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Abstract
Graphene quantum dots (GQDs) have captured a considerable attention in biomedical 
field due to their unique structure-related properties. In this work, GQDs monolayer film 
was coated on gold thin film and integrated into surface plasmon resonance spectroscopy 
(SPR). The plasmonic sensing properties of GQDs/Au nanostructured layer in contact 
with varied concentrations of dopamine (DA) solution were evaluated. Increasing DA con-
centrations increased the changes in the resonance angle. This sensing platform showed a 
good sensitivity of 0.332°/nM throughout a linear range of 0.01–100 nM, as well as a high 
binding affinity of 1.610 ×  109  M−1. The optical properties of GQDs film were precisely 
determined by fitting the experimental curves to theoretical data formula using the transfer 
matrix method (TMM). The fitting results showed that the n value of the GQDs film was 
1.3049 and its thickness was 7.22 nm in the absence of DA solution. The binding of DA 
to the SPR chip, as evidenced by the structural analysis of the film using FTIR and AFM, 
increased the n value and thickness of the GQDs film. These findings revealed the obvious 
changes in the structural and optical characteristics of this GQDs film after interaction with 
DA, and confirmed the potential of this material in DA sensing when combined with SPR 
spectroscopy.
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1 Introduction

Recently, several studies have revealed that graphene quantum dots (GQDs) films and/or 
coatings have prospective uses in biomedical (Liu et al. 2017; Qian et al. 2014; Xiao et al. 
2016; Li et al. 2017; Zhu et al. 2012a), optical (Zubair et al. 2015; Kim and Kim 2017; 
Zhang et al. 2018; Tang et al. 2013; Das et al. 2015; Zhu et al. 2012b), and energy appli-
cations (Sudhagar et  al. 2016; Zhu et  al. 2014; Yan et  al. 2010a; Majumder et  al. 2016; 
Moon et al. 2017; Protich et al. 2016; Diao et al. 2017), which will influence our quality 
of life and draw substantial economic interest. The exciton Bohr radius of graphene is infi-
nite (Yan et al. 2010b). GQDs, on the other hand, is a zero-dimensional material obtained 
by converting two-dimensional graphene. As a result, the quantum confinement and edge 
effects appeared. Because of the quantum confinement effect, GQDs have several unique 
features, such as their distinctive fluorescence capabilities found by Pan et  al. (2010). If 
GQDs are to be employed in a variety of applications, the ability to adjust their character-
istics is critical. Moreover, GQDs have a high solubility. This is because GQDs have a sig-
nificant edge effect that may be modified by functional groups. Additionally, GQDs show 
different chemical and physical characteristics when compared to other carbon-based mate-
rials, such as carbon dots, carbon nanotubes, fullerene and graphene (Tian et  al. 2018). 
Along with the structural properties of GQDs thin films, it is critical to precisely character-
ize the optical properties and thicknesses of GQDs films, on which their appealing qualities 
depend for their many applications (Sandu 2012; Majhi and Kuiri 2020). Thus far, several 
approaches have been proposed for this purpose, including laser feedback interferometry 
(Xu et al. 2014, 2015), ellipsometry (McCrackin et al. 1963; Elizalde et al. 1986; Pristinski 
et al. 2006), prism coupler (Kirsch 1981; Hou and Mogab 1981; Ding and Garmire 1983), 
and surface plasmon resonance (SPR) technique (Fen et al. 2011; Rosso et al. 2014; Salvi 
and Barchiesi 2014; Kamal Eddin et al. 2022a, 2023a; Noda and Hayakawa 2016).

