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Abstract

As an emerging nanodevice, Quantum-dot cellular automata (QCA) is a hopeful candi-
date for conventional complementary metal oxide semiconductor devices. XOR, one of the
most vital gates, occupies a significant positon in digital logic circuits. In order to improve
the property performance of XOR, a novel five-input majority gate is put forward first.
Then, an efficient XOR employing a NAND-NOR-Inverter (NNI) and the proposed five-
input majority voter is realized in the paper. Compared with previous counterparts based
on gates, the proposed design requires fewer cells, occupies less area, and consumes less
average energy consumption. Specifically, it improves by 11.11% in cell count, 2.11% in
area, and 9.51% (1.5E,) in energy consumption when compared to the state-of-the-art
design. The clock delay of the XOR in the article keeps the same with the minimum of
them. Additionally, the proposed design has the lowest QCA cost, including area-delay
cost, QCA-specific cost, and energy-delay cost. Moreover, the design is coplanar, without
any crossing types. All these make it an outstanding design. To demonstrate its practicality,
n-bit parity generators using the proposed XOR are implemented. The novel 4-bit parity
generator excels in cell count, area, and average energy dissipation, achieving optimization
of up to 10.6%, 6.0%, and 38.6% (0.5E,), respectively, compared to previous optimum val-
ues. The significance of these optimization results becomes more pronounced as the bit of
parity generators increases, indicating a promising future for constructing complex circuits.

Keywords QCA - NNI - Novel majority gate - XOR - Parity generator

1 Introduction

The feature size of traditional devices is scaling and the integration density is increasing
with the rapid development of CMOS technologies, which leads to ever-growing problems,
quantum effects, high leakage current and energy dissipation for instance (Sheikhfaal et al.
2015a). Searching for alternatives like novel nanodevices may be an efficient solution.
Nanodevices include Carbon Nano Tube (CNT) (Bachtold et al. 2001), Single Electron
Transistor (SET) (Kastner 1992), Tunneling-phase-logic (TPL) (Fahmy and Kiehl 1999),
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Quantum-dot Cellular Automaton (QCA) (Lent et al. 1993) and so on. Among them, QCA
utilizing the Coulomb interaction between electrons doesn’t have traditional transistors and
possesses the characteristics of high switching rate (Seminario et al. 2004), high integra-
tion density (DeHon and Wilson 2004), low energy dissipation (Farazkish et al. 2008) etc.,
which makes it one of the most promising candidates (Henderson et al. 2004). In recent
years, QCA has been intensively studied and achieves a rapid development.

XORs are considered as one of the important modules in digital circuit design since they
are frequently used in full adders, parity generators, shifting registers, default detecting cir-
cuits etc. (Kumar et al. 2017). Thus, a XOR with high performance is of great importance
in improving circuit efficiency. As a complicated gate, XOR can be constituted with ele-
mentary gates, majority gates, NOT and NNI gates for example. The proposed gate-based
XORs are manifold and can be classified into five different constructions according to com-
ponents: (1) using three three-input majority gates (M3) and NOT gates (Jagarlamudi et al.
2011; Shah et al. 2012; Roohi et al. 2011; Suresh and Ghosh 2014; Kianpour et al. 2014;
Mohammadi et al. 2017; Khosroshahy et al. 2017; Chabi et al. 2014; Singh et al. 2016;
Mustafa and Beigh 2013; De et al. 2016; Teja et al. 2008; Beigh et al. 2013); (2) consist
of four three-input majority gates and NOT gates (Mustafa and Beigh 2013; Beigh et al.
2013; Poorhosseini and Hejazi 2018); (3) based on a three-input majority gate, a five-input
majority gate (M5) and NOT gates (Chabi et al. 2014; Singh et al. 2016; Angizi et al. 2014;
Sasamal et al. 2018; Sheikhfaal et al. 2015b; Mohammadi and Navi 2018); (4) realized
using four NNIs (Poorhosseini and Hejazi 2018); (5) employing a five-input majority gate
and NNI (Zhang et al. 2020). In the hard work of researchers to seek for more efficient cir-
cuits, the properties of XORs are obtained optimization continuously.

