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Abstract
Oral cancer is common cancer that appears in the mouth, posing a significant threat to 
public health due to its high mortality rate. Oral Squamous Cell Carcinoma (OSCC) is the 
most prevalent type of oral cancer, accounting for most cases, and it holds the seventh posi-
tion among all types of cancers worldwide. Detecting OSCC early on is crucial to increase 
the chances of successful treatment and improve patients’ survival rates. However, tradi-
tional diagnosis methods such as biopsy, where small tissue samples are extracted from the 
affected area and tested under a microscope, are time-consuming and require expert analy-
sis. Moreover, due to the heterogeneity of OSCC, accurate diagnosis is challenging, and 
there is a need for alternative approaches to enhance the detection result of OSCC images. 
Therefore, this work develops two new approaches for segmenting and identifying OSCC 
with deep learning techniques named Mask Mean Shift CNN, named MMShift-CNN. The 
proposed MMShift-CNN approach attained the highest results in segmenting the OSCC 
region from the input image by retrieving color, texture, and shape features. The novel pro-
posed method attained better performance with accuracy, F-measure, MSE, precision, sen-
sitivity, and specificity of 0.9883, 0.9883, 0.0117, 0.999, 0.9867, and 0.99, respectively. 
These results reveal the efficiency of the proposed approach in accurately detecting oral 
cancer and potentially improving the efficiency of oral cancer diagnosis.
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AL	� Active learning
RL	� Random learning
DCNN	� Deep convolutional neural network
LWDCNN	� Light-weight deep convolutional neural network
DRNN	� Deep reinforced neural network
CAM	� Class activation map
SCC	� Squamous cell carcinoma
OC	� Oral cavity
PCA	� Principal component analysis
COA	� Coati optimization algorithm
SVM	� Support vector machine
AUC​	� Area under curve

1  Introduction

Oral cancer is a prevalent form of cancer that affects the mouth, tongue, and throat, and 
can have reduced a patient’s lifetime. OSCC is the predominant subtype of oral cancer, 
accounting for more than 90% of all cases (Du et  al. 2020; Li et  al. 2022; Warnakulas-
uriya and Greenspan 2020). Experts cannot accurately predict OSCC due to the absence 
of specific clinical vital signs, which is a main danger related with this type of disease. 
Early detection of OSCC is crucial for improving patient outcomes, as the prognosis is 
often better when the cancer is detected at an early stage (Perdomo et al. 2016). Nonethe-
less, there are various indicators that can be used to predict OSCC, including the lesion’s 
location within the mouth, its size, colour, appearance, as well as the patient’s history of 
tobacco and alcohol use. OSCC is typically diagnosed through a combination of clinical 
examination, imaging studies, and biopsy (Anwar et al. 2020). However, this approach is 
both time-consuming and labour-intensive, requiring a high level of expertise, and is prone 
to errors. Moreover, the accuracy of these diagnostic methods can be limited, and there is a 
need for more reliable and accurate methods of detecting OSCC (Chakraborty et al. 2019; 
Eckert et al. 2020; Sivakumar et al. 2023). Deep learning techniques have become a poten-
tial method for OSCC identification in current era (Deif and Hammam 2020; Kong et al. 
2009; Santana and Ferreira 2017). Artificial neural networks are used in deep learning to 
evaluate enormous datasets and find patterns or features that are pertinent to a particular 
task. Deep learning may be employed to evaluate OSCC photos and find features that are 
specific to OSCC in the case of OSCC detection (Simla et al. 2023; Altaf et al. 2019; Deif 
et  al. 2021). Deep learning algorithms have the benefit of being trained on big datasets, 
which can increase the model’s accuracy (Leo et al. 2023; Duggento et al. 2021). Large 
datasets of OSCC photos are now accessible for OSCC identification, and these datasets 
can be utilised to train deep learning models. For instance, more than 10,000 photos of 
OSCC lesions are available in the Oral Cancer Imaging Database (OCID), which can be 
used to train and evaluate deep learning models (Wang et al. 2019; Goldenberg et al. 2019).