SPR spectroscopy has received significant attention and demonstrated effective-
ness as an optical, label-free, and high throughput technique due to its potential for real 
time detection of heavy metal ions (Lopes et al. 2021; Fen et al. 2013, 2012, 2015; Fen 
and Yunus 2013a; Fauzi et  al. 2020; Ramdzan et  al. 2020), glucose (Omidniaee et  al. 
2022; Rosddi et al. 2021; Panda et al. 2020; Yuan et al. 2018; Kim et al. 2021; Hossain 
and Talukder 2021; Hakami et al. 2021), DNA (Pal et al. 2018; Haque and Rouf 2021; 
Shushama et  al. 2017; Schneider et  al. 2013; Kumar et  al. 2019; Azab et  al. 2018), 
hemoglobin (Singh et  al. 2021; Mostufa et  al. 2021; Sumantri et  al. 2020; Mohanty 
and Sahoo 2016; Heidarzadeh 2020; Duanghathaipornsuk et  al. 2020), neurotransmit-
ters (Kamal Eddin et  al. 2021, 2022b, c, 2023b; Dutta et  al. 2011; Abd Manaf et  al. 
2017; Yuan et  al. 2019), viruses (Omar et  al. 2020, 2019; Omar and Fen 2017; Brun 
et al. 2015; Chang et al. 2018; Cairns et al. 2019; Chung et al. 2005), gases (Nuryadi 
and Mayasari 2016; Wei et al. 2016; Srivastava et al. 2016), and other targets (Kamal 
Eddin et al. 2020; García-Aljaro et al. 2008; Verma et al. 2015; Kamalieva et al. 2016) 
with good reliability and high performance. SPR phenomenon is the oscillation of the 
charge density at the interface of a metal film and a dielectric (Mao et al. 2015; Maurya 
et al. 2015; Elmahdy et al. 2022; Singh and Prajapati 2019; Li and Chen 2013; Haiwei 
et al. 2016; Islam et al. 2021). The high sensitivity of SPR spectroscopy to the bound-
ary conditions enables it to detect the small changes in the medium refractive index 
induced after the adsorption of the target molecules on the surface of the active layer 
(Hong et al. 2015; Mukhtar et al. 2016; Xia et al. 2019; Kuo and Chang 2011; Kumar 
et al. 2021; Elsayed et al. 2017; Zhou et al. 2011). Due to the need to develop the SPR 
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technique itself, employing the surface plasmons to measure the optical properties as 
well as the thickness of thin films has gained considerable interest (Bruijn et al. 1990; 
Hoffmann et al. 1996; Kapoor et al. 2019; Yang et al. 2021; Nur et al. 2019; Kim et al. 
2018). Because the reflected light carries information about the used film, the optical 
properties and thickness of the thin film could only be determined indirectly by math-
ematical processing of the experimental data (Kamal Eddin et al. 2022a, 2023a; Daniyal 
et al. 2022; Meradi et al. 2022). Wave propagation in one-dimensional structures may be 
studied using the transfer matrix method (TMM), which is based on Fresnel’s theory. It 
allows for reflection and transmission computations as well as guided mode evaluations 
in multilayered systems. TMM treats Fresnel reflection and transmission at the interface 
of two media as one matrix and light propagation in a particular medium as another. 
This method provides information on electromagnetic wave propagation through ideal 
multilayer structures by multiplying matrices (Balili 2012; Tiwari et  al. 2015; Chiu 
et al. 2007; Mudgal et al. 2020; Pandey 2021; Nisha et al. 2019).

In this work, a GQDs/Au nanostructured layer was integrated to SPR spectroscopy 
to interact with different concentrations of the neurotransmitter dopamine (DA). This 
was possible due to GQDs’ exceptional chemical stability, biocompatibility, and low 
toxicity, as well as their graphene-like properties, including a substantial surface area 
and strong surface bonding, making them excellent for diverse biosensing applications 
(Duhan and Obrai 2023). Furthermore, SPR provides sensitive, real-time, label-free 
detection of DA. Additionally, unlike electrochemical methods, SPR is less susceptible 
to interference from other electroactive species. Moreover, it avoids electrode fouling, a 
common issue that can significantly impact the performance and reliability of electro-
chemical DA sensing (Kamal Eddin et al. 2022b). This study primarily focused on eval-
uating the sensor’s performance. In addition, the experimentally acquired SPR curves 
were then computationally processed to analyze the optical properties of the GQDs/Au 
bilayer structure and determine the thickness of the GQDs film. The reported studies on 
DA sensors did not investigate DA binding behaviour on the sensor surface using struc-
tural measurements. So, the structural analysis of the sensor film prior to and following 
DA injection was achieved utilizing FTIR spectroscopy and atomic force microscopy 
(AFM), which confirmed the attachment of DA to GQDs/Au nanostructured layer.

