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Abstract
In this work, Ag@SiO2 core–shell nanoparticles were prepared using the laser ablation 
technique and employed these nanoparticles in plasmonic-sensitized solar cells (DSSC). 
Current–voltage (I–V) characteristic curves of DSSCs were performed both in the dark 
and under 100 mW/cm2 and obtained experimental results compared to each other at room 
temperature. Ag@SiO2 core–shell NPs were prepared using different laser energies (50 mJ, 
100 mJ, 150 mJ) by pulsed laser ablation in an aqueous silica solution. The results highly 
showed the effect of the used laser energy on the structural properties of the prepared nano-
particles, which in turn affect the other properties. The XRD for Ag@SiO2 shows that the 
crystallinity enhanced, and the crystallite size increased with increasing the laser energy 
(18.8  nm for 50  mJ, 24.5  nm for 100  mJ, 34.9  nm for 150  mJ). The transmission elec-
tron microscopy shows an increasing average diameter for both NPs types with the laser 
energy. The UV–visible absorbance shows significant plasmonic resonance bands around 
400 nm for the Ag@SiO2, with a small red shift increasing the laser energy. Incorporat-
ing metal NPs into solar cell layers enhances their efficiency by increasing the active lay-
er’s absorption, especially at the plasmonic frequency. The effect of the different NPs was 
examined and compared with the bare-solar cell without nanoparticles. The DSSC solar 
cell composed of Ag@SiO2 NPs significantly enhances their characteristics. The results 
revealed that Ag@SiO2 could be employed as selective scattering factors, promising effi-
cient DSSCs.
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1 Introduction

In a solar cell that uses dye sensitization, photon-absorbing dye molecules are loaded 
by nanospheres or microspheres made of semiconductor material with a wide band gap. 
Examples of such materials are titanium dioxide and zinc dioxide. These oxide films not 
only function as a semiconducting medium but also as a medium for the diffusion of elec-
trons generated by light (O’Regan and Grätzel 1991; Choudhury 2020; Baby et al. 2022; 
Arka et  al. 2021; Yang et  al. 2022). Following the charge separation process, transport-
ing carriers to the charge collector via the semiconductor’s conduction band happens due 
to photon-induced electron injection from excited dye molecules into the semiconductor’s 
conduction band. Therefore, the total efficiency of a DSSC relies greatly on the surface 
area and pore widths of the semiconductors used in the device. One of the defining features 
of a DSSC is its near-perfect efficiency in converting incident photons into electric cur-
rent from the ultraviolet/visible to the near-infrared region of the electromagnetic radiation 
spectrum.

Consequently, the present generation of solar cells can provide a feasible supply of clean 
energy at a reasonable cost (Maka and Alabid 2022; Salman et  al. 2023; Sampaio et  al. 
2017; Furugori et al. 2017; Eicke et al. 2022; Mehmood et al. 2015). The research that’s 
been done on this topic has uncovered several different ways that DSSCs can be made 
more effective. Increasing the thickness of the semiconductor film is one example. Other 
instances include modifying the shape and size of semiconductor material on the nano- 
and micro-scale and altering the structural makeup of dye molecules to achieve a better 
spectrum response (Arinze et al. 2016; Rahman et al. 2023; Agrawal et al. 2022; Noorasid 
et al. 2022; Alkuam et al. 2018; Dragonetti et al. 2018; Huang et al. 2018; Park et al. 2019; 
Drexhage 1970).

An increase in the thickness of the semiconductor film makes it possible to load a 
greater quantity of dye; however, this also increases the diffusion path length for photogen-
erated electrons. Additionally, thicker films have a greater propensity to contain structural 
flaws, which increases the amount of electron trapping (Mehmood et al. 2015; Arinze et al. 
2016; Rahman et al. 2023; Agrawal et al. 2022; Noorasid et al. 2022). A cutting-edge strat-
egy for improving thin-film solar cell systems is using plasmonic metal nanoparticles, such 
as gold or silver. This effect has improved the efficiency of thin-film inorganic, organic, and 
DSSCs. Nanoparticles made of noble metals like gold and silver can boost an optical field 
because of a property of light called Localized surface plasmon resonance (LSPR) (Arinze 
et al. 2016; Mandal 2022; Selvapriya et al. 2022; Di and Qin 2022; Yen et al. 2017; Sep-
tiningrum et al. 2022; Kankanamge et al. 2023; Salimi et al. 2019; Bao et al. 2019; Fallah 
et al. 2019).