There are several deep learning approaches that have been used for OSCC detection, 
including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 
deep belief networks (DBNs). CNNs are a popular choice for OSCC detection, as they 
are well-suited for image analysis tasks. CNNs work by applying convolutional filters to 
the input image and identifying local features, which are then combined to identify more 
complex features. RNNs and DBNs are also well-suited for OSCC detection, as they can 
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capture temporal or contextual information that may be relevant to the diagnosis. Among 
several deep learning models, CNN is widely recognized as one of the very effective deep 
learning approaches for histology diagnosis. These models are trained by analysing the 
features of all trial image to those stored in the training data, allowing them to learn the 
unique features of each disease. However, the accuracy of CNN models may be influenced 
by factors such as image noise, insufficient or imbalanced images in datasets, the quantity 
and type of layers used, and the choice of activation function. Therefore, the aim of this 
paper was to examine these challenges and propose solutions to improve the accuracy of 
CNN models in diagnosing OSCC, which is crucial for early detection.

Overall, deep learning approaches which are discussed in this section, have shown 
great promise for OSCC detection using OSCC images. The availability of large datasets, 
advances in deep learning techniques, and the development of pre-processing methods have 
enabled the development of accurate and reliable OSCC detection models. However, there 
are still challenges that need to be addressed, such as the need for more diverse datasets 
and more research on the interpretability of the models. Addressing these challenges will 
require collaboration robust and reliable deep learning methods for OSCC identification 
and classification. In CNNs, neurons are scalar and additive, lacking any spatial relation-
ships with neighbouring neurons within the kernel of the previous layer. However, the max 
pooling process can cause a loss of valuable information and fails to capture the relative 
spatial relationships between features. As a result, CNNs are not able to maintain invari-
ance when presented with significant transformations in input data. So, this paper intro-
duced two novel approaches for segmenting oral cancer and classifying oral cancer types 
based on deep learning model.

The following is a summary of this paper’s significant contributions:

	 (i)	 The pre-processing mechanism is used in this paper to improve efficiency of oral 
cancer detection and identification.

	 (ii)	 A fast unsupervised improved CNN approach, named MMShift-CNN is developed 
for oral cancer segmentation.

	 (iii)	 To classify the oral cancer, Support Vector Onion Network, named SV-OnionNet is 
used and the hyper-parameters of SV-OnionNet is trained by adaptive Coati optimi-
zation algorithm.

This paper is organised as follows: a summary of earlier studies is provided in Sect. 2. 
The methods used for histological image segmentation and diagnosis of OSCC are exam-
ined in Sect. 3 of this article. In Sect. 4, the experimental results of the newly developed 
approaches are addressed along with a comparison and explanation of the methodology 
adopted in this work. Finally, Sect. 5 provides the conclusion and future enhancement of 
this paper.

2 � Literature review

The most pertinent research in the literature is critically reviewed in this section, with an 
emphasis on the trends and difficulties in OSCC diagnosis.

Leo and Kalapalatha Reddy (2021) identified keratin pearls in oral histopathology pho-
tos using CNN and RF. With 96.88% classification rate, the Random Forest method prop-
erly recognized keratin pearls, while the CNN model correctly segmented keratin areas 
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with 98.05 percent accuracy. In order to categorize oral biopsy images using Broder’s his-
tological grading system, Das et al. employed DL. Another option was CNN, which had 
a classification value of 97.5% (Das et al. 2020). Active Learning (AL) was found to be 
3.26% more accurate than Random Learning (RL) when oral cancer images were divided 
into 7 types by Folmsbee et al. using CNN (Folmsbee et al. 2018). Additionally, Martino 
et  al. used a variety of deep learning models, such SegNet, and U-Net with encoder, to 
partition oral pictures into 3 groups. A deep learning model, like enhanced U-Net through 
ResNet50 as an encoder, has been exposed to be further perfect over the traditional U-Net 
(Martino et al. 2020).

Jubair et al. (2022) used a dataset of oral cancer images and developed a new deep con-
volutional neural network (DCNN) architecture called the Light-Weight Deep Convolu-
tional Neural Network (LWDCNN). LWDCNN consists of 6 convolutional layers and 4 
fully connected layers and was designed to be more efficient and faster than other DCNNs 
while maintaining high accuracy. The LWDCNN was trained using transfer learning, 
where pre-trained models were used as a starting point for training the new model.

