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Abstract
In this manuscript, an analysis is carried out on the dynamic behavior of the ill-posed 
Boussinesq equation, which arises in nonlinear lattices and shallow water waves. The sim-
plified Hirota method is employed to obtain multi-wave structures, such as one-soliton, 
two-soliton and three-soliton solutions. Some solutions are visually demonstrated through 
3D, 2D and density plots. Furthermore, a comprehensive discussion on the stability analy-
sis of the equation under study is presented. These results are innovative and have not been 
previously investigated in the context of this equation. These results show that the method-
ology used is concise, straightforward, and efficient, and as a result, it makes a significant 
contribution to comprehending the complexity of multi-wave profiles in nonlinear physical 
science models.

Keywords The ill-posed Boussinesq equation · Simplified Hirota method · Multi-soliton 
solutions · Stability analysis

1 Introduction

Nonlinear evaluation equations provide a powerful framework for understanding and ana-
lyzing complex systems found in fields such as neuroscience, climate science, social net-
works, and biological systems (Ermentrout and Terman 2010; Wang et al. 2020; Ghergu 
and Radulescu 2011). These equations enable researchers to capture the intricate inter-
actions and emergent behaviors observed in these systems. These equations play a cru-
cial role in developing advanced machine learning and artificial intelligence algorithms 
(Weinan et  al. 2021). A multitude of efficacious techniques have emerged, offering a 
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diverse array of avenues to construct precise solutions for nonlinear partial differential 
equations (PDEs). This rich assortment includes the (G�∕G)-expansion method (Zayed 
and Gepreel 2009), the modified exp-function method (Naher et al. 2012), the exponential 
rational function method (Raza et  al. 2021), the unified method (Raza et  al. 2021), the 
Hirota bilinear method (Lü and Chen 2021), the simplified Hirota bilinear method (Rafiq 
et al. 2023), the Bäcklund transformation method (Kaplan and Ozer 2018), the extended 
simple equation technique (Khater et  al. 2019), generalized projective Riccati equations 
method (Rafiq et al. 2023), extended direct algebraic method (Raza and Zubair 2019), the 
generalized Kudryashov method (Rafiq et al. 2023), the extended simple equation method 
(Alotaibi et al. 2023), inverse engineering method (Zubair et al. 2018) and so many.

Within the vast expanse of literature, a remarkable assortment of solution types have 
been unearthed, each bearing its own distinct characteristics and allure. Among these dis-
coveries lie periodic solutions, rational solutions, hyperbolic type solutions, rogue wave 
solutions, breather wave solutions, solitary wave solutions, with a particular emphasis 
on soliton solutions (Raza et  al. 2022). Within the realm of solitons, a captivating array 
of manifestations unfolds, including bright soliton solutions, dark soliton solutions, kink 
soliton solutions, multi-soliton solutions, and the intriguing entity known as the lump 
soliton, to name but a few (Rafiq et al. 2021; Wang et al. 2023; Ahmad et al. 2020; Tala-
Tebue et al. 2018). The breadth and depth of these findings continue to captivate the minds 
of researchers and pave the way for further exploration into the profound intricacies of 
nonlinear phenomena.

Real-world phenomena such as water waves, solitons, and heat conduction can be accu-
rately described by the ill-posed Boussinesq equation (Younas et al. 2022). Understanding 
and solving ill-posed equation helps overcome challenges in accurately modeling and pre-
dicting complex physical systems (Tchier et al. 2017). The ill-posed Boussinesq equation 
presents mathematical and computational difficulties, requiring innovative techniques for 
stable and reliable solutions. Solving the ill-posed Boussinesq equation provides insights 
into wave propagation, nonlinear dynamics, and the behavior of solitons, aiding in the 
development of technologies and applications in areas such as oceanography, fluid dynam-
ics, and materials science (Holm 2015; Seadawy and Cheemaa 2020; Younas et al. 2020; 
Rizvi et al. 2021). The mathematical form of ill-posed Boussinesq equation is

