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Abstract
The article focuses on exploring three distinct equations: the Jimbo-Miwa equation (JME),
the generalized shallow water equation (GSWE), and the Hirota-Satsuma-Ito equation
(HSIE). By applying the expð�UðgÞÞ-expansion method (EEM), we have successfully
obtained novel solutions with trigonometric, elliptic, and hyperbolic properties. The main
objective of this study is to identify and explore previously undiscovered soliton solutions
within nonlinear wave equations, contributing to a deeper comprehension of wave behaviors
and facilitating potential applications across diverse scientific and engineering domains. The
Jimbo-Miwa equation is relevant to integrable systems and mathematical physics, poten-
tially finding applications in quantum field theory and condensed matter physics. The
generalized shallow water equation extends the classical shallow water equations, enabling
better modeling of complex fluid dynamics like ocean currents and tsunamis. The Hirota-
Satsuma-Ito equation, likely a soliton-based nonlinear equation, holds importance in non-
linear optics, fluid dynamics, and possibly biological studies, contributing to the compre-
hension of wave-like behaviors in diverse systems. Soliton and solitary wave structures are
extracted as distinct solutions. By selecting appropriate values for arbitrary parameters
within the accurate range, we create 3D, 2D, and contour plots to visualize the discovered
solutions. Modifying model parameters enables the alteration of the solution dynamics
generated by the models. The calculations for this research were exclusively performed
using the symbolic software Mathematica. The solutions received encompass a variety of
types, such as dark, bright, combo dark-bright, singular, cuspons, peakons, periodic solitary
wave solutions, single-soliton solutions, double-soliton solutions, N-soliton solutions, and
numerous others. These solutions have real-life applications in areas such as predicting
coastal hazards, improving optical communications, studying nonlinear dynamics,
enhancing material science, and advancing medical imaging techniques. The complexity
and nonlinear nature of the system are underscored by these findings, emphasizing the
necessity for additional analysis. Moreover, the obtained results offer valuable insights into
understanding and modeling comparable physical systems. This research marks a significant
advancement by utilizing the the expð�UðgÞÞ-expansion method to reveal solitonic solu-
tions for an unsolved model, thereby expanding the existing literature and introducing a
novel mathematical technique to address nonlinear physical models. The proposed method
is concise, transparent, and reliable, leading to reduced computations and widespread
applicability.
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1 Introduction

Nonlinear system theory finds wide-ranging applications in robotics (Aji et al. 2021),
control systems (Alquran and Jaradat 2018), finance (Almutairi et al. 2021), machine
learning (Gilpin et al. 2020), biomedical engineering (Shams et al. 2023), and environ-
mental modeling (Schuwirth et al. 2019). Its use spans from designing stablecontrollers for
robots to modeling complex behaviors in financial markets, powering neural networks for
machine learning tasks, and understanding physiological and ecological systems. These
practical applications highlight the versatility and significance of nonlinear system theory in
diverse fields, contributing to advancements and insights in various domains. Because of the
numerous practical uses of nonlinear systems, there has been a significant surge in interest
among researchers in finding solutions for these types of equations. The exploration of
nonlinear partial differential equations (NLPDEs) represents a fiercely competitive and
demanding area of research. Scholars in this field are dedicated to comprehending the
intricacies of equations with multiple variables and partial derivatives, moving away from
the conventional linear framework. NLPDEs pose significant challenges, urging researchers
to employ various analytical and computational tools. The pursuit of understanding these
complex equations is driven by their wide-ranging implications across diverse scientific
disciplines and technological applications (Abro et al. 2021; Malik et al. 2023; Abdelrah-
man and Alkhidhr 2020; Beck et al. 2019; Yan et al. 2021; Ali et al. 2023), making it a
captivating and vital field of study.

The research makes a valuable contribution by exploring a diverse range of soliton
solutions that encompass various wave forms. Solitons, being non-dispersive and self-
sustaining wave packets that maintain their shape and speed as they propagate through a
medium, hold immense importance in almost every scientific discipline. The significance of
solitons lies in their widespread presence and influence across various fields of study.
Solitons, fundamental and versatile entities, are crucial components in diverse physics
disciplines, including nonlinear optics, condensed matter physics, and plasma physics.
These solitary waves maintain their shape and coherence during propagation, setting them
apart from conventional waves (Attia et al. 2023). Solitons play a pivotal role in high-speed
data transmission through optical fibers (Andreeva and Potapov 2020), aid in understanding
phenomena like superconductivity in condensed matter systems (Akbar et al. 2023), and
contribute to advancements in plasma physics research (Deng et al. 2020). Moreover, their
applications extend beyond fundamental physics, finding practical uses in various fields,
such as modeling biological processes in medicine and studying nonlinear dynamics in
neuronal systems (Takembo et al. 2019; Khodadadi et al. 2023; Ma and Li 2023). The
significance and utility of solitons continue to drive innovation and research across a wide
range of scientific domains. Investigating and defining different types of solitons, like bell-
type solitons, lump solitons, combo-dark bright solitons, cuspons solitons, and rogue waves,
presents exciting opportunities for advancing technology and gaining a valuable under-
standing of intricate systems’ dynamics. Such research holds the potential for significant
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technological advancements and valuable insights into the behavior of complex systems
(Yang et al. 2019).