When the surface electrons of a metal nanoparticle collectively move, plasmons are cre-
ated, which can increase the intensity of the electromagnetic field adjacent to the nano-
particle’s surface. Nearby fluorophores may experience enhanced light extinction due to 
the LSPR phenomenon (Zhang et  al. 2016; Kaimuangpak et  al. 2023; Juma et  al. 2023; 
Akram et al. 2023; Bhojanaa et al. 2023). Several specific applications of the LSPR phe-
nomena have been established. Solar cells can improve their light absorption through vari-
ous important methods: Dipole–dipole paring, light scattering, and localized near-field 
pairing energy transfer (Bao et al. 2019). LSPR assist as a trap for light due to interaction 
between the confined charge within the particle with the incoming light, which causes a 
scattering effect (Villanueva-Cab et al. 2018). By creating a large electromagnetic field on 
the metal NP’s surface and increasing the dye’s absorption force in the visible range of 
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wavelengths, LSPR can increase the solar conversion efficiency (η) of DSSCs (Villanueva-
Cab et al. 2018). Increased light absorption caused by the LSPR effect, a negative shift in 
the Fermi energy level due to the electron storage effect, a rapid injection of electrons into 
semiconductor materials, and accelerated charge separation as a result of a localized elec-
tromagnetic field are all effects of the incorporation of metallic nanoparticles into photo-
anodes (Alkhalayfeh et al. 2021). The two main categories of light-trapping techniques are 
decreasing the top surface’s reflection coefficient and lengthening the optical path inside 
the cell. A rise in absorption causes a decline in the recombination rate, an increase in 
open circuit voltage, and a rise in conversion efficiency (He et al. 2020; Rho et al. 2018; 
Guo et al. 2018). Bi et al. (2020) studied the DSSC and LSPR for efficient perovskite solar 
cells using infrared to the visible conversion of the nanoparticle to the plasmonic solar cell. 
They provide a successful technique for boosting luminous quantum yield. Ali et al. (2019) 
studied the light-harvesting process using plasmonic AuNPs to enhance light absorption 
in dye-sensitized solar cells. The outcomes demonstrated an increase in power conversion 
efficiency. Compared with the reference cell. Different parameters affect the characteriza-
tion of prepared nanoparticles by PLA, consisting of the used liquid, laser energy, laser 
duration, etc. In this work, Ag@SiO2 NPs were prepared in laser ablation technique by 
Nd-YAG pulsed laser at different laser energies. Then, a comparison was made between 
the prepared core–shell nanoparticles with different energies (50 mJ, 100 mJ, 150 mJ), and 
the effect of the energy difference on the dimension of the prepared core–shell (nanopar-
ticles) was seen through XRD, PL, and UV–vis results. Researching how plasmon affects 
dye-sensitized solar cells, these cells were made with and without the produced core–shell 
nanoparticles.

2  Material and method

Pulse Laser Ablation in Liquid was used to create Ag@SiO2 NPs. A 9  ns-pulsed Nd: 
YAG laser (World health care solution, 9 ns pulse duration, 1064 nm, 10 Hz, laser fluence 
of 17–50  J   cm−2) was focused onto a silver target (ounces, purity 999.9%) immersed in 
20 ml distilled water containing 0.4 µM NaCl (AVONCHEM, purity 99.5%) and 0.4 µM 
 NaSiO2 (sodium silicate), the procedure took 1 min to complete. To separate the Ag@SiO2 
Nanoparticles from the residual sodium-water glass, they were centrifuged for 10 min at 
5000  rpm. The Ag@SiO2 film was formed on a glass substrate using the droop casting 
process for XRD investigation. The absorption and PL spectra were obtained using a Shi-
madzu UV-1900i UV–Vis Spectrophotometer and a Varian CARY ECLIPSE. The samples 
were examined using a transmission electron microscopy (TEM) microscope (ZEISS LEO 
912AB/Germany). Ag@SiO2 NPs was loaded to DSSC as shown in Fig. 1. Regular and 
Plasmonic DSSC I–V measurements were made using a (Keithley 2400) Solar Simulator 
in the dark and under 100 mW/cm2 light intensity at room temperature.