where w(x,  t) is a wave profile of real valued functions in x and t. The present equation 
under consideration aims to analyze the propagation of lengthy waves in the shallow water 
gravity (Daripa 1998). It is important to note that the well-posed Boussinesq equation is 
distinct from Eq. (1) due to the presence of an additional dispersion term wxxxx . A compre-
hensive physical description of Eq. (1) has been presented in Bona et al. (2002). In addi-
tion, a detailed study of the well-posed Boussinesq equation has been systematically pre-
sented in Ma et  al. (2009), along with the presentation of its Wronskian solutions. The 
ill-posed Boussinesq equation has been solved using numerical techniques, specifically 
filtering techniques, as reported in Daripa and Hua (1999). The filtering techniques have 
been effectively applied to find the solution of the equation, thereby limiting the growth of 
mistakes and providing a more efficient approximate solution (Daripa 1998). Moreover, the 
Lie point symmetry analysis and reductions of Eq. (1) have been meticulously studied in 
Gao and Tian (2015). It is important to note that although the Kadomtsev–Petviashvili and 
Belashov–Karpman equations have the applications in physics of waves on shallow water 
and are obtained from the 3D Boussinesq equation, interesting results have been obtained 

(1)wtt − wxx − (w2)xx − wxxxx = 0,
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for other physical systems described by classes of these equations, as well-studied in Karp-
man and Belashov (1991). In Tchier et  al. (2017), undertake an investigation into the 
dynamics of solitons pertaining to the ill-posed Boussinesq equation. In reference Yaşar 
et al. (2016), considerable attention has been devoted to the exploration of nonlinear self-
adjointness, conservation laws, and exact solutions of the aforesaid ill-posed Boussinesq 
equation.

The present study offers an in-depth analysis of the ill-posed Boussinesq equation, 
which manifests in non-linear lattices and shallow water waves. The simplified Hirota tech-
nique (Khater and Lu 2021; Khater 2021a, b) is employed to scrutinize the aforementioned 
equation, which procures multi-wave solutions in one, two, and three soliton profiles. The 
benefit of this approach is that the need for the bilinear form, which is typically arduous 
to obtain, is obviated (Kumar and Mohan 2022; Jannat et al. 2022; Boutiara et al. 2022; 
Khater et  al. 2021a, b, c). Additionally, a thorough discourse pertaining to the stability 
analysis of the equation being examined is put forth.

The paper is structured as follows: Sect. 2 focuses on the utilization of the simplified 
Hirota’s method to determine multi-wave soliton solutions. Section 3 presents the stability 
analysis of the considered equation, accompanied by visual representations. In Sect. 4 we 
explain the graphical representation of the obtained solutions. In the final section, we sum-
marize all the discoveries and conclusions derived from the study.

2  Algorithm of the suggested technique

It’s important to note that the simplified Hirota method is a specialized technique used 
in the study of soliton solutions and requires a strong background in nonlinear dynamics 
and mathematics (Manzetti 2018). The general steps of the simplified Hirota’s method for 
establishing the multi-wave structures of soliton solutions are:

the general structure of nonlinear evolution equations that include two independent vari-
ables x and t. Solve Eq. (2) for the dispersion relation between ai and bi after substituting

into the linear terms. The N-soliton solutions can be obtained using the subsequent 
transformation.

where � = �(x, t) is defined as an auxiliary function. The function �(x, t) takes the follow-
ing form for a single wave soliton solutions:

The function �(x, t) takes the following form for a two wave soliton solutions:

where r12 is phase shift and �2 = a2x − b2t . The function �(x, t) takes the following form 
for a three wave soliton solutions:

(2)Q(x, t,w,wx,wt,w2x,…) = 0,

(3)w(x, t) = e�i , where �i = aix − bit and i = 1, 2, 3,… ,N,

(4)w(x, t) = k(ln�)x or w(x, t) = k(ln�)2x,

(5)w(x, t) = 1 + �1e
�1 , where �1 = a1x − b1t.

(6)w(x, t) = 1 + �1e
�1 + �2e

�2 + �1�2r12e
�1+�2 ,
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where �3 = a3x − b3t . The discovery of three Sliton solutions proves the existence of 
N-soliton for any order N ≥ 1 . For �1 = �2 = �3 = 1 , we construct multi-soliton solu-
tions of Eq. (2). The singular multi-soliton solutions of Eq. (2) can be construct, for 
�1 = �2 = �3 = −1.

2.1  Application of the protechnique: multi‑wave structures

In this section, we will explore the application of the simplified Hirota’s method to the 
ill-posed Boussinesq equation Eq. (1). To generate multi-soliton solutions in the form of 
kink solutions (Wazwaz 2007), we set �1 = �2 = �3 = 1 and then substitute the values 
accordingly.