Numerous innovative techniques have been developed to ensure the accuracy and
approximateness of NLPDE solutions. These methodologies enable us to conduct qualita-
tive and quantitative analyses of these complex equations efficiently. Through the appli-
cation of these distinct methods, we can obtain reliable solutions, advancing our
understanding and practical utilization of NLPDEs in various fields such as physics,
engineering, and computational science. Over the last few decades, various novel mathe-
matical techniques have been introduced, each contributing significantly to the field. Among
these ground-breaking methods are the exponential function method (Ahmad et al. 2023),
the modified expð�UðgÞÞ-function method (Ahmad and Mustafa 2023), the Hirota’s direct
method (Yang et al. 2022; Tariq et al. 2022), the improved F-expansion method (Tariq et al.
2023), the new extended hyperbolic function method (Tariq et al. 2023), the extended three
soliton test method (Younis et al. 2021), the extended modified auxiliary equation mapping
approach (Tariq et al. 2022a), the modified Kudryashov method (Li et al. 2021; Khater
2021a), the auxiliary equation method (Tariq and Seadawy 2019), the trigonometric-
quantic-B-spline method (Khater and Lu 2021), the extended simplest equation method
(Khater et al. 2021), the modified Khater method (Khater 2021b), generalized Riccati-
expansion analytical scheme(Khater et al. 2021), Elkalla-expansion method (Khater and
Ahmed 2021), the tanh-coth method (Rani et al. 2021), the generalized exponential rational
function method (Kumar et al. 2020), the homotopy perturbation technique (He and El-Dib
2021), the trial equation method (Hu et al. 2021), the improved tanh method (Yokuş et al.
2022) and the sine-cosine method (Liang et al. 2022).

In 2017, Yang employed the Hirota’s bilinear forms to make a significant breakthrough in
uncovering plentiful lump-type solutions for the JME (Yang and Ma 2017). In the year
2020, Hao-Nan Xu made a remarkable advancement in the study of multi-exponential wave
solutions for the JME by utilizing the principle of the linear superposition (Xu et al. 2020).
In 2021, Sachin Kumar achieved a noteworthy breakthrough in the investigation of closed-
form invariant solutions for the JME through the application of the Lie symmetry method
(Kumar et al. 2021).

In 2019, Dharmendra Kumar employed the bilinear neural network technique to inves-
tigate the GSWE (Kumar and Kumar 2019). The objective was to discover fresh periodic
solitary wave solutions using this innovative approach. In the year 2020, Andronikos
Paliathanasis utilized the Lie symmetries and singularity analysis to study the GSWE
(Paliathanasis 2020). The primary aim was to unveil a variety of distinct soliton solutions
using these methodologies. In 2021, Chaudry Masood Khalique utilized the Kudryashov’s
approach to investigate the GSWE (Khalique and Plaatjie 2021). The main objective was to
identify exact solutions and conserved vectors using this particular method. In 2022, Jian-
Guo Liu employed the three-wave method to study the GSWE (Liu and Osman 2022). The
primary focus was to discover various non-autonomous wave structure solutions using this
particular approach. In 2019, Yuan Zhou utilized the Hirota direct method to investigate the
HSIE (Zhou et al. 2019). The main objective was to identify lump and lump-soliton
solutions using this specific method. In the year 2020, Si-Jia Chen employed a Backlund
transformation to study the HSIE (Chen et al. 2020). The primary focus of the research was
to discover exact solutions and analyze the interaction behavior of the equation. In 2021,
Fan Yong-Yan successfully obtained new periodic wave solutions for the HSIE using the
Hirota bilinear operator as a tool of investigation (Yong-Yan et al. 2021). In 2022, Fei Long
accomplished the discovery of new interaction solutions for the HSIE by employing the
Hirota direct method as a valuable tool of analysis (Long et al. 2022). In 2022, Zhen-ao
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Mou utilized the bilinear neural network method to discover analytical solutions for the
HSIE. The reviewed literature provides valuable insights and lays the groundwork for
further exploration in this research area.

The reason for considering these models in this study is because each of these equations
holds distinctive importance in different branches of science and engineering. The JME is
recognized for its relevance in describing soliton phenomena, which are unique wave-like
behaviors observed in various physical systems. The GSWE finds applications in coastal
dynamics, specifically in understanding the behavior of water waves in coastal regions. On
the other hand, the HSIE is significant in the field of nonlinear optics, which deals with the
behavior of light in nonlinear media. By exploring these equations, researchers can gain
insights into various aspects of wave behavior, from solitons to water waves to optical
phenomena. Each equation brings its own set of challenges and characteristics, making them
intriguing subjects for study. Therefore, the decision to consider these three equations stems
from their importance and relevance in distinct areas of science and engineering, offering
valuable contributions to our understanding of various physical systems.