Fig. 1  Schematic diagram of 
plasmonic DSSC
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3  Results and discussions

Formation of Silver nanoparticles by laser ablation technique was confirmed by XRD spec-
trum (Fig.  2) peaks (111) and (200) pointing out the FCC phase of silver nanoparticles 
(Crystallography open database (COD) 9012431). The peak broadening in the XRD pat-
tern indicates that small nanocrystals exist in the samples.

The lattice constants a = b = c = 4.0785, 4.0800 and 4.0816  Å for laser energies 50, 
100, and 150 mJ, respectively, calculated from XRD data and using equation (1) (Ali et al. 
2019). Table 1 illustrates the XRD results, matching the interplanar spacing (dhkl) with 
the COD data card and matching (h k l) planes. The Scherrer formula equation was used 
to estimate the crystallite size of nanocrystals Eq. (2) (Salman and Ismail 2114). Using the 
Stokes and Wilson Eq.  (3), we can determine how much micro strain contributes to the 
overall line widening of the diffraction peak (Rong et al. 2019). Figure 3 shows the crys-
tallite size as a function of laser energy for Ag@SiO2 NPs. It is clear that when the laser 
energy increases, the crystallite size increases.

(1)d =
a

√

h2 + k2 + l2

Fig. 2  XRD pattern of Ag@SiO2 core–shell nanoparticles prepared by laser ablation technique (black lines 
50 mJ, red lines 100 mJ, and green lines 150 mJ)
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If we use Bragg’s equation to calculate the distance between crystal planes, we get d, 
where a is the lattice constant, and hkl is the Miller plane.

Shape factor k, X-ray incident wavelength λ, peak full width at half-maximum (FWHM) 
in radians β, and Bragg angle ϴ.

where (ε) represents the microstrain (Table 2).
Absorption spectra of Ag@SiO2 nanoparticle samples generated by pulsed laser ablation 

at varying pulse laser energy are displayed in Fig. 4. Depending on the particle size, shape, 
aggregation state, and surrounding dielectric medium, the SPR causes a red or blue shift in 

(2)Crystallitesize(C ⋅ s) =
K�

� cos �

(3)�� = 4�tan�

Table 1  Summarizes the results of the XRD measurement

Laser 
energy 
(mJ)

2θ (°) FWHM (°) dhkl Exp. (Å) C.S (nm) dhkl Std. (Å) Phase hkl

50 38.1891 0.4470 2.3547 18.8 2.3543 Cub. Ag (111)
44.3895 0.4813 2.0391 17.8 2.0389 Cub. Ag (200)

100 38.1747 0.3438 2.3556 24.5 2.3543 Cub. Ag (111)
44.3638 0.3439 2.0403 24.9 2.0389 Cub. Ag (200)

150 28.5272 0.4470 3.1264 18.3 2.3543 Orth.SiO2 (111)
38.1591 0.2407 2.3565 34.9 2.3543 Cub. Ag (111)
44.3570 0.3094 2.0406 27.7 2.0389 Cub. Ag (200)

Fig. 3  Crystallite size versus 
laser energy for Ag@SiO2 NPs

Table 2  Summarizes the results 
of some XRD calculations for the 
(111) plane

Laser energy (mJ) a (Å) CS (nm) Microstrain

50 4.0785 18.8 0.0018
100 4.0800 24.5 0.0014
150 4.0816 34.9 0.0010



 M. A. Mohammed et al.

1 3

40 Page 6 of 14

the optical absorption spectra of metal nanoparticles (Sarkar and Das 2018). The visible light 
absorption band is typical for Ag nanoparticles. The degree of nanoparticle aggregation influ-
ences the plasmon peak and full width at half maximum.

By increasing the pulse laser ablation energy from 50 to 150 mJ, we see a change in the 
SPR wavelength toward a more extended wavelength area (Fig. 4), indicative of a larger par-
ticle size. It is also clear from the absorption spectra that the peak broadens increases as the 
pulse laser intensity increases.