2  Materials and methods

2.1  Materials and reagents

Graphene quantum dots (GQDs) with concentration of 1 mg/mL, and dopamine hydro-
chloride with molecular weight of 189.64 g/mol were obtained from Sigma-Aldrich. 
The glass cover slips of 24 × 24 mm with thickness between 0.13 and 0.16 mm and the 
triangular prism (refractive index of 1.77861) were provided by Menzel-Glaser, Ger-
many. Norland index matching liquid (IML) with refractive index of 1.52 at 589 nm 
and low viscosity was bought from Norland (USA). This liquid monomer was used to 
eliminate the reflection losses associated with the glass-air interface. Acetone was used 
to thoroughly clean the prism and cover slips, assuring that their surfaces were not con-
taminated and that no leftover adsorbents that may affect the accuracy of the measure-
ments. Throughout experiments, the deionized water (DW) was utilized for dilution.
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2.2  Preparation of target solution

To produce 0.5 M of DA solution, 1.896 g of DA powder were dissolved in 20 mL of DW. 
To dilute DA solution, DW was used to obtain several samples with various low concentra-
tions based on this formula (M1V1 = M2V2).

2.3  Chip modification

The glass cover slip was cleaned with acetone before coating gold thin film on its surface 
utilizing a K575X sputter coater from Quorum Technologies Ltd (West Sussex, UK). The 
duration of coating was 67 s using an applied current 20 mA and voltage 2.2 kV. After get-
ting the gold thin films, 0.5 mL of GQDs was distributed evenly on the centre of the gold 
film’s surface. The sensor film (GQDs/Au) was then deposited at high angular velocity of 
2000 rpm using spin coating technique (P-6708D). The spin time was 30 s. The prepared 
GQDs/Au bilayer thin film was left for few hours at room temperature before its incorpora-
tion to SPR system.

2.4  Experimental procedure

The sensing performance of GQDs/Au bilayer film towards DA was examined and assessed 
utilizing a homemade prism based SPR spectroscopy designed in Kretschmann configura-
tion as shown in Fig.  1. The angular interrogation technique was used, where the opti-
cal system included a 5 mW He–Ne laser (632.8 nm) with spot diameter of 0.8 mm was 
employed as excitation source, a light chopper with frequency of 188 Hz, a linear polarizer, 

Fig. 1  SPR spectroscopy in Kretschmann configuration
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a small pinhole, a prism (triangular with a refractive index of 1.77861), an optical rotat-
ing platform powered by a motion controller with a resolution of 0.001° (Newport model 
MM 3000), a photodetector, as well as a lock-in amplifier. The SPR chips were adherent to 
the prism side by the index matching liquid and a flow cell containing the target solution 
contacted the surface of SPR chip. Following that, SPR experiments were performed in the 
dark. DW was injected into the attached cell to contact the GQDs/Au bilayer film structure 
and obtain the reference signal. The incidence angles were scanned and the reflectance was 
measured as a function of incidence angle. As the incidence angle increased to reach the 
critical angle, the total internal reflection occurred, and the intensity of the reflected light at 
the interface was around 100%. As the angle increased further, surface plasmons were gen-
erated at the interface and the reflected intensity was therefore dropped. The intensity of 
reflected light from the film surface reached a minimum at the resonance angle. After that, 
SPR measurements were continued for DA solution of different concentrations.

2.5  Structural analysis techniques

FTIR spectra of GQDs/Au thin film were obtained in the range 400–4000  cm−1 utilizing 
ALPHA II FTIR Spectrometer before and after interactions with DA solution. The FTIR 
analysis was performed in ATR mode. The topographical measurements of the thin films 
and the analysis of roughness changes of GQDs films after interaction with DA were done 
using a Bruker Dimension Edge AFM with 5 μm × 5 μm scanning size. The Peak Force 
Tapping mode was used with AFM tip’s radius of curvature < 10 nm.