In this paper, a novel method called the EEM is introduced, enabling the direct discovery
of traveling wave solutions to NLPDEs. The effectiveness and reliability of the EEM may
vary based on factors such as equation complexity, the problem domain, and the underlying
assumptions employed. This mathematical technique has been successfully applied across
various scientific fields to obtain solutions for both nonlinear evolution equations (NLEEs)
and NLPDEs. Researchers led by J. Ahmad utilized the EEM to investigate soliton solutions
concerning the Caudrey-Dodd-Gibbon equation in 2022 (Rani et al. 2022). In 2023,
Zulaikha Mustafa conducted research on the nonlinear resonant Schrodinger equation,
employing the EEM (Ahmad and Mustafa 2023). The study involved the application of
conformable derivatives and stability analysis in her investigation.

The research paper follows the subsequent structure: To begin with, it presents an
introduction in Sect. 1. In Sect. 2, a summary of the EEM is provided. Moving on to Sect. 3,
various structures of the soliton solutions of the BLMPE, the GSWE, and the HSIE are
described. The obtained results are presented using graphs in Sect. 4. Finally, Sect. 5
contains the conclusion of the study.

2 Summary ofmethod

By considering general NLPDEs, we are dealing with a class of PDEs that contain nonlinear
terms.

PðG; Gt; Gx; Gy; Gtt; Gxt; Gxy; Gxx; :::Þ ¼ 0: ð1Þ
The wave transformation for NLPDE can be written as

Gðx; tÞ ¼ gðfÞ; f ¼ �rt þ jxþ yx: ð2Þ
The coefficient r is associated with the time variable t in the transformed equation. It
determines the rate at which the wave’s phase evolves with time. The coefficient j is related
to the spatial variable x in the transformation. It influences the wave’s propagation in space
and represents the rate of change of phase with respect to the spatial coordinate. The
coefficient x is associated with the variable y in the transformation. It often represents the
angular frequency of the wave. Applying wave transformation

Qðg; g0; g00; g000; g0000; :::Þ ¼ 0: ð3Þ
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The solutions to Eq.(1) can be expressed using the EEM, where the symbol 0 denotes the
derivative with respect to f (Ahmad et al. 2023).

gðfÞ ¼
XN
m¼0

Amðexpð�UðfÞÞÞm; ð4Þ

where Am are constants, Am 6¼ 0 and 0�m�N .

U
0 ðfÞ ¼ b expð/ðfÞÞ þ expð�/ðfÞÞ þ a: ð5Þ

The solutions of Eq.(5) can be obtained by taking the derivative with respect to f.

Cluster-i:
If b 6¼ 0 and a2 � 4b[ 0, then

UðfÞ ¼ ln
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2b
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2
ðfþ FÞ

 !
� a

2b

 !
: ð6Þ

Cluster-ii:
If b 6¼ 0 and a2 � 4b\0, then

UðfÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2b
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2
ðfþ FÞ

 !
� a

2b

 !
: ð7Þ

Cluster-iii:
If b ¼ 0, a 6¼ 0 and a2 � 4b[ 0, then

UðfÞ ¼ � ln
a

exp aðfþ FÞð Þ � 1
: ð8Þ

Cluster-iv:
If b 6¼ 0, a 6¼ 0 and a2 � 4b ¼ 0, then

UðfÞ ¼ ln
2ðaðfþ HÞ þ 2Þ

ða2ðfþ FÞ : ð9Þ

Cluster-v: If b ¼ 0, a ¼ 0 and a2 � 4b ¼ 0, then

/ðfÞ ¼ lnðfþ FÞ: ð10Þ

3 Extraction ofsoliton solutions

In this section, we will apply the JME, GSWE, and HSIE methods to implement the
previously discussed methodology.

3.1 Jimbo-Miwa equation

This subsection aims to address the JME and find its solution (Yin et al. 2023; Yang and Ma
2017; Xu et al. 2020).

2Gyt þ Gxxxy � 3Gxz þ 3GxxGy þ 3GxGxy ¼ 0; ð11Þ
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where g is a function that depends on variables x, y, and t. Using the wave transformation of
Eq.(2), we derive the resulting expression.

j3xgð3ÞðfÞ � 3j2xg0ðfÞ2 � rxg0ðfÞ ¼ 0: ð12Þ

Through the implementation of balancing techniques on Eq.(12) involving gð3Þ and ðg0Þ2,
we achieve the following result.

mþ 3 ¼2ðmþ 1Þ:
) m ¼1:

Setting m = 1 in Eq.(4) yields the following expression.

gðfÞ ¼ A1 expð�UðfÞÞ þ Ao: ð13Þ
By substituting Eqs.(5) and (13) into Eq.(12), we obtain the following result.