The plot of (αhv)2 against h for Ag@SiO2 core–shell NPs can be seen in Fig. 5. In this 
figure, h represents Plank’s constant, α represents the absorption coefficient, and ν represents 
the frequency of the incident light. The energy gap of Ag@SiO2 core–shell NPs has been 
determined by extending the linear section of (αhν)2 to intersect with the hν -axis. When cal-
culating the optical energy gap of the NPs, a well-known relation for direct transition is used 
(Salman and Ismail 2114).

(4)�h� = A
(

h� − Eg

)n

Fig. 4  Absorbance relates to the 
wavelength of Ag@SiO2 core–
shell nanoparticles for different 
laser energies. The inset shows 
the images of Ag@SiO2 samples

Fig. 5  Optical energy bandgap 
for Ag@SiO2 nanoparticles 
core–shell prepared at different 
laser energies
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When A is a constant, the photon energy is denoted by hν, and n is ½ for the indirect and 
2 for the direct band gap. The value of Eg was calculated using the extrapolation approach, 
and it was found to be 1.94, 2.06, and 2.08 eV for laser energies of 50 mJ, 100 mJ, and 
150 mJ, respectively.

Time-resolved PL spectra and PL excitation measurements are also taken to analyze the 
PL spectra of Ag@SiO2 core–shell better NPs. The excitation of electrons from occupied 
d bands into states above the Fermi level gives Ag its visible luminescence. An energy 
loss results from the Subsequelectron-phenomenon and hole-phonon scattering, and then 
an electron from an occupied sp band combines with a hole to produce photoluminescence 
(Smitha et al. Nov. 2008).

Figure  6 depicts the luminescence spectra of the core–shell Ag@SiO2 with various 
pulse laser energies. With increased laser energy, it has been seen that PL increases.

We use Planck’s equation to determine the energy bandgap from the photoluminescence 
spectra of Ag@SiO2 core–shell NPs.

where  Eg denotes the energy gap (eV), and the wavelength is characterized by λ (nm) in 
Eq. (5). The comparison between energy gap values calculated from UV–vis and PL meas-
urements was tabulated in Table 3. The optical power gap computed from the two meas-
ures is close in value.

Figure 7 shows the TEM image Ag@SiO2 prepared with laser ablation with (100.000 
kX) magnification; the laser beam’s energy is varied from 50 to 150  mJ, and the water 
thickness above the silver target is (0.8 cm). The image shows that Ag@SiO2 core–shell 
nanoparticles form a sphere, and the size distribution of these particles can be seen in the 
size distribution chart.

As shown in Fig. 8, when the pulse laser energy was raised from 50 to 100 mJ, the aver-
age particle size rose significantly more than when the laser energy was increased from 100 

(5)Eg(eV) =
1240

�(nm)

Fig. 6  The photoluminescence (PL) spectra of Ag@SiO2 core–shell NPs at various laser powers
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to 150 mJ. The transmission electron micrograph (TEM) picture of several Ag@SiO2 can 
be shown in Fig. 9. The 5 nm  SiO2 shell is clearly seen around the silver NP core in this 
image.

Successful fabrication of a plasmonic dye-sensitized solar cell using TiO2 paste. Two 
types of DSSC cells were prepared: regular DSSC and Plasmonic DSSC. The current 
density–voltage (J–V) characteristics of the DSSC under (AM1) illumination exhibited 
improved Jsc and Voc for plasmonic cells compared with conventional cells and the power 
as a function of voltage as shown in Fig.  10a, b. The efficiency of DSSC has enhanced 
from (0.18%) to (0.23%) as a direct result of the utilization Ag@SiO2. Figure 10 present 
the J–V plot of regular DSSC and Plasmonic DSSC; the figure shows an increase in current 
density after adding Ag@SiO2 core–shell nanoparticles.