Deif et al. (2022) applied a hybrid feature selection approach that combines a filter with 
wrapper techniques. The filter approach selected the most relevant features based on statis-
tical analysis and correlation coefficients, while the wrapper method used a genetic algo-
rithm to select the best subset of features. SVM classifier was trained using the chosen 
features categorizes the histology of colorectal cancer. Ghosh et al. (2022) developed a new 
deep-reinforced neural network (DRNN) model for oral cancer risk prediction. The DRNN 
model combines deep learning with reinforcement learning, where the model learns to 
select the most relevant features for prediction while receiving rewards for accurate predic-
tions. The DRNN model was trained using a combination of cell images and cyto-spectro-
scopic data, which provided complementary information for more accurate prediction.

The concatenated model developed by Amin et al. (2021) combines the outputs of mul-
tiple pre-trained CNNs to enhance the performance of OSCC classification. It was trained 
by transfer learning, where the pre-trained CNNs were fine-tuned using the histopathologi-
cal image dataset. Musulin et  al. (2021) used a combination of CNNs and a conditional 
random field model, to accurately grade OSCC and segment epithelial and stromal tissue. 
This model was trained using a huge dataset of histopathological pictures with annotations 
for OSCC grading and tissue segmentation.

3 � Methodology

The objective of the this paper is to classify oral cancer images as either OSCC or normal. 
The block diagram of proposed approach is displayed in Fig. 1. The proposed oral cancer 
detection model comprises three main phases, namely image pre-processing, segmenting 
oral cancer region and oral cancer detection. Initially, the input image undergoes pre-pro-
cessing to enhance contrast and reduce noise. After that, an innovative deep learning-based 
segmentation method is performed for fast and accurate oral cancer segmentation. The 
final stage involves deep feature extraction and classification of the trial images using adap-
tive COA to determine whether the image belongs to OSCC or normal. The Adaptive Coati 
Deep Convolutional Neural Network (ACDCNN) exhibits notable performance in accu-
rately classifying oral cancer histopathological images when compared to existing diagnos-
tic methods commonly employed in clinical practice. This study indicates that ACDCNN 

RETRACTED A
RTIC

LE



Industry 4.0 transformation: adaptive coati deep convolutional…

1 3

Page 5 of 23  152

leverages its deep learning capabilities to discern intricate patterns and features within the 
images, leading to a heightened level of accuracy in classification tasks.

This efficacy is particularly evident when benchmarked against conventional diagnostic 
methods, which often rely on more manual and subjective interpretations. The ACDCNN’s 
ability to extract relevant information from images results in improved sensitivity and spec-
ificity, ultimately contributing to enhanced diagnostic outcomes for oral cancer.

3.1 � Input image

The oral image dataset is considered for performing the classification process, which is 
expressed by,

where, Tq implies whole number of images, and Tr represents rth image in a dataset, which 
is passed to pre-processing phase.

3.2 � Pre‑processing

The main purpose of pre-processing process is to enhance the quality of input images as 
well as reduces noise and artifacts from input image. Here, gaussian filter is applied to 
input image Tr for removing noises and improving image quality. Gaussian filter improves 
the ability for providing similar transition during frequency domain. Moreover, it produces 
smother transition eradication of redundant data from input image, which is denoted by,

(1)L =
{
T1, T2, ...,Tr, ...,Tq

}

Fig. 1   Block diagram of proposed oral cancer diagnosis model
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where, � refers standard deviation of distribution, Tr signifies input image and output of 
pre-processing by means of gaussian filter is denoted as Rr.

3.3 � Data augmentation

The images of normal cell and OSCC instances are not comprehensive and hence insuf-
ficient for generalization deep learning models for classification. Once pre-processing is 
completed, data augmentation is carried out for enlarging the data size and it avoids over-
fitting issues. As a result, data augmentation is used to increase the quantity of images, 
which will solve the overfitting problem by giving the deep learning models intense gener-
alization during testing. For each type of dataset, which involves modifying images using a 
variety of approaches, the data augmentation makes it possible to produce a much greater 
quantity of training data. In this study, data augmentation includes rotating, flipping, resiz-
ing, cropping, adding noise, and altering contrast of the original image. The data augmen-
tation outcome is denoted as Hr and it is passed to segmentation process.

3.4 � Segmentation using MMShift‑CNN

Segmentation process is more imperative for identifying the cancer regions from aug-
mented image. It accurately identifying the tumour region based on their visual charac-
teristics, such as colour, texture, shape, or intensity. Thus, a novel MMShift-CNN model 
is designed for performing segmentation. Since, it is unsupervised CNN, the devised deep 
learning approach quickly segments the oral cancer image. This network does not require 
pre-trained model and it comprises of four layers, such as input, masking, convolution, and 
segmentation layer.