B�4e
�4UðfÞ þ B�3e

�3UðfÞ þ B�2e
�2UðfÞ þ B�1e

�UðfÞ þ Bo ¼ 0; ð14Þ
where

B�4 ¼ �6A1j
3x� 3A2

1j
2x;

B�3 ¼ �12aA1j
3x� 6aA2

1j
2x;

B�2 ¼ �7a2A1j
3x� 3a2A2

1j
2x� 8A1bj

3x� 6A2
1bj

2xþ A1rx;

B�1 ¼ �a3A1j
3x� 8aA1bj

3x� 6aA2
1bj

2xþ aA1rx;

Bo ¼ �a2A1bj
3x� 2A1b

2j3x� 3A2
1b

2j2xþ A1brx:

B�4 ¼ 0;B�3 ¼ 0 ;

B�2 ¼ 0;B�1 ¼ 0;Bo ¼ 0:

�
ð15Þ

Solving the system, the resulting outcome is as follows.

A1 ¼ 2
ffiffiffiffiffiffiffi�13

p ffiffiffi
r3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b3

p ;

j ¼ �
ffiffiffiffiffiffiffi�13

p ffiffiffi
r3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b3

p :

8>>><
>>>:

ð16Þ

Through the utilization of Eqs.(5), (13), (12), and (16), the solutions for Eq.(11) are as
follows:

Cluster-i:

G1ðx; y; tÞ ¼ Ao � 4
ffiffiffiffiffiffiffi�13

p
b
ffiffiffi
r3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b3

p
k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b� a2

p
tan 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b� a2

p
F � rt �

ffiffiffiffiffi�13p ffiffi
r3

p
xffiffiffiffiffiffiffiffiffiffi

a2�4b3p þ yx
� �� �� � :

Cluster-ii:

G2ðx; y; tÞ ¼ Ao � 4
ffiffiffiffiffiffiffi�13

p
b
ffiffiffi
r3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b3

p
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b� a2

p
tan 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b� a2

p
F � rt �

ffiffiffiffiffi�13p ffiffi
r3

p
xffiffiffiffiffiffiffiffiffiffi

a2�4b3p þ yx
� �� �� � :
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Cluster-iii:

G3ðx; y; tÞ ¼ Ao þ 2
ffiffiffiffiffiffiffi�13

p
a
ffiffiffi
r3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b3

p
exp a F � rt �

ffiffiffiffiffi�13p ffiffi
r3

p
xffiffiffiffiffiffiffiffiffiffi

a2�4b3p þ yx
� �� �

� 1
� � :

Cluster-iv:

G4ðx; y; tÞ ¼ Ao þ
4
ffiffiffiffiffiffiffi�13

p ffiffiffi
r3

p
aþ 2

F�rt�
ffiffiffiffi�13p ffiffi

r3
p

xffiffiffiffiffiffiffi
a2�4b

3p þyx

 !

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b3

p :

Cluster-v:

G5ðx; y; tÞ ¼ Ao � 2
ffiffiffiffiffiffiffi�13

p ffiffiffi
r3

p
ffiffiffiffiffiffiffi�13

p ffiffiffi
r3

p
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b3

p
ðF � rt þ yxÞ :

3.2 Generalized shallow water equation(GSWE)

This subsection aims to address the solution of the GSWE (Yin et al. 2023).

Gyt þ aGyGxx þ 2aGxGxy þ bGxy þ cGxxxy ¼ 0: ð17Þ
In the given expression, a, b, and c represent constants, while g is a function that depends on
variables x, y, and t. Using the wave transformation of Eq.(2), we derive the resulting
expression.

cj3xgð3ÞðgÞ þ 3

2
aj2xg0ðgÞ2 þ bjxg0ðgÞ � rxg0ðgÞ ¼ 0: ð18Þ

By employing balancing techniques, we arrive at the result m=1. By substituting Eqs.(5) and
(13) into Eq.(18), we obtain the following result.

C�4e
�4UðgÞ þ C�3e

�3UðgÞ þ C�2e
�2UðgÞ þ C�1e

�UðgÞ þ Co ¼ 0; ð19Þ
where

C�4 ¼ 3

2
aA2

1j
2x� 6A1cj

3x;

C�3 ¼3aaA2
1j

2x� 12aA1cj
3x;

C�2 ¼ 3

2
a2aA2

1j
2x� 7a2A1cj

3xþ 3aA2
1bj

2x� 8A1bcj
3x� A1bjxþ A1rx;

C�1 ¼� a3A1cj
3xþ 3aaA2

1bj
2x� 8aA1bcj

3x� aA1bjxþ aA1rx;

Co ¼� a2A1bcj
3xþ 3

2
aA2

1b
2j2x� 2A1b

2cj3x� A1bbjxþ A1brx:

C�4 ¼ 0;C�3 ¼ 0;

C�2 ¼ 0;C�1 ¼ 0;Co ¼ 0:

�

ð20Þ
Solving the system, the resulting outcome is as follows.
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Case 1:

A1 ¼ 4cj
a

;

r ¼ j cj2 a2 � 4bð Þ þ bð Þ:

8<
: ð21Þ

Through the utilization of Eqs.(5), (13), (18), and (21), the solutions for Eq.(17) are as
follows:

Cluster-i:

G6ðx; y; tÞ ¼ Ao � 8bcj

aaþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p
tanh 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p
F � jt cj2 a2 � 4bð Þ þ bð Þ þ jxþ yxð Þ

� � :

Cluster-ii:

G7ðx; y; tÞ ¼ Ao � 8bcj

aa� a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b� a2

p
tan 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b� a2

p
F � jt cj2 a2 � 4bð Þ þ bð Þ þ jxþ yxð Þ

� � :

Cluster-iii:

G8ðx; y; tÞ ¼ Ao þ 4acj
a exp a F � jt cj2 a2 � 4bð Þ þ bð Þ þ jxþ yxð Þð Þ � 1ð Þ :

Cluster iv:

G9ðx; y; tÞ ¼ Ao þ
8cj aþ 2

F�jt cj2 a2�4bð Þþbð Þþjxþyx

� �
a2a

:

Cluster v:

G10ðx; y; tÞ ¼ Ao þ 4cj
a F þ j x� t cj2 a2 � 4bð Þ þ bð Þð Þ þ yxð Þ :

3.3 Hirota-Satsuma-Ito equation

This subsection focuses on the solution of the HSIE (Chen et al. 2023; Yong-Yan et al.
2021; Long et al. 2022).

Gxxxt þ 3ðGxGtÞx þ Gyt þ Gxx ¼ 0; ð22Þ
where g is a function that depends on variables x, y, and t. Using the wave transformation of
Eq.(2), we derive the resulting expression.

j3ð�rÞgð3ÞðgÞ � 3j2rg0ðgÞ2 þ j2g0ðgÞ � rxg0ðgÞ ¼ 0: ð23Þ
By employing balancing techniques, we arrive at the result m=1. By substituting Eq.(5) and
Eq.(13) into Eq.(23), we obtain the following result.

D�4e
�4UðgÞ þ D�3e

�3UðgÞ þ D�2e
�2UðgÞ þ D�1e

�UðgÞ þ Do ¼ 0; ð24Þ
where
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D�4 ¼6A1j
3r� 3A2

1j
2r;

D�3 ¼12aA1j
3r� 6aA2

1j
2r;

D�2 ¼7a2A1j
3r� 3a2A2

1j
2rþ 8A1bj

3r� 6A2
1bj

2r� A1j
2 þ A1rx;

D�1 ¼a3A1j
3rþ 8aA1bj

3r� 6aA2
1bj

2r� aA1j
2 þ aA1rx;

Do ¼a2A1bj
3rþ 2A1b

2j3r� 3A2
1b

2j2r� A1bj
2 þ A1brx:

D�4 ¼ 0;D�3 ¼ 0;

D�2 ¼ 0;D�1 ¼ 0;D0 ¼ 0:

�

ð25Þ
Solving the system, the resulting outcome is as follows.

Case 1:

A1 ¼ 2j;

b ¼ 1

4
a2 þ

x� j2

r
j3

0
BB@

1
CCA:

8>>>><
>>>>:

ð26Þ

Through the utilization of Eqs.(5), (13), (23), and (26), the solutions for Eq.(22) are as
follows:

Cluster i:

G11ðx; y; tÞ ¼ �a2j3rþ j2 � rx

j2r aþ
ffiffiffiffiffiffiffiffiffiffiffi
j2�rx
j3r

q
tanh 1

2

ffiffiffiffiffiffiffiffiffiffiffi
j2�rx
j3r

q
ðF � rt þ jxþ yxÞ

� �� � :

Cluster ii:

G12ðx; y; tÞ ¼ Ao þ �a2j3rþ j2 � rx

aj2r� ffiffiffi
j

p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x� j2

r

q
tan

ffiffiffiffiffiffiffiffi
x�j2

r

p
ðF�rtþjxþyxÞ
2j3=2

� � :

Cluster iii:

G13ðx; y; tÞ ¼ Ao þ 2aj

eaðF�rtþjxþyxÞ � 1
:

Cluster iv:

G14ðx; y; tÞ ¼ Ao þ
4j aþ 2

F�rtþjxþyx

� �
a2

:

Cluster v:

G15ðx; y; tÞ ¼ Ao þ 2j
F � rt þ jxþ yx

:
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4 Graphical representation

In this section, we present visually appealing representations of the exact solutions for three
important equations: the JME, GSWE, and HSIE. These solutions are obtained using the
EEM. It is essential to highlight that the soliton solutions’ specific shapes and characteristics
may vary depending on the equation’s parameters and nonlinearities. Our results showcase
the novelty of our findings, as they have not been previously reported in published studies.
To illustrate the wave structures, we employ three-dimensional (3D), two-dimensional (2D),
and their associated contour graphs. By adjusting the parameters in the equations, we can
generate a diverse range of graphs, each representing different forms of the solution. The
figuresin our presentation beautifully display these obtained solutions in both 3D and 2D,
providing a comprehensive visual understanding of the wave patterns. The contour graphs
further enhance the clarity of the solutions, making it easier to grasp their intricate features.
It is important to emphasize that the uniqueness of our method lies in the originality of the
results, paving the way for new insights into the behavior of these equations. These results
contribute to the advancement of research in this field, offering potential applications in
various areas of science and engineering. Furthermore, the versatility of our methodology
allows us to explore and understand the solutions’ characteristics with precision, providing
valuable insights into the underlying dynamics of these important nonlinear equations. Our
work stands as a significant contribution to the scientific community, presenting novel and
intriguing solutions that were previously unknown and unexplored.