Current–Voltage (I–V) measurements of a standard DSSC and a Plasmonic DSSC were 
performed in the dark, and under 100 mW/cm2 of light were done To Investigate the mech-
anisms of current transport and photoconduction. The I–V graphs of the regular and Plas-
monic DSSCs are shown in Fig. 11a–c. The relationship between current and voltage based 
on thermionic emission (TE) theory (V = 3kT/q) can be studied using Eqs. (6) and (7).

where n is the ideality factor, V is the applied voltage, k is the Boltzmann constant, T is the 
temperature in Kelvin,  Rs is the series resistance, and Io is the reverse-saturation current. 
At room temperature and above, Eq. (6) can be adjusted as follows since the value of Rs 
can be ignored at low and moderate forward bias voltages.

The slope and intercept of the ln(I)–V plot at zero bias was used to determine n and  Io.
As can be seen from Fig. 10a–d, the value of the forwarding bias current does not change 

with increasing illumination intensity, but the reverse bias current increases because, in this 
region, both the inner and external electric fields have some direction. This increase in 
reverse current results from generated electron–hole pairs under illumination affected and 
named photocurrent (Iph). In other words, the photogenerated electron–hole pairs caused 
photoconductive behavior at the reverse bias zone (Altındal et al. 2022; Demirezen et al. 
2021; Salman et  al. 2019). The enhancement in DSSC’s efficiency was basically related 
to photon absorbing efficiency of plasmonic Ag@SiO2 NPs via the collective oscillations 
of surface electrons, which can be excited and directly injected into the conduction band 
of Titanium dioxde. Furthermore, the poor light absorption capability of  TiO2 can also be 
extended through the enhancement of the photoabsorption cross-section of dye molecules. 

(6)I = Io

[

exp

(

q
(

V − IRs

)

nKT

)

− 1

]

(7)ln (I) = ln
(

Io
)

+
qV

nKT

Table 3  Summarizes the 
results of the energy gap values 
estimated from the UV–Vis and 
PL measurements

Laser energy (mJ) Eg, from UV–Vis (eV) Eg, from 
PL (eV)

50 2.06 1.98
100 2.08 2
150 1.94 2
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The efficiency of the solar cell is low compared to the results of other researchers. This is 
due to the fact that we used a small thickness of titanite as a photoanode. The reason for 
choosing the small thickness is to know the effect of adding Ag@SiO2 NPs (Table 4).

Fig. 7  Transmission electron micrograph (TEM) picture and size distribution chart of laser-ablated Ag@
SiO2 core–shell NPs generated at 1 50 mJ, 2 100 mJ, and 3 150 mJ
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Fig. 8  Average diameter against 
laser energy

Fig. 9  TEM picture of Ag@
SiO2, which distinctly shows the 
presence of  SiO2 Nano shell

Fig. 10  a J–V graphs of regular and Plasmonic DSSC under 100 mW/cm2 at ambient temperature b power 
as a function of voltage
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4  Conclusion

This research effectively synthesized Ag@SiO2 core–shell NPs using laser ablation. The 
effect of energy on the structure of pulsed laser, optical, and morphological features of 
these nanoparticles was examined, as it was observed that the average particle size and 
crystallite size increased from 18.8 to 35  nm when laser energy was raised from 50 to 
150 mJ. UV–Vis spectroscopy and photoluminescence results were consistent with each 
other for the optical energy gap. After increasing the laser ablation energy, a red shift in the 
surface plasmon resonance of Ag@SiO2 Core–shell NPs from 398 to 402 nm indicating an 
increase in particle size. Ag@SiO2 Core–shell nanoparticles were employed in manufac-
tured solar dye-sensitized cells by taking advantage of the plasmon effect from these NPs 

Fig. 11  The I–V plot of a, b regular DSSC, c, d plasmonic DSSC with power lighting 100 mW/cm2 and 
normal Room temperature

Table 4  Summarizes the results of I–V measurements of regular and plasmonic DSSC

Solar cell type Isc (mA) Voc (V) Im (mA) Vm (v) FF η % Rsh (Ω) Rs (Ω) n

Regular DSSC 0.68 0.63 0.42 0.39 0.39 0.18 2454.0 187.0 3.64
Plasmonic DSSC 0.70 0.74 0.39 0.52 0.39 0.23 2834.9 197.4 2.87
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on the DSSCs efficiency, as it was observed that plasmonic-sensitized solar cell efficiency 
increased by 27% in comparison to the regular DSSC.
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