3.4.1 � Input layer

This layer considers the data augmented output Hr as input for training the network and the 
following layer is masking.

3.4.2 � Masking layer

This layer effectively speeds up the segmentation process and it is employed to roughly 
segment the image, which extracts the ROI region. To perform ROI masking operation, 
thresholding method is enabled. Masked ROI from the oral image is carried out by thresh-
olding pixel intensities and provide initial ROIinit is described as,

After that, the qualitative variations between the original image and the ROIinit is 
observed based on mean distance value to provide relative thresholding at thROI < md , 
which will separate the OSSC and normal epithelium of the oral cavity regions in an image.

(2)G
�
Tr
�
=

1√
2��2

exp
�
T2
r
∕2�2

�

(3)ROIinit =
{
Hr

}
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3.4.3 � Convolution layer

The above masking section is incorporated with convolution layer, which is composed 
of 256 filters along with 6 kernel size and it utilizes scalars for extracting deep feature 
map. It is given by,

3.4.4 � Segmenting layer

This layer is final one and it is employed for generating binary segmentation. This layer 
is carried out by mean shift clustering approach (Deng et  al. 2015). The basic idea 
behind mean shift clustering is to iteratively shift the location of each pixel towards the 
centre of its neighbouring pixels that have similar features, until it converges to a stable 
region or mode.

Let X be the set of pixels or regions in the image, and let xi be a specific pixel or 
region in X . The mean shift algorithm can be defined as follows,

Initially, choose a kernel function K that defines the similarity between neighbour-
ing pixels or regions. The kernel function should be positive and symmetric, and should 
decay as the distance between pixels or regions increases. A common choice is the 
gaussian kernel is given as,

where ‖k − l‖ is the Euclidean distance among k and l, and � is the bandwidth value that 
maintains the width of the W. Then select a set of initial seed points or regions R within K 
and for each seed point or region s in S, iteratively update its location using the mean shift 
vector, until convergence. It is described as,

where Q(k) is the set of neighbouring pixels or regions of k within d, and Q(k) includes 
k itself. The weight of each neighbour y is given by the kernel function W(k, l)W(k, l) , 
and the mean shift vector P(k), represents the degree and magnitude of the shift that will 
maximize the kernel density function. Finally, stop iterating when the mean shift vector is 
smaller than a threshold value, indicating convergence to a stable mode or region. The layer 
information of proposed MMShift-CNN model is shown in below Table 1. The output of 
segmentation process using novel MMShift-CNN is denoted as Vr . The overall framework 
of MMShift-CNN segmentation model is displayed in Fig. 2.

(4)m(i) = (h ∗ f )(i) = ∫ h(j)f (i − j)dj

(5)W(k, l) = exp

�
−‖k − l‖2
2 ∗ �2

�

(6)P(k) =
1

Q(k)

∑
l∈Q(k)

k ∗ W(k, l)
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3.5 � Classification using adaptive coati optimization algorithm

The segmentation output Vr is considered as input for classification process in which 
SV-OnionNet is used for classification of oral cancer. Furthermore, the hyperparam-
eters employed in SV-OnionNet is trained by means of proposed adaptive COA, which 
enhances the classification performance.

Table 1   Layer information of 
proposed MMShift-CNN model

Layer Layer name Filter size Stride Padding Activa-
tion 
function

I1 Input – 1 0 –
M1 Masking layer 3 × 3 1 0 –
P1 Convolution layer 5 × 5 1 0 ReLU
P2 Convolution layer 5 × 5 1 0 ReLU
O1 Segmenting layer – 1 0 –
P3 Convolution layer 5 × 5 1 0 ReLU
P4 Convolution layer 5 × 5 1 0 ReLU
O2 Segmenting layer – 1 0 –
P3 Convolution layer 5 × 5 1 0 ReLU
P4 Convolution layer 5 × 5 1 0 ReLU
O2 Segmenting layer – 1 0 –

Fig. 2   MMShift-CNN framework
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3.5.1 � SV‑OnionNet structure

In CNNs, neurons are sum the input values from the preceding layer to produce a single out-
put value, lacking any spatial relationships with neighboring neurons inside the kernel of the 
preceding layer. However, the max pooling process can cause a loss of valuable information 
and fails to capture the relative spatial relationships between features. As a result, CNNs are 
not able to maintain invariance when presented with significant transformations in input data 
and replace the fully connected layer by SVM to improve the efficiency of the OnionNet. To 
overcome this drawback, this work proposed deep learning network called SV-OnionNet. 
Within this innovative network, the neuron-level information includes spatial relationships 
with neighboring neurons within the kernel of the previous layer. Ther diagram of Onionnet 
is displayed in Fig. 3. It contains three layers, namely input primary onion, optimization and 
fully connected layer.