These illustrations offer valuable insights into the intricate characteristics and phenomena
exhibited by waves in the presence of nonlinear environments. Figures 1 and 2 shows a
special kind of wave called a bright wave solution or single-soliton solution. Unlike regular
waves, this one has a strong bump in the middle and lower ripples around it. It happens
because of how waves interact in certainsituations where things aren’t straight and simple.
Figures 3, 4, and 5 showcase a unique wave pattern called a periodic soliton solution or
N-soliton solution. These patterns are remarkable because they keep their shape and speed
as they move through a medium. These solitons are important in understanding nonlinear
systems and have practical uses in various fields. Figures 6 and 7 illustrate a type of wave
solution known as peakons. Peakons are distinctive because they consist of sharp peaks or
discontinuities, which make them quite different from typical smooth waves. Figure 8
displays a mixed wave pattern consisting of both dark and bright solutions, or double-
soliton solution. Dark waves have lower amplitudes, while bright waves have higher ones.
This combination arises from complex interactions in nonlinear systems and holds signif-
icance in fields like optics. Figures 9, 10, 11, and 12 each illustrate a specific type of wave
solution known as a singular solution. Singular solutions are notablefor their distinct
characteristics, often featuring abrupt changes or pronounced features. Figures 13 and 14

Fig.1 Graphical interpretation of u1ðx; y; tÞ with different parametric values Ao ¼ 2; b ¼ 0:5; r ¼ 1:5;
y ¼ 1:9; x ¼ 1:8; F ¼ 1:9; and a ¼ 0:5
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Fig.5 Graphical interpretation of u11ðx; y; tÞ with different parametric values j ¼ 0:3; Ao ¼ 1:5;
b ¼ 0:5; r ¼ 0:5; y ¼ 3:4; x ¼ 3:5; F ¼ 3:9; and a ¼ 0:5

Fig.4 Graphical interpretation of u6ðx; y; tÞ with different parametric values a ¼ 0:5; c ¼ 0:9; j ¼ 3:5; b ¼
0:8; Ao ¼ 2; b ¼ 0:5; r ¼ 2:4; y ¼ 4; x ¼ 0:99; F ¼ 0:78; and a ¼ 0:5

Fig.2 Graphical interpretation of u10ðx; y; tÞ with different parametric values a ¼ 2:25; c ¼ 3:9; j ¼
3:15; b ¼ 0:8; Ao ¼ 0:2; b ¼ 0; r ¼ 0:4; y ¼ 2:3; x ¼ 1:99; F ¼ 3:78; and a ¼ 0

Fig.3 Graphical interpretation of u2ðx; y; tÞ with different parametric values Ao ¼ 2:5; b ¼ 1:5;
r ¼ 2:5; y ¼ 2:9; x ¼ 2:8; F ¼ 0:9; and a ¼ 1
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demonstrates a singular periodic solution or singular traveling solution. This type of solution
is characterized by its unique periodic pattern combined with singular features. In other
words, the wave pattern repeats itself in a periodic manner, but it also contains specific
points or regions where it behaves in an exceptional or singular way. Figure 15 features a

Fig.6 Graphical interpretation of u3ðx; y; tÞ with different parametric values Ao ¼ 2:4; b ¼ 0; r ¼ 2:6;
y ¼ 2:9; x ¼ 2:9; F ¼ 3:5; and a ¼ 1:4

Fig.7 Graphical interpretation of u4ðx; y; tÞ with different parametric values Ao ¼ 1:5; b ¼ 0:6;
r ¼ 2:4; y ¼ 1:9; x ¼ 1:8; F ¼ 0:5; and a ¼ 0:8

Fig.8 Graphical interpretation of u5ðx; y; tÞ with different parametric values Ao ¼ 2:5; b ¼ 0;
r ¼ 2:4; y ¼ 2:9; x ¼ 2:8; F ¼ 2:5; and a ¼ 0

Fig.9 Graphical interpretation of u8ðx; y; tÞ with different parametric values a ¼ 1:25; c ¼ 1:9; j ¼
1:15; b ¼ 0:8; Ao ¼ 0:2; b ¼ 0; r ¼ 0:4; y ¼ 2:3; x ¼ 0:99; F ¼ 2:78; and a ¼ 2:4
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’cuspons solution,’ a wave pattern with a sharp peak followed by a rapid decrease in
amplitude. These specialized shapes arise from complex interactions in nonlinear systems
and have applications in fields like fluid dynamics and optics.