By substituting Eq. (8) into the linear terms of Eq. (1), we derive the dispersion relation, 
which yields the following relationship:

as a result

In order to obtain the multi-soliton solutions of Eq. (1), we make the assumption that

where k is a constant that will be determined. We examine the following type of auxiliary 
function for one soliton solution:

By inserting Eq. (11) into Eq. (1) and solving for k then we obtained the possible value for 
k = 6 . We collect the following single soliton solution by inserting Eqs. (11) and (12) in 
Eq. (1).

Two soliton solutions are developed using the given auxiliary function

and replace the values of �1 and �2 from Eq. (10). By inserting Eq. (13) into Eq. (1) and 
solving for the phase shift a12 , given below

(7)
w(x, t) =1 + �1e

�1 + �2e
�2 + �3e

�3 + �1�2r12e
�1+�2 + �1�3r13e

�1+�3

+ �2�3r23e
�2+�3 + �1�2�3r123e

�1�2+�3 ,

(8)w(x, t) = e�i , where �i = aix − bit.

(9)bi = ±ai

√

a2
i
+ 1,

(10)�i = aix − ai

√

a2
i
+ 1t.

(11)w(x, t) = k(ln(h(x, t)))2x,

(12)h(x, t) = 1 + e�1 , �1 = 1 and �1 = a1x − a1

√

a2
1
+ 1t.

(13)w(x, t) = 6

�

a2
1
e
a1x−a1

√

a2
1
+1t

1 + e
a1x−a1

√

a2
1
+1t

−
a2
1

�

e
a1x−a1

√

a2
1
+1t�2

�

1 + e
a1x−a1

√

a2
1
+1t�2

�

(14)h(x, t) = 1 + e�1 + e�2 + a12e
�1+�2 , �1 = �2 = 1,
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which generally refers to

given that

Similarly, two-soliton solutions are derived by inserting Eqs. (13) and (14) in Eq. (1).

Three-soliton solutions are developed using the given auxiliary function

where �1 = �2 = �3 = 1 , and replace the values of �1 , �2 , �3 , a13 , and a23 respectively from 
Eqs. (10) and (16).

Continued as previously, we determine

We can construct three-soliton solution by inserting Eqs.  (18) and (19) in Eq. (1). This 
clarifies that Eq. (1) yields N-soliton solutions for defined N ≥ 1.

3  Stability analysis

Suppose the perturbed solution of the form

it is evident that any constant value M1 can serve as a stable solution for Eq. (1). We get the 
following result by substituting Eq. (21) into Eq. (1).

linearization Eq. (22) yields

consider Eq. (23) which has a solution in the form

(15)a12 =

√

a2
2
+ 1

√

a2
1
+ 1 − 2a2

1
+ 3a1a2 − 2a2

2
− 1

√

a2
2
+ 1

√

a2
1
+ 1 − 2a2

1
− 3a1a2 − 2a2

2
− 1

,

(16)aij =

√

a2
j
+ 1

√

a2
i
+ 1 − 2a2

i
+ 3aiaj − 2a2

j
− 1

√

a2
j
+ 1

√

a2
i
+ 1 − 2a2

i
− 3aiaj − 2a2

2
− 1

, 1 ≤ i < j ≤ 3

(17)
√

a2
j
+ 1

√

a2
i
+ 1 − 2a2

i
− 3aiaj − 2a2

2
− 1 ≠ 0.

(18)

w(x, t)

= 6

(

a2
1
e�1 + a2

2
e�2 + a12(a1 + a2)

2e�1+�2

1 + e�1 + e�2 + a12e
�1+�2

−
(a1e

�1 + a2e
�2 + a12(a1 + a2)e

�1+�2

1 + e�1 + e�2 + a12e
�1+�2

)2
)

.

(19)
h(x, t) = 1 + e�1 + e�2 + e�3 + a12e

�1+�2 + a13e
�1+�3 + a23e

�2+�3 + b123e
�1+�2+�3 ,

(20)b123 = a12a13a23.