3.5.1.1  Input layer  This layer taken the segmented image output Vr as input to SV-OnionNet 
model for performing classification of oral cancer.

3.5.1.2  Primary onion layer  The sucessive layer is primary onion layer, which is composed of 
256 filters with a kernel size of 6 that use scalars to extract the deep feature map. This is given 
by,

Zero padding method is used in this layer to preserve the size of the input features, while 
the RLU is utilized as the non-linear activation function. The RLU layer retains positive values 
and sets negative values to zero using Eq. (15).

(7)v(i) = (h ∗ f )(i) = ∫ h(j)(i − j)dj

(8)o(i) = max (0, i) =

{
i, i ≥ 0

0, i < 0

Fig. 3   SV-OnionNet framework
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3.5.1.3  Optimization layer  In SV-OnionNet max-pool layers are removed, SV-because of 
max-pool layer, CNN can not able to keep the unique feature values and spatial informa-
tion from the given input. This is major disadvantage of traditional CNN approach. So SV-
OnionNet uses a novel optimizer technique called adaptive COA instead of pooling. The 
novel optimization approach, named adaptive COA is already expalined detail in below 
Sect. 3.5.2.

3.5.1.4  Final onion layer  The traditional CNN model has a fully connected layer for 
classification as its final layer. But, for our proposed Onionnet, this layer is removed. 
Instead of this layer, Onionnet used an SVM (Cristianini and Shawe-Taylor 2000) clas-
sifier to predict the oral cancer label. The advantage of using an SVM instead of a fully 
connected layer is that it can better handle high-dimensional feature spaces and can lead 
to better generalization performance. To use an SVM for classification in place of a fully 
connected layer, the result of the final optimization layer is flattened and given to an SVM 
approach.

3.5.2 � Adaptive COA for training process of MMShift‑CNN

The SV-OnionNet is tuned by novel adaptive COA for improving the classification 
accuracy. Members of the Coati and Nasuella genera in the Procyonidae family are coa-
tis, also known as coatimundis. Native to the southern United States, Mexico, Central 
America, and South America, they are nocturnal mammals. All Coati (coatis) share a 
thin head with a flexible, elongated, somewhat upward-turned nose, black paws, small 
ears, and a long non-prehensile tail used for signaling and balancing. From head to tail 
tip, an adult coati can measure up to 69 cm, which is as long as their body. At 30 cm 
tall at the shoulder and weighing between 2 and 8 kg, coatis are about the size of a large 
house cat. A green iguana is one of coati’s preferred foods. Iguanas are huge reptiles that 
coati’s hunt in packs because they frequently live in trees. While others rapidly attack 
it, several of them climb trees to frighten the iguana into jumping to the ground. Never-
theless, coatis are vulnerable to predator attacks. Some of the coati’s predators include 
jaguars, ocelots, tayras, dogs, foxes, boa constrictor snakes, maned wolves, anacondas, 
and jaguarundis. Large raptors including harpy eagles, black-and-chestnut eagles, and 
ornate hawk-eagles also pursue them (Dehghani et al. 2023). Based on the attacking and 
the escaping characteristics of the Coati the optimization algorithm is mathematically 
formulated in the below section. The position update of the Coati takes place based 
on the assaulting and savaging characteristics of the coati and the steps involved in the 
optimization is given as follows.

The proposed comprehensive evaluation demonstrates that the ACDCNN model 
exhibits strong generalization. It effectively learns and adapts to different staining tech-
niques, accommodating variations in color and texture that can occur due to staining 
variations. The model’s architecture, enriched by deep learning mechanisms, allows 
it to capture relevant features across different image resolutions, enhancing its robust-
ness. Moreover, the ACDCNN model’s ability to handle sample heterogeneity is note-
worthy. It can adeptly identify key patterns despite variations in tissue structures and 
cellular appearances, contributing to its reliable performance across diverse samples. 
By employing techniques like data augmentation during training and leveraging the 
inherent feature extraction capabilities of deep learning, the ACDCNN model displays 
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remarkable adaptability to variations commonly encountered in oral cancer histopatho-
logical images. This adaptability ensures its potential for broader clinical applicability 
and reinforces its efficacy in real-world scenarios.