3  Result and discussion

3.1  FTIR analysis

FTIR spectrum of GQDs thin film before interaction with DA is shown in Fig. 2 (black 
spectrum). The peaks appeared at 3848 and 3742  cm−1 are attributed to O–H stretching 
vibration. The peak at 3116  cm−1 was attributed to the stretching vibration of O–H and 
N–H (Teymourinia et al. 2017; Choppadandi et al. 2021). The peaks located around 2882, 
2382, 2148, and 2083  cm−1 correspond to the stretching vibration of C–H, C=O, C≡C, 
and C–N, respectively (Ananthanarayanan et al. 2014; Tashkhourian and Dehbozorgi 2016; 
Wang et  al. 2016; Costa et  al. 2018; Sadrolhosseini et  al. 2020), and the peaks at 2013 
and 1768  cm−1 were imputed to the stretching of C=O (Teymourinia et al. 2017; Chop-
padandi et al. 2021; Bokare et al. 2020). The peaks at 1693 and 1528  cm−1 were related to 
the stretching vibrations of C=C and C=O bonds, respectively (Tan et al. 2016; Zhao et al. 
2016). The peak centered at 1341  cm−1 was assigned to the stretching vibration of C–H 
and the bending vibration of C–N bond (Tashkhourian and Dehbozorgi 2016; Yuan et al. 
2014; Yan et al. 2015), and the peak at 1192  cm−1 was attributed to the stretching vibration 
of C–O bond and the stretching vibrations of C–N groups in amines (Bokare et al. 2020; 
Abbas et al. 2020). In addition, the peaks appearing at 1079, 1028 and 603  cm−1 were due 
to the stretching vibrations of C–O, C–O–C and bending vibrations of C–H, respectively 
(Bokare et al. 2020; Zhao et al. 2016; Yan et al. 2015).

After introducing DA, FTIR spectrum recorded for GQDs film (red spectrum) reveals 
that a few peaks showed a decrease in intensity (3848, 3742, 1528 and 603  cm−1) owing to 
the overlap with the stretching vibrations of N–H, while the intensity of the peak at 2148 
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 cm−1 was increased. Also, the peaks located at 1341 and 1192  cm−1 became more obvi-
ous due to C–N stretching vibrations. There was a new peak appeared at 537  cm−1 due to 
the amine C–N stretching (Wang et al. 2016). These results validated the DA-GQDs film 
interaction and demonstrated that when DA was added, the functional groups of GQDs 
changed. This confirms that DA was bound to the sensor film’s surface and changed its 
refractive index.

3.2  Surface morphology of GQDs/Au nanolayered film

Before DA injection, the surface morphology of a GQDs film was scanned. The obtained 
2D image as shown in Fig. 3a reveals the granular structure and distribution of GQDs on 
the surface of Au thin film, and the 3D AFM image (Fig. 3c) of GQDs film shows nanonee-
dles distributed regularly with maximum height of 5.3 nm. However, as shown in Fig. 3b, 
DA adsorption on the sensor chip affected its granular structure, reducing the number of 
nanoneedles and decreasing their maximum height to roughly 3.7 nm (Fig. 3d). Further-
more, the sensor surface’s average roughness Ra was decreased from 0.801 nm to 0.755 
nm, and Rq was reduced from 1.340 nm to 1.030 nm after DA injection. The considerable 
change in sensor film morphology and roughness following DA introduction confirms DA 
binding to GQDs thin film.