The main contributions of the work in the article are summarized as follows. (1) A
novel five-input majority gate is proposed to construct an efficient XOR using the fifth
structure mentioned above (a five-input majority gate and NNI); (2) Compared with the
existing designs, XOR put forward in the paper shows superiority with respect to physical
properties; (3)Also, n-bit parity generators implemented utilizing the state-of-the-art XOR
describe a bright application prospect.

The paper proceeds as follows. Section 2 reviews the basics of QCA. In Sect. 3, previ-
ous XOR designs are categorized into five types according to the rule referred to in Sect. 1.
The new scheme of XOR and one of its applications-parity generators are presented and
discussed in Sect. 4. And Sect. 5 concludes the work.

2 QCA basics

The elementary unit of QCA is QCA cells. As shown in Fig. 1a, a standard cell comprises
four quantum dots and two free electrons. The electrons can tunnel between these quantum
dots and are liable to occupy the diagonal positions because of the Coulomb interaction.

Fig.1 QCA cell, a Standard
QCA cell, b Polarized cells O o
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Fig.3 NNI, a QCA structure, b Simulation results
Thus, the cell exists two steady states, namely polarization value P = —1 and P = +1,

described in Fig. 1b, which is used to represent binary logic “0” and logic “1” respectively.

F=M(A,B,C)= AB +AC + BC (1)

F = M(A,B,C,D,E) = ABC + ABD + ABE + ACD

2
+ACE + ADE + BCD + BCE + BDE + CDE @

F = NNI(A,B,C) = AB + AC + BC = M(A,E, E) 3)

As the primary gates in QCA, the majority voter and NOT gate can be used to real-
ize all the complicated circuits theoretically. The inputs of majority voters include three
inputs and five inputs. Figure 2a is a three-input majority voter (M3), whose logic func-
tion is shown in Eq. (1). A AND logic will be achieved if fixing one of the three inputs
to the polarity value P = —1, as presented in Fig. 2b. Similarly, if the fixed polarity
value is replaced by P = +1, a OR function will be acquired, as illustrated in Fig. 2c.
Equation (2) is the expression of the five-input majority gate (M5), and its QCA struc-
tures have numerous forms. NNI can also be regarded as an elementary gate, whose
logic function is shown in Eq. (3) (Sen and Sikdar 2007). Figure 3a exhibits the QCA
structure of NNI. The truth table of NNI is shown in Table 1, which is in accord with
the simulation results shown in Fig. 3b using the simulation tool QCADesigner. The
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Table 1 The truth table of NNI

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

bistable approximation simulation engine parameters of the tool is presented in Table 2.
Based on these most basic gates above, any complicated circuits can be achieved in
theory.

QCA clock is applied to control the direction of the information flow normally (Lent
and Tougaw 1997). QCA clock employing the quasi-adiabatic switch clock scheme con-
tains four phases, namely switch, hold, release and relax, as shown in Fig. 4. 7 /2 delay
exists each of these adjacent phases. A complete clock cycle has four clock zones called
clock 0, clock 1, clock 2 and clock 3. And the information transmits according to the
direction of clock0 > 1 52 -3 50— 1 — ... The QCA clock scheme guarantees
that the data will be flow follow the scheduled path.

3 Classification of existing XORs

Existing XORs can be grouped into five types according to the components utilized, as
presented in Table 3.

Table 2 Bistable approximation

simulation engine parameters Parameter Value
Cell size 18.0 nm X 18.0 nm
Dot diameter 5.0 nm
Cell-to-cell spacing 2.0 nm
Number of samples 12,800
Convergence tolerance 0.001
Radius of effect 65 nm
Relative of permittivity 12.9
Clock high 9.8e—022]
Clock low 3.8e—0231J
Clock shift 0.0e + 000
Clock amplitude factor 2.0
Layer separation 11.5 nm
Maximum iterations per sample 100
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4 New design schemes
4.1 Novel five-input majority voter

The novel XOR is designed using the fifth construction (a NNI and a five-input major-
ity voter) in Table 3 with the logic function shown in Eq. (4). In order to achieve high-
performance XOR, an excellent five-input majority voter is needed. Figure 5a exhibits the
QCA structure of the five-input majority voter proposed in the paper. Since two inputs of
the five-input majority voter are the same, as shown in Eq. (4), these two equal inputs are
designed to share a common input called D. The other three inputs are A, B and C, and F is
the output of the proposed five-input majority voter. Thus, the voter can gain the majority
function among A, B, C, D and D, as is shown in Table 4. Figure 5b shows the simulation
result of the proposed voter.