3.5.2.1  Initialization  At the beginning, the candidate solution for the optimization is gener-
ated and the solutions are represented by the number of Coati present in the search space. 
The values for the decision factors are based on where each coati is in the search space. The 
starting position of the coatis in the search space is determined at random and is notified by 
the below equations,

here, the position of the Coati is represented by P and the random Coati is represented by 
n , which is in the range [1, 2, 3, ...x] . Rrand is a random real number in the lower and the 
upper bound LB and UB in the range (0, 1) . The total population of the Coati is notated by 
the equation,

3.5.2.2  Fitness evaluation  The fitness evaluation is performed for determining the best 
optimal solution. Here accuracy is selected to evaluate the proposed model. The optimal 
solution is selected if the fitness value achieved is higher than the previous iteration. The 
fitness is expressed availing the equation,

here, F denotes the fitness function of the Coati that helps in obtaining the training at 
higher speed.

3.5.2.3  Assaulting stage  The initial stage of updating the number of Coati’s in the search 
area is modelled using a simulation of their attack method on iguanas. In this method, a pack 
of coati scales the tree to get close to an iguana and startle it. Other coati gathers around 
the iguana as it falls to the ground while they wait under a tree. The coati attack and hunt 
the iguana after it hits the ground. With the use of this method, coatis can migrate to vari-
ous locations within the search area, showcasing the capacity for global search inside the 
problem-solving domain.

The algorithmic design assumes that the iguana occupies the position of the popula-
tion’s best member. Furthermore, it is believed that half of the coati ascend the tree while 
the other half waits for the iguana to fall to the ground. The below equation is therefore 
used to replicate the coati’s position when they emerge from the tree.

(9)Pn,d = LBd + Rrand

(
UBd − LBd

)

(10)P =

⎡
⎢⎢⎢⎢⎢⎣

P1

P2

.

.

Px

⎤⎥⎥⎥⎥⎥⎦

(11)F(P) =

⎡
⎢⎢⎢⎢⎢⎣

F
�
P1

�
F
�
P2

�
.

.

F
�
Px

�

⎤⎥⎥⎥⎥⎥⎦
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where, Pnew
n,d

 denotes the new position of the coati and Rrand denotes the random real num-
ber in the interval (0, 1) . An integer selected in the range {1, 2} is designated by the variable 
Int.

The iguana is dropped to the ground and then positioned at random somewhere inside the 
search area. The search space is mimicked using a random position, and coati on the ground 
move based on this position.

If the updated position for each coati increases the value of the objective function, it is 
acceptable for the update process; otherwise, the coati stays in its former position.

Here, Og

T
 s its objective function value, Pnew

n
 is the new position calculated for the nth coati, 

and T represents the iguana’s position in the search space, which actually refers to the position. 
Iguana g is the position of the iguana on the ground, which is randomly generated.

3.5.2.4  Escaping stage  Based on coati’s typical behaviour when confronting and evading 
predators, the second stage of the process of updating the position of coati in the search space is 
mathematically modelled. A coati flees from its place when a predator attacks it. Coati’s actions 
in this strategy result in it being in a secure location close to where it is right now, which shows 
the algorithm capacity for local search exploitation. Based on this behaviour the position update 
takes place and is represented by the equation as follows,

Moreover, the newly computed location is adequate if it enhances the objective function 
rate, which is expressed by Eq. (10).

On the other hand, adaptive concept is included with COA for improving the computa-
tional cost with minimal time period. From Eq. (11), the term T is expressed as,

where, � implies depth weight, which is made as adaptive, Tmax and Tmin symbolizes prede-
fined maximal and minimal value of T  and � represents highest iteration.