Negative time within figuresisn’t a direct reflection of physical time flowing in reverse.
Instead, it often symbolizes a mathematical or theoretical tool, enabling researchers to
explore complex scenarios. It aids in theoretical investigations by contemplating how
physical systems would respond under time reversal. Additionally, negative time extends
mathematical solutions beyond observed time frames, accommodating behaviors before
initial moments and enhancing analytical insights. It can represent preparatory stages before
events, incorporating setups occurring before the observed time span. Negative time also
addresses mathematical symmetry or boundary conditions and facilitates the examination of
unconventional conditions. Overall, it’s a valuable tool for comprehending intricate wave
dynamics and nonlinear effects from diverse viewpoints, revealing hidden relationships and
behaviors that might be obscured in positive time frames. In 2021, Serbay Duran et al. made
a significant discovery in the field of wave dynamics. They successfully identified hyper-
bolic and trigonometric wave solutions within the framework of the shallow water wave
system (Duran and Kaya 2021). Their achievement was facilitated by employing a modified
expansion method as a key tool in their research methodology. In addition to their work on
the shallow water wave system, they conducted research involving the Lonngren wave
equation for the tunnel diodes (Duran 2021). Using the (1/G’)-expansion method, they
investigated this equation and successfully identified hyperbolic-type traveling wave solu-
tions. But what really makes my work stand out is the different solutions I found. Serbay
Duran mainly looked at specific types of waves, like hyperbolic and trigonometric waves.
But I went further. I checked out different types of solutions, and each had its own special
qualities. Some were called cuspons, which are unique wave shapes. Others were peakons
that acted in their own special ways. I even found something really interesting called

Fig.11 Graphical interpretation of u14ðx; y; tÞ with different parametric values j ¼ 3:7; Ao ¼ 1:67;
b ¼ 1; r ¼ 2:4; y ¼ 0:67; x ¼ 1:79; F ¼ 1:78; and a ¼ 2

Fig.10 Graphical interpretation of u9ðx; y; tÞ with different parametric values a ¼ 2:25; c ¼ 3:9; j ¼
3:15; b ¼ 0:8; Ao ¼ 0:2; b ¼ 0; r ¼ 0:4; y ¼ 2:3; x ¼ 1:99; F ¼ 3:78; and a ¼ 1

123

Analyzing dispersive optical solitons... Page 13 of 20 77



singular soliton solutions, which are like exceptional wave behaviors. Finding all these
different solutions helped us understand waves even more. It showed that waves can do

Fig.12 Graphical interpretation of u15ðx; y; tÞ with different parametric values Ao ¼ 0:5;
r ¼ 0:44; y ¼ 0:89; x ¼ 0:38; F ¼ 0:55; and j ¼ 2:65

Fig.14 Graphical interpretation of u12ðx; y; tÞ with different parametric values j ¼ 0:2; Ao ¼ 3:5;
b ¼ 1:5; r ¼ 0:25; y ¼ 1:39; x ¼ 3:88; F ¼ 1:79; and a ¼ 1

Fig.15 Graphical interpretation of u13ðx; y; tÞ with different parametric values j ¼ 2:1; Ao ¼ 3:4; b ¼ 0;
r ¼ 2; y ¼ 3:9; x ¼ 3:69; F ¼ 2:75; and a ¼ 1:4

Fig.13 Graphical interpretation of u7ðx; y; tÞ with different parametric values a ¼ 1:25; c ¼ 1:9; j ¼
1:15; b ¼ 0:8; Ao ¼ 0:2; b ¼ 1:5; r ¼ 0:4; y ¼ 2:3; x ¼ 0:99; F ¼ 0:78; and a ¼ 1
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many different things, making the whole wave world more complicated and fascinating. So,
my work gives us a bigger and clearer view of how waves work and what makes them do
what they do.

The solutions captured in the figuresexhibit a range of interesting wave patterns. Among
them are periodic solutions, which demonstrate repetitive oscillatory behavior (Bainov and
Simeonov 2017). Singular solutions, on the other hand, display distinctive features where
the wave amplitude becomes unbounded (Cachazo et al. 2020). The figuresalso contain
examples of periodic singular solutions, which combine the characteristics of both peri-
odicity and singularity (Andrade and Wei 2022). In addition to these, we have identified
compacton solutions, which represent localized waves that maintain their shape as they
travel (Iqbal and Naeem 2022). Bright and dark soliton solutions are also visualized, each
exhibiting different types of nonlinear wave behavior (Raza and Arshed 2020). Cuspons,
which are wave structures with both a cusp and a peak, are represented as well (Kassem and
Rashed 2019). Lastly, the figuresinclude hyperbolic soliton solutions, which possess
hyperbolic-shaped waveforms (Rasool et al. 2023). The single-soliton solution, a self-
reinforcing solitary wave that maintains its shape while propagating, has profound appli-
cations. In optical fibers, the nonlinear Schrödinger Equation’s single-soliton solution
ensures efficient, distortion-free data transmission over long distances. Double-soliton
solutions, describing interactions between two solitary waves, find utility in particle physics,
aiding the understanding of particle interactions in theories like the sine-Gordon equation.
N-soliton solutions, which extend interactions to multiple solitons, are significant in fields
like plasma physics, aiding the comprehension of soliton collisions and dynamics. Mean-
while, singular traveling solutions, which involve solutions with singularities, have impli-
cations in oceanography, contributing insights into rogue wave formation and turbulent
flows (Khater and Alabdali 2021). In summary, these soliton-based solutions cater to a wide
range of applications, from enhancing communication to unraveling the mysteries of
complex physical phenomena. The variety of these depicted solutions highlights the rich-
ness and complexity of nonlinear wave dynamics in different media. Our work contributes
to a better understanding of these phenomena and provides valuable insights into the
physical behavior of waves in nonlinear systems. The clear and detailed visualizations
presented in the figuresoffer a unique and insightful perspective, contributing to the origi-
nality of our study, and these findings pave the way for further research and applications in
various scientific and engineering domains.