Fig. 2  FTIR spectra of GQDs/Au nanolayered film prior to and following the contact with DA
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3.3  Optical Characterization of GQDs/Au film

The thickness and refractive index of the GQDs/Au nanolayered film were determined 
through fitting the SPR experimental curves to theoretical data formula using Fresnel’s 
Equation as shown in Fig. 4a–g (Fen and Yunus 2012). The simulation was done based 
on TMM in MATLAB. In Kretschmann setup, the multilayered structure GQDs/Au was 
positioned between the triangular prism and the DA solution. At both interfaces where 
the boundary conditions are met, reflection coefficient r can be expressed by:

Here m11, m12, m21 and m22 denote the elements of the transfer matrix, and �
i
 can be 

obtained from the following formula:
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Fig. 3  AFM images of GQDs thin film: (a) 2D image before interaction with DA; (b) 2D image after inter-
action with DA; (c) 3D image before interaction with DA; and (d) 3D image after interaction with DA
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Fig. 4  Fitted and experimental reflectance curves for GQDs/Au nanolayered film exposed to DA solution 
with concentrations of: (a) 0 pM; (b) 1 pM; (c) 10 pM; (d) 100 pM; (e) 1 nM; (f) 10 nM; and (g) 100 nM
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where ε
0
 and μ

0
 are the permittivity and permeability of free space, and i = 0, 1, 2. The 

reflectivity (R) can be obtained using the formula below:

The gold film’s refractive index was found to be in good agreement with recent inves-
tigations (Fen and Yunus 2013b; Omar et al. 2022), where the n and k were 0.1950 and 
3.6820, respectively, and thickness was 57.70 nm. The n and k values of DA solutions were 
the same as those of DW for concentrations lower than 10 pM. While for higher concentra-
tions, the k value became 0.0030. The fitting yielded the n value of 1.3049 and k value of 
0.0000 for GQDs film contacting DW with a thickness of 7.22 nm. As shown in Table 1, 
the interaction between the sensor chip and DA clearly had an influence on both the n value 
and the thickness of the GQDs monolayer film. The change in the sensing layer refractive 
index following contact with varied concentrations of DA solutions was clear through the 
angular shift of SPR dips.

This table shows the increased change in the n value of GQDs film as DA concentra-
tions rose, which increased the change in the resonance angular shifts. This demonstrates 
the importance of GQDs thin film in enhancing sensor sensitivity to DA.

3.4  Sensing properties of DA on GQDs film

In our previous work, we have investigated the capability of SPR sensor based on bare 
gold to detect DA, and our results demonstrated that Au based SPR is insensitive to DA 
(Omar et al. 2020). Using GQDs/Au thin film, SPR measurements were conducted for DW 
first, then DA solutions of 1 fM, 1 pM, and 1 nM were introduced one by one into the flow 
cell to perform measurements and specify the concentration of DA that can be detected by 
this sensor film. SPR angle was 53.843° when DW contacted GQDs/Au sensing layer. Fol-
lowing that, by inserting DA solution at concentrations of 1 fM and 1 pM, the resonance 
occurred at 53.843°, the same as with DW. As DA concentration was increased from 1 
pM to 1 nM, SPR dip was shifted to the left and the resonance took place at an angle 
of 53.011°. Because the SPR dip shifted significantly and the angular shift was around 
0.830° when DA concentration increased from 1 pM to 1 nM, the measurements were per-
formed for graduated concentrations between 1 pM and 1 nM, and continued for higher 

(2)�
i
=

n
i

cos(�
ti
)

√

ε
0
μ
0

(3)R = rr
∗

Table 1  Refractive index and 
thickness values of GQDs 
monolayer film, the change of the 
real part of the refractive index 
Δn, and the resonance angle 
shift Δθ 

DA con-
centration 
(nM)

n (± 0.0001) k (± 0.0001) d (nm) (± 0.01) Δn

0.000 1.3049 0.0000 7.22 0.0000
0.001 1.3049 0.0000 7.22 0.0000
0.01 1.2758 0.0000 6.83 0.0291
0.1 1.2448 0.0000 6.12 0.0601
1 1.2066 0.0000 5.92 0.0983
10 1.2023 0.0000 4.87 0.1026
100 1.1980 0.0000 4.63 0.1069
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concentrations, to determine which concentration caused the first shift of the SPR dip. 
Using another GQDs/Au thin film, the resonance happened at an angle of 53.843° for both 
DW and 1 pM of DA. When 10 pM of DA was inserted into the attached cell, the SPR dip 
shifted slightly to lower angle at 53.841°. While, for 100 pM DA, the resonance happened 
at 53.287° and the angular shift was 0.556° as indicated in Table 2. When DA concentra-
tion was raised to 1 nM, the SPR reflectance curve remained shifted by 0.832° from the 
baseline as shown in Fig. 5. For 10 nM DA, the SPR dip shifted to lower angle of 52.733°. 
Clearly, the higher concentration of 100 nM of DA solution induced the greatest SPR dip 
shift of 1.386°. 