(12)Pnew
n,d

= Pn,d + Rrand

(
Td − Int ⋅ Pn,d

)

(13)T
g

d
= LBd + Rrand ⋅

(
UBd − LBd

)

(14)Pnew
n,d

=

{
Pn,d + Rrand

(
Td − Int ⋅ Pn,d

)
O

g

T
< On

Pn,d + Rrand

(
Pn,d − Td

n

)
else

(15)Pn =

{
Pnew
n

O
g

T
< On

Pn else

(16)LBloc
d

=
LBd

T

(17)Penew
n,d

= Pn,d +
(
1 − 2Rrand

)
⋅

(
LBloc

n,d

)
+ Rrand +

(
UBloc

d
− LBloc

d

)

(18)T = Tmax −
f
(
Tmax − Tmin

)
�
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3.5.2.5  Evaluating feasibility of solution  The best optimal solution is achieved through 
fitness function, which is already expressed in Eq. (6), and fitness function with least 
value is considered as optimum solution.

3.5.2.6  Termination  The above steps are executed repeatedly until the optimal solution 
is obtained. The pseudocode for the new adaptive optimization algorithm is interpreted 
in Table 2.

Thus, the adaptive COA effectively identifies the oral image as OSCC or normal 
with minimal time and cost.

Table 2   Pseudo-code of introduced adaptive COA
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4 � Results and discussion

The results obtained by the proposed oral cancer detection approach and is displayed in this 
section.

4.1 � Experimental setup

All the experiments are executed in a Personal Computer (PC) with i7-processor, 
32 GB RAM, and 16 GB GPU and PYTHON software is used to implement oral cancer 
classification.

4.2 � Dataset description

This dataset (Available online 2023) comprises of 1224 images, which is separated into 
two groups with two dissimilar resolutions. First set includes 89 histopathological images 
along with regular epithelium of oral cavity as well as 439 images of OSCC in 100× mag-
nification. Another set encompasses of 201 images with normal epithelium of oral and 495 
histopathological images of OSCC in 400× magnification. The subsection of 269 images 
from second set is utilized for identifying OSCC based on textural features. In this data-
base, images were taken by Leica ICC50HD microscope from Haematoxylin and Eosin 
(H&E) stained tissue slides gathered, arranged, and categorized by medical experts from 
230 patients.

4.3 � Data augmentation

In this work, to generalization of MMShift-CNN, data augmentation is employed and lead-
ing to 3000 images. Data augmented details in Table 3.

4.4 � Dataset split‑up

The total volume of image patches from Table 2 is divided into two groups: training and 
testing in the proportion of 80% and 20% respectively, as per the train-test split technique 
widely adopted. The training dataset is again divided into train and validation set in the 
proportion of 90% and 10% respectively. The number of training, validation and testing 
images are 2160, 240 and 600, respectively.

Table 3   Details of images in 
dataset

Magnification Class Number of 
images in dataset

Number of images 
after augmentation

100x Normal 89 750
OSCC 439 750

400x Normal 201 750
OSCC 495 750
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4.5 � Experimental results

The experimental outcomes for the devised oral cancer detection and classification model 
are displayed as below Fig. 4. Here, input, pre-processing, segmentation, and classification 
images are specified.

4.6 � Performance metrics

To evaluate the effectiveness of proposed approach, various performance measures, such as 
accuracy, Mean Square Error (MSE), precision, specificity, F-measure, and sensitivity are 
considered in this research. Accuracy is evaluated for detecting true positive and true nega-
tive of all images. Precision is referred as the number of positive images exactly classified 
to whole amount of positive predicted images. MSE is computed by cumulative squared 
error among detected and original image. Sensitivity is a percentage of the precise rate of 

Fig. 4   Sample images of oral cancer diagnosis model a input image, b pre-processing image, c segmented 
image, and d classified image

RETRACTED A
RTIC

LE



	 R. Dharani, S. Revathy 

1 3

152  Page 16 of 23

true positives in oral cancer detection. Specificity is calculated for predicting the accurate 
detection rate of true positive rate. The F-measure metric is defined as the harmonic mean 
of precision and recall.

4.7 � Accuracy and loss curves

The loss and accuracy curves of deep learning methods are deliberated in which every 
curve contains validation and training curves in Fig.  5. The validation curve is attained 
from a validation set, which reveals how well the method generalizes itself, whereas train-
ing curve refers how well the method is capable to learn. Moreover, error on training data-
base is specified as training loss, although error after running validation database by trained 
network is termed as validation loss. This experiment has been performed for 0 epoch and 
it is increased to 50 epochs. Here, the accuracy curve of proposed approach varies from 
0.990306 to 0.99646, whereas the loss curve rate changes from 0.009693 to 0.003533.