5 Conclusion

The expð�UðgÞÞ-expansion method (EEM) has been effectively employed in this research
paper to investigate the aforementioned models. Through the application of this innovative
method, the study obtained numerous solutions represented by hyperbolic and exponential
functions. In the realm of mathematics, the EEM proves to be a valuable tool for effectively
researching NLPDEs. The exact soliton solutions derived from this research hold tremen-
dous significance for researchers and mathematicians, given their practical applications in
engineering. Notably, solitons play a crucial role in understanding water waves, rogue
waves, and tsunamis. Moreover, in the field of optics, optical solitons manifest as localized
intensity peaks or waveforms that can propagate through fibers without spreading out or
deforming (Khater et al. 2021). The implications of this research extend beyond mathe-
matics and engineering. Solitary wave models resulting from these findings are instrumental
in comprehending and predicting the behavior of immense waves in oceans and coastal
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areas, thus contributing to the development of effective coastal protection measures and
structures.

As a result, these solutions hold relevance across various academic disciplines, partic-
ularly in the realm of fluid dynamics. The precision of the study is significantly enhanced
through a blend of computational efforts and graphical representations. Notably, the cal-
culated solutions presented in this research surpass those of prior studies, thereby imparting
valuable insights to the scientific community without compromising authenticity. The
advancements in the JME may unveil novel symmetries, conservation laws, and exact
solutions, establishing connections with other systems in both classical and quantum
domains. Exploring the equation in higher dimensions will unveil deeper mathematical
intricacies and enhanced physical implications. Within fluid dynamics, the GSWE holds
promise for refining predictive models involving friction, viscosity, and non-uniform
topography, thereby benefiting hazard management for phenomena such as tsunamis, storm
surges, and coastal erosion. Further investigations into the HSIE have the potential to
catalyze innovative applications in science and engineering. Pursuing these research
directions will fuel future technological breakthroughs and enrich our comprehension of the
natural world.

Our research endeavors have led to unique discoveries that not only offer a diverse range
of solutions but also unveil novel aspects of wave behavior previously unknown. Our study
stands apart from existing research, presenting fresh perspectives on the intricacies of wave
dynamics. Through thoughtful adjustments in our calculations, we have brought to light
untold narratives of waves, showcasing distinctive behaviors like periodic soliton solutions
and singular phenomena. These revelations can be likened to new pieces of a puzzle,
contributing to a deeper comprehension of how waves manifest under varied conditions.
The significance of our work lies in its innovative nature. Our research is not solely about
providing answers; it is a journey of posing new questions that evoke curiosity and
excitement for further exploration. Reflecting on our research journey, we recognize that the
equations governing waves offer a multitude of possibilities. The discoveries we have made
extend beyond the boundaries of our immediate field, potentially influencing diverse areas
of study. Each newfound concept is like a wave, carrying with it fresh insights into the
workings of these phenomena. As we embark on this new chapterof exploration, we remain
poised to delve deeper. Moving forward, the solutions we’ve uncovered will serve as
guiding beacons, motivating us to delve into the realms of knowledge that lie ahead.

In terms of future directions, this study lays the foundation for several potential avenues
of research. First and foremost, the exploration of soliton solutions can be extended to
encompass multi-dimensional systems, offering a deeper understanding of their behavior
across different dimensions. Additionally, investigating the interactions between distinct
soliton solutions, either within the same equation or in different equations, could provide
insights into their complex dynamics. To ensure the practical applicability of these solutions,
a thorough stability analysis should be conducted, assessing their robustness under various
perturbations and conditions. Collaborations with experts from fields such as oceanography,
optics, and communication systems could uncover novel applications and guide the inte-
gration of these solutions into real-world technologies. Moreover, considering a broader
range of nonlinear equations and assessing the generalizability of the discovered soliton
solutions would contribute to a more comprehensive understanding of their significance.
Utilizing numerical simulations and experimental setups could offer additional validation
and insights into the behavior of these solutions. Finally, exploring how these solutions can
be integrated into emerging mathematical frameworks or theories could yield new mathe-
matical insights and connections. Pursuing these future research avenues promises to further

123

77 Page 16 of 20 J. Ahmad et al.



enhance our understanding of soliton solutions and their potential applications, driving
advancements in the field of nonlinear wave dynamics.
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