F =MS5(A,B,0,NNI(A, B, 1), NNI(A, B, 1)) 4)

4.2 Novel XOR

A new XOR is designed based on the five-input majority voter proposed above and NNI, as
shown in Fig. 6a. Figure 6b presents the simulation result, which demonstrates the correct-
ness of the function. In order to illustrate the superiority of the design, XOR in the paper
is compared with previous ones in terms of cell count, area, clock delay, cross structure
and average energy dissipation, as shown in Tables 5, 6 and Figs. 7, 8, 9 and 10. Through
the analysis of these figures, XOR in the article has the least cell count (24 cells), the least
area (0.0186 um?), the least clock delay (0.75) and the least average energy dissipation. At
the same time, the novel XOR design can easily be accessed with no crossover (Chaudhary
et al. 2007). Figure 11 presents the power dissipation map for the proposed XOR gate at
0.5E, tunneling energy level and 2.0 K temperature.

The cost of a QCA circuits is also an important parameter for performance analysis. Area-
delay cost (ADC), QCA-specific cost (QSC) and Energy-delay cost (EDC) are calculated
respectively according to the formulas presented in Khan and Arya (2022). The area delay cost
can be obtained using (Area) X (latency)z. The QCA-specific cost is (MV2+IN+CV?)xCK?,
where MV, IN, CV and CK represent the number of utilized majority voters, inverters,
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Simulation Results
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Fig.5 The proposed five-input majority voter, a QCA structure, b Simulation results

Table 4 The truth table of the

proposed five-input majority A B ¢ D E=D F
voter 0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 1 1 1

crossovers and clocks, respectively. E*x D? is used to calculate the energy-delay cost, where E
is the dissipated energy and D is the latency. The cost calculation results of XORs are shown
in Table 7 and the graphical view of comparisons are shown in Figs. 12, 13 and 14, respec-
tively. Through these comparisons, Area-delay cost, QCA-specific cost and Energy-delay cost
of the proposed XOR always keep the minimum.

All these comparisons certify that the proposed XOR possesses the excellent properties.
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Simulation Results
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Fig.6 The proposed XOR, a QCA structure, b Simulation results

4.3 Proposed parity generators

Utilizing the proposed XOR above, n-bit parity generators are implemented to illustrate
the practicability. Figure 15a is the QCA circuit of 4-bit parity generator with 76 cells and
0.0820 um?. A 0.25 clock delay (clock 3) is added to the connection between adjacent
XORs so as to hold the original clock design of the XOR, which provides convenience to
construct high-bit parity generators. The simulation result of the proposed 4-bit parity gen-
erator is shown in Fig. 15b.

A comparison between the 4-bit parity generator in the paper and existing designs in
cell count, area and average energy dissipation is needed to demonstrate the performance.
Since the structure of the proposed circuit is coplanar with no rotated cells, the selected
counterparts have the same characteristics, as shown in Fig. 16. The results can be seen
from Table 8 and Figs. 17, 18 and 19. By contrasting the data, the novel 4-bit parity gen-
erator has the least values in term of cell count, area and average energy dissipation, up to
10.6%, 6.0% and 38.6% (0.5E,) optimization compared to previous optimum values respec-
tively. Therefore, the 4-bit parity generator based on XORs proposed in the paper has an
excellent performance. Since the XOR is the elementary unit to construct the n-bit parity
generators, the bit is higher, the optimization results are more significant. Figure 20 is the
QCA design of the 32-bit parity generator.