(21)w(x, t) = M1 + �u(x, t),

(22)u4x + 2�2(ux)
2 + (� + 2�2 + 2M1�)uxx − �utt = 0,

(23)u4x + (� + 2�2 + 2M1�)uxx − �utt = 0,
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inserting Eq. (24) into Eq. (23) and solving for � , we obtain k, where k is the normalised 
wave number.

In the context of dispersion relations, the sign of the real part of �(k) serves as an indicator 
of the stability or instability of the solution (Hoffacker and Tisdell 2005). A positive real 
part suggests instability, as the solution will grow without bound, while a negative real part 
implies stability, as the solution will approach zero as time goes on. When a complex func-
tion is considered stable, it means that the values of both its real and imaginary parts do not 
exhibit unbounded growth or divergence as the independent variable varies. Instead, these 
parts remain within certain bounds or limits. From Eq. (25) we consider

this shows stable behavior (Fig.  3) for all values of k. And this will be unstable for all 
values of k, if we consider square root with plus sign. When the real part of �(k) is zero, it 
implies that the system or function under consideration exhibits a critical balance between 
growth and decay (Berk et  al. 1996). Perturbations or disturbances may cause the func-
tion to oscillate or exhibit periodic behavior around this balance point, without significant 
divergence or convergence.

4  Discussion on the graphical illustration of derived solutions

In the present study, we have undertaken an investigation of the ill-posed Boussinesq equa-
tion, which is known to manifest in the context of nonlinear lattices and shallow water 
waves. The graphical representation of the obtained solutions is exhibited, highlighting 
their significance in the burgeoning domains of nonlinear science. By utilizing the simpli-
fied Hirota methodology, we are able to successfully achieve solutions for models with 
one-soliton, two-soliton, and three-soliton, while taking into account their respective con-
straint conditions. The derived one-soliton solution of the investigation is illustrated in 
Fig. 1 through a graphical representation, which has been achieved by employing a suitable 
physical parameter value of a1 = 0.8 . Figure 2 displays a graphical representation of the 
investigated two-soliton solution, utilizing appropriate physical parameters where the val-
ues of a1 and a2 are 0.3 and 1.5, respectively.

Multi-solitons are of great significance in comprehending shallow water waves, as they 
represent a collection of solitary waves that offer valuable insights into their behavior. The 
development of multi-soliton solutions enhances our understanding of the dynamics of 
shallow water waves, encompassing their interaction and propagation characteristics. Addi-
tionally, a comprehensive investigation of the stability analysis of the model under consid-
eration has been conducted, and the outcomes have been presented in the form of a graph, 

(24)u(x, t) = e(ikx+�t),

(25)�(k) = ±

√

1 − (1 + 2� +M1)k
2.

(26)𝜃(k) = −

√

1 − (1 + 2𝜙 +M1)k
2, where M1 < −2𝜙,
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as depicted in Fig. 3 which has been achieved by employing a suitable physical parameter 
values M1 = −3 and � = 1 for green line, M1 = −5 and � = 2 for blue line and M1 = −7 , 
and � = 3 for red line.

5  Concluding remarks

In this manuscript, the dynamic analysis of the ill-posed Boussinesq equation has 
been investigated. This equation arises in nonlinear lattices and shallow water waves. 
To obtain multi-wave structures, such as one-soliton, two-soliton and three-soliton 
solutions, the simplified Hirota method has been employed. To visually represent the 
obtained solutions and their physical features, these results have been visually demon-
strated through 3D, 2D and density plots. In addition, a comprehensive discussion on 
the stability analysis of the equation under study has been presented. These results are 
innovative and have not been previously investigated in the context of this equation. The 
methodology used is concise, straightforward, and efficient, and as a result, it makes a 
significant contribution to comprehending the complexity of multi-wave profiles in non-
linear physical science models.

Fig. 1  Graphical representation of one-soliton solution given in Eq. (13) using a 3D plot, b 2D plot at 
t = 0.2 , c density plot and a1 = 0.8
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Fig. 2  Graphical representation of two-soliton solution given in Eq. (18) using a 3D plot, b 2D plot at 
t = 0.2 and c density plot at a1 = 0.3, a2 = 1.5

Fig. 3  Graphically illustration of 
the stability analysis for Eq. (26) 
by using suitable physical param-
eter values M1 = −3 and � = 1 
for green line, M1 = −5 and 
� = 2 for blue line and M1 = −7 , 
and � = 3 for red line
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