively interfere, leading 
to a larger amplitude. At �0 = �∕6 and �0 = �∕4 degrees, the interference is less constructive, 
resulting in smaller amplitudes. Figure 5 (rectangular plot) and Fig. 6 (polar plot) reveal the 
sketch of Hsep

z  for k which is directly related to the spatial frequency of the electromagnetic 
wave. A higher wave-number corresponds to a shorter wavelength and a higher frequency. 
Therefore, k = 9 represents a higher frequency wave that gives a larger amplitude of diffracted 
field (brighter region in the diffraction pattern) compared to k = 7 and 5. The width of the 
slit relative to the wavelength of the incident wave plays a crucial role. A narrower slit causes 
more pronounced diffraction effects, resulting in a broader and more spread-out diffraction 
pattern. Conversely, a wider slit leads to less diffraction and a narrower diffraction pattern. As 

Fig. 5   Rectangular plot: The separated field for k in the (a) isotropic and (b) an-isotropic medium

Fig. 6   Polar plot: The separated field for k in the (a) isotropic and (b) an-isotropic medium
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extension of the slit-width is actually the widening of the aperture which is responsible for the 
diffraction of electromagnetic radiations, and so, the far field Hsep

z  gets amplified as well as 
more oscillated as pictured in Fig. 7. This amplified amplitude could be controlled by intro-
ducing the non-thermal plasma as can be observed through Fig. 7b. By comparing Figs. 3b, 
4, 5, 6 and 7b of the separated field in an-isotropic medium with their respective Figs. 3a, 4, 
5, 6 and 7a for the isotropic medium, it is explored that an-isotropy of the medium because of 
non-thermal plasma has influenced the separation field in both amplitude reduction and wave-
length expansion. The reduction in the amplitude and number of oscillations of the diffracted 
field when non-thermal plasma is present can be attributed to the energy transfer and interac-
tion between the incident waves and the plasma. The absorption and scattering of the waves by 
the non-thermal plasma cause energy to be dissipated, leading to a decrease in the amplitude. 
The modification of the refractive index affects the phase of the waves, resulting in a change 
in the number of oscillations observed. Fig. 8 explores the trend of the field for �1 , while its 
mathematical interpretation predicts its physical nature. It is expressed by Eq. (2) in Hussain 
(2023) and can be described as �c has no big difference in the values in various parts of earth 
whereas �p has direct relation with the square root of Ne (ion concentration) (see Eq. (4) in 
Hussain (2023)). This fluctuates massively with the variation of seasons and days to night. 

Fig. 7   The separated field for l in the (a) isotropic and (b) an-isotropic medium

Fig. 8   The separated field for �1
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Therefore, with no change in � , �1 still can have the variation. Since �1 has inverse relation 
with � , so increase in Ne with fixed � , �1 declines and wavelength increases. It means that the 
separated field with longer wavelength will occur for increasing number of free charges in the 
medium. One common observation across all the plots in the rectangular graphs is the pres-
ence of null behavior in the far field around the observational angles of 0 and � . This behavior 
is not seen in the study referenced as Javaid et al. (2021), where the null behavior appears 
only around the observational angle of 0 in the investigation of diffraction by a slit with Leon-
tovich conditions (Hussain 2023). The difference in these results can be attributed to the use 
of Leontovich conditions in the study, which establish a relationship between the tangential 
components of the electric and magnetic fields at the boundary. These conditions take into 
account the impedance and ensure the continuity of the fields. Furthermore, it is interesting 
to note that the results of the current analysis are identical to the diffraction of electromag-
netic waves by a finite symmetric strip with Dirichlet conditions, as described in Javaid et al. 
(2020). This similarity arises because the Wiener–Hopf equation used in the current analysis 
has the same kernel function as the Wiener–Hopf equation for the finite symmetric strip with 
Dirichlet conditions. Similarly, the diffraction pattern of electromagnetic waves by a slit with 
Dirichlet conditions, as mentioned in Javaid et al. (2021), is identical to the diffraction pattern 
observed when considering a symmetric strip of finite width with Neumann conditions, as 
discussed in Javaid et al. (2022).

From above analysis, it is observed that the influence of non-thermal plasma on the elec-
tromagnetic wave scattering by a finite-width slit with Neumann boundary conditions open 
up avenues for controlling, manipulating, and characterizing electromagnetic waves in plasma 
environments. These effects find applications in fields such as plasma optics, diagnostics, 
material processing, and sensing.

7 � Conclusion

The current topic looks at the diffraction of an EM-waves by a finite-width slit in the con-
text of non-thermal plasma under Neumann conditions which is a new version of the model 
(Javaid et al. 2021). This article’s important conclusions are summarized below:

•	 At the corresponding incremental trend of wave number and slit width, the number of 
oscillations increases, resulting in the peaks for the relevant angles of incidence.

•	 Because the existence of the an-isotropic medium regulates the magnitude of the separated 
field, the likelihood of EM-wave dispersion is reduced.

•	 The greater wavelength of the separated field is characterized by expanding Ne (electron 
charge density).

•	 The separated field shows nullity around observation angles 0 and �.

In terms of future development, the current challenge might be extended to instances includ-
ing line/point sources. It would also be worthwhile to explore the differences in the diffracted 
field induced by geometrical modifications with almost identical arrangement.
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Appendix A

Kernel function:

Factorisation of kernel function:

where K±(�) are,

where q = −i(keff + �)l , n = −
1

2
 and W is the Whittaker function.

(33)F̃
�

l
(𝛽, 0) =

1

2

(
F

�

l
(𝛽, 0+) − F

�

l
(𝛽, 0−)

)
,

(34)G(�) =
exp[il(� − keff cos �0)] − exp[−il(� − keff cos �0)]√

2�(� − keff cos �0)
,

(35)K(�) =
1

i�(�)
,

(36)K(�) =
1

i�(�)
= K+(�)K−(�) with �(�) = �+(�)�−(�),

(37)K±(�) =
exp(−i

�

4
)

�±(�)
with �±(�) =

√
keff±�.

(38)

G1,2(�) =
exp(∓ikeff l cos �0)

�∓keff cos �0

(
1

K+(�)
−

1

K+(±keff cos �0)

)
− exp(±ikeff l cos �0)R1,2(�),

(39)C1,2 = K+(keff )
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1 −K
2
+
(keff )T
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,
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0
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(
q
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