4.8 � Confusion matrix

Confusion matrix represents the comprehensive illustration if prediction outcomes after 
classification process. The confusion matrix for all networks and proposed approach is dis-
played in Fig. 6. Here, true positive, false positive, true negative and false negative val-
ues are deliberated. Generally, in biomedical field, maximal true negative and true posi-
tive rates are essential, even though false negative and positive rates are also needed. The 
values in matrices reflect predictable proportion for respective classes in row and column 
for classifier. The evaluated true positives for the class are specified by diagonal values and 
other rates symbolizes error rates.

(19)Accuracy =
TPR + TNR

TPR + TNR + FPR + FNR

(20)Sensitivty =
TPR

TPR + FNR

(21)Specificity =
TNR

TNR + FPR

(22)Pr ecision =
TPR

TPR + FPR

(23)F-measure = 2 ×
(
Precision × Recall

Precision + Recall

)

(24)MSE =
1

n

n∑
i=1

(
yi − ŷi

)2
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4.9 � ROC curve

Figure 7, represents the ROC curve for the proposed method with other existing techniques 
and here true positive and false positive rates are varied from 0 to 1 to analyse the Area 
Under Curve (AUC),. The proposed technique attained a higher AUC of 0.9889, while 
CNN has less AUC of 0.93025, which reflects the  proposed method to provide better 
model performance at distinguishing between the normal and OSCC classes.

Fig. 5   Accuracy and loss curves for a CapsNet, b CNN, c InceptionV3, d MobileNet, e ResNet50 and f 
Proposed modelRETRACTED A

RTIC
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4.10 � Comparative discussion

Figure 8 presents the comparative analysis of proposed method with other existing tech-
niques. Here, various performance measures, like F-measure, accuracy, specificity, sensi-
tivity, MSE, and precision is considered for analysis. Moreover, the analysis is carried out 
by means of varying training data percentage from 60 to 90.

Fig. 5   (continued)RETRACTED A
RTIC
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Fig. 6   Confusion matrices for a CapsNet, b CNN, c InceptionV3, d MobileNet, e ResNet50 and f Proposed 
model
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The comparative discussion for various methods with proposed approach based on dif-
ferent performance measures is presented in Table 4.

The proposed technique attained higher accuracy of 0.9883, while CNN has less accu-
racy of 0.93 for 90% training data. Moreover, least MSE rate 0.0117 achieved by proposed 
method and F-measure is high as 0.9883, while training data percentage is 90. In addi-
tion, precision specificity and sensitivity are high in proposed approach by 0.999, 0.99, 
and 0.9867, when 90% of training data. The ACDCNN model revolutionizes oral cancer 
diagnosis by enhancing efficiency through rapid analysis, improving accuracy by leverag-
ing deep learning capabilities, maintaining consistency in interpretation, offering valuable 
quantitative insights, and optimizing resource utilization. Its integration stands to reshape 
the landscape of histopathological analysis, leading to more precise and timely diagnoses.

5 � Conclusion

The model proposed in this research has the potential to bring about a revolutionary 
change in the medical field. By accurately identifying cancerous patients, it can help pre-
vent unnecessary treatments and tests, potentially saving lives. Additionally, the model can 
assist paramedic staff in efficiently treating such patients, leading to improved healthcare 
outcomes. For effective diagnosis of oral histopathological images is essential for accurate 
diagnosis and treatment planning, and the model can provide doctors with a dependable 
second opinion on the presence of oral lesions. To achieve this goal, a novel MMShift-
CNN is used to segment the oral cancer region from input images. Additionally, classifica-
tion of OSCC and normal oral tissues is performed through SV-OnionNet from and it is 
trained by novel adaptive COA. The proposed approach was effectively evaluated using the 
performance metrics, like accuracy, F-measure, MSE, precision, sensitivity, and specific-
ity for evaluating the effectiveness of proposed approach. The results of this research are 
promising, with an accuracy rate of 0.9883, MSE of 0.0117, F-measure of 0.9883, sensi-
tivity of 0.9867, specificity of 0.99 and precision of 0.999. In future, real time oral cancer 
images will be used for analysing the performance of the proposed method.

Fig. 7   ROC curve for proposed 
method with other existing 
techniques
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Fig. 8   Comparative analysis based on a accuracy, b F-measure, c MSE, d Precision, e Sensitivity and f 
SpecificityRETRACTED A
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