5 Conclusion
XOR occupies a significant position in algorithmic logic. To improve the physical prop-

erties of XOR, an efficient five-input majority voter is designed. Based on the proposed
five-input majority voter and NNI, a novel XOR is implemented. The proposed coplanar
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Table 5 Performance figures of XORs

XOR Cellcount  Area um Clock delay  Input/output Type of crossover
accessibility
1-1(1) 58 0.0614 0.75 No No
1-1(2) 35 0.0281 1.00 No No
1-1(3) 29 0.0317 1.00 No No
1-1(4) 45 0.0388 0.75 No No
1-1(5) 49 0.0606 1.00 Yes Coplanar cross with rotated cells
1-1(6) 39 0.0313 0.75 Yes Three-layer crossover
1-1(7) 55 0.0432 1.00 No Coplanar cross with clock scheme
1-1(8) 59 0.0884 1.50 Yes Coplanar cross with rotated cells
1-109) 32 0.0313 1.00 No No
1-1(10) 83 0.0769 1.00 Yes Three-layer crossover
1-1(11) 71 0.0769 1.00 Yes Three-layer crossover
1-1(12) 54 0.0769 1.50 Yes Coplanar cross with rotated cells
1-1(13) 121 0.1926 1.00 Yes Coplanar cross with rotated cells
1-2(1) 41 0.0432 1.00 No No
1-2(2) 54 0.0630 1.25 No No
1-3 36 0.0352 0.75 No No
2-1(1) 34 0.0313 1.25 Yes No
2-1(2) 62 0.0693 1.50 Yes No
2-2(1) 55 0.0737 2.00 Yes No
2-2(2) 45 0.0519 1.00 Yes No
3-1(1) 67 0.0606 1.25 Yes Coplanar cross with clock scheme
3-1(2) 30 0.0210 0.75 Yes No
3-1(3) 32 0.0246 1.00 Yes No
3-1(4) 27 0.0218 0.75 Yes No
3-2 28 0.0210 0.75 Yes No
3-3 29 0.0281 0.75 Yes No
4 38 0.0388 1.00 Yes No
5 27 0.0190 0.75 Yes No
P 24 0.0186 0.75 Yes No

XOR has an excellent performance with less cell count, area, energy dissipation, and
QCA cost. Moreover, the inputs and output of the design are easier to access without
any crossovers since they locate on the outside of the structure. The 4-bit parity genera-
tor utilizing the novel XOR also presents outstanding physical property improvement in
cell count, area and energy dissipation compared to its counterparts. Since the XOR is
the elementary unit to construct the n-bit parity generators, the bit is higher, the optimi-
zation results will be more significant. Based on the proposed XOR and 5-input major-
ity gate, high-efficiency full adders will be constructed in the future.
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Table 6 Energy dissipation of XORs at 2.0 K

XOR Average energy dissipation Average Leakage energy dis-  Average Switching energy
(meV) sipation (meV) dissipation (meV)
0.50E,  1.00E, 1.50E, 0.50E, 1.00E, 1.50E, 0.50E, 1.00E, 1.50E,
1-1(1) 10922 132.12  162.02  16.87 52.23 94.44 92.35 79.88 67.58
1-1(2) 57.85 72.65 91.32 11.10 33.01 58.16 46.75 39.64 33.16
1-1(3) 43.74 56.24 71.96 9.17 27.10 47.68 34.57 29.14 24.28
1-1(4) 75.54 9457  118.82  13.60 41.27 73.76 61.94 53.30 45.06
1-1(5) 9540 13253 175.83  30.58 78.84  131.39 64.81 53.69 44.44
1-1(7) 97.23  120.18 14953 1633 49.90 89.64 80.90 70.28 59.88
1-1(8) 132.54  173.10  223.06  30.74 8795 152.13  101.79 85.15 70.93
1-1(9) 49.81 63.49 80.83 9.73 29.77 52.78 40.08 33.73 28.05
1-1(12) 52.85 10046 15530  28.78 81.25  139.79 24.06 19.21 15.51
1-1(13)  273.85 359.64 46241 7239 193.60 32476 20147 166.04  137.65
1-2(1) 69.54 86.53 10836 12.08 37.49 67.28 57.47 49.04 41.07
1-2(2) 97.11 118.51 146.79 1472 47.84 87.41 82.39 70.67 59.38
1-3 63.32 78.53 97.47 1135 33.48 58.93 51.97 45.04 38.54
2-1(1) 49.42 64.86 84.03 11.18 33.42 58.34 38.23 31.43 25.70
2-1(2) 100.15  127.21 161.69  18.61 57.56  103.05 81.54 69.65 58.64
2-2(1) 83.13  108.34  139.78  18.11 54.40 95.40 65.02 53.94 44.37
2-2(2) 63.30 8498 111.26  15.98 46.19 79.59 47.32 38.80 31.68
3-1(1) 146.44  171.57  204.47  19.65 46.19 79.59 47.32 38.80 31.68
3-1(2) 37.71 52.63 7029  11.86 32.33 54.20 25.92 20.30 16.09
3-1(3) 47.28 62.39 80.34  11.51 3191 54.69 35.78 30.48 25.66
3-1(4) 34.06 47.65 63.44 1037 28.30 47.64 23.69 19.35 15.80
3-2 36.43 50.47 66.73 11.03 28.79 48.32 25.40 21.68 18.40
3-3 49.89 62.23 77.34 9.94 27.30 47.17 39.96 34.93 30.16
4 46.99 66.54 89.51 14.82 40.32 68.10 32.17 26.23 21.41
5 30.92 44.78 61.01 10.10 27.92 47.34 20.82 16.86 13.67
P 29.33 41.24 55.21 9.64 25.71 42.82 19.69 15.53 12.39
120
100
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Fig.7 Cell counts for XORs
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Fig. 11 Power dissipation map
for the proposed XOR gate at
0.5E, tunneling energy level and

2.0 K temperature

Table 7 The cost of XORs

XOR ADC (m*cc)x 10" QSC (scp) EDC(seV-scc) x 10°

0.5E, 1.0E, 1.5E,
1-1(1) 0.0345 99 11.930 17.456 26.251
1-1(2) 0.0281 176 3.348 5.279 8.340
1-1(3) 0.0317 176 1.914 3.164 5.179
1-1(4) 0.0218 99 5.707 8.944 14.119
1-1(5) 0.0606 240 9.102 17.565 30.917
1-1(6) 0.0176 108 - - -
1-1(7) 0.0432 192 9.455 14.444 22.360
1-1(8) 0.1989 432 17.569 29.966 49.758
1-1(9) 0.0313 176 2482 4.032 6.534
1-1(10) 0.0769 240 - - -
1-1(11) 0.0769 192 - - -
1-1(12) 0.1730 432 2.795 10.094 24.120
1-1(13) 0.1926 240 74.995 129.342 213.824
1-2(1) 0.0432 160 4.837 7.488 11.743
1-2(2) 0.0984 250 9.432 14.046 21.549
1-3 0.0198 90 4.010 6.168 9.501
2-1(1) 0.0489 425 2.444 4208 7.063
2-1(2) 0.1559 612 10.032 16.185 26.146
2-2(1) 0.2948 1280 6.915 11.742 19.542
2-2(2) 0.0519 320 4.008 7.223 12.380
3-1(1) 0.0947 150 21.446 29.438 41.810
3-1(2) 0.0118 45 1.427 2.770 4.941
3-1(3) 0.0246 80 2236 3.894 6.456
3-1(4) 0.0123 45 1.161 2271 4.025
3-2 0.0118 54 1.328 2.548 4.453
3-3 0.0158 54 2.490 3.873 5.982
4 0.0388 256 2.209 4.429 8.013
5 0.0107 36 0.957 2.006 3.723
P 0.0105 36 0.861 1.701 3.049
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Simulation Results
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Table 8 Performance figures of 4-bit parity generators

4-bit parity generator Cell count Area pm? Average energy dissipation (meV)

0.50E, 1.00E, 1.50E,
4P-3-1(1) 179 0.1662 348.44 420.56 513.82
4P-3-1(2) 97 0.0975 126.92 175.62 233.94
4P-3-1(3) 98 0.1126 140.28 189.45 246.96
4P-3-1(4) 85 0.0947 120.51 162.58 212.18
4P-3-2 87 0.0872 115.87 160.16 212.01
4P-3-3 111 0.1747 201.70 248.14 306.82
4P-4 112 0.1504 137.82 197.42 266.90
4P-5 86 0.0830 121.86 162.38 211.73
4P-P 76 0.0820 71.10 115.12 164.81
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Fig. 17 Cell counts for 4-bit parity generators
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