The correlation between DA concentrations and the resonance angle shift of GQDs/Au 
based SPR sensor is shown in Fig. 6. The linear fitting yielded a good sensitivity of 0.332°/
nM for this GQDs based SPR sensor towards DA ranging from 0.01 to 100 nM, with an  R2 

Table 2  The resonance angle and 
angular shift of the SPR dips for 
GQDs film in contact with DA 
solutions

DA concentration (nM) SPR angle (deg) Δθ (deg)

0.000 53.843 0.000
0.001 53.843 0.000
0.01 53.841 0.002
0.1 53.287 0.556
1 53.011 0.832
10 52.733 1.110
100 52.457 1.386

Fig. 5  SPR reflectivity curves acquired experimentally for GQDs/Au nanolayered film subjected to DA 
solution with concentrations from 1 pM to 100 nM
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value of 0.964 and a LOD of 0.01 nM. Compared to previous reports on GQDs-based bio-
sensors for DA detection, our sensor has demonstrated the ability to detect even lower con-
centrations of DA. For instance, Yan et al. (2015) introduced a photoelectrochemical bio-
sensor employing GQDs-TiO2, which demonstrated acceptable accuracy and precision in 
DA detection (Yan et al. 2015). Their biosensor exhibited an extensive linear range, span-
ning from 0.02 to 105 µM, with LOD of 6.7 nM. In the study by Zhou et al. (2015), a fluo-
rescence sensor for DA detection was introduced, utilizing polypyrrole PPy/GQDs core/
shell hybrids (Zhou et al. 2015). These composites demonstrated robust fluorescence emis-
sion, with an enhancement of up to threefold compared to pristine GQDs. The developed 
sensor enabled highly sensitive DA determination through a decrease in fluorescent inten-
sity upon the addition of DA. It exhibited excellent linearity within the range of 5–8000 
nM, boasting a detection limit of 10 pM. Zhao et al. (2016) presented a fluorescence sensor 
based on GQDs (Zhao et  al. 2016). Their sensor exhibited a linear correlation between 
quenching efficiency and DA concentration, falling within the range of 0.25–50 µM, with 
a LOD of 0.09 µM. Pang et  al. (2016) employed a hydrothermal method to synthesize 
graphene quantum dots (GQDs) (Pang et al. 2016). These GQDs were then incorporated 
into a GQDs-Nafion composite to modify a glassy carbon electrode for use in an electro-
chemical sensor designed for dopamine (DA) detection. The interaction and electron com-
munication between GQDs and DA were enhanced through π–π stacking forces. Nafion 
served as an anchoring agent, enhancing the stability and reproducibility of the GQDs 
on the electrode surface. This GQDs-Nafion composite exhibited a linear detection range 
spanning from 5 nM to 100 µM, with an LOD of 0.45 nM for DA detection. Baluta et al. 
(2017) developed a fluorescence-based strategy for DA detection (Baluta et al. 2017). Their 
approach involved the formation of polydopamine (poly(DA)) on the surface of GQDs and 
utilized enzyme−laccase for substrate oxidation. Under optimized conditions, this method 

Fig. 6  The linear fitting for the change of resonance angle with DA concentrations
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exhibited strong analytical performance, featuring high sensitivity and selectivity across 
a broad linear range. Notably, it achieved a low LOD of 80 nM. The electrochemical sen-
sor developed by Ben Aoun (2017) by modifying a nanostructured carbon screen-printed 
electrode with a chitosan/nitrogen-doped GQDs nanocomposite exhibited a high sensitivity 
of 418 µAmM−1  cm−2 with LOD of 0.145 µM in broad dynamic range (1–200 µM) (Ben 
Aoun 2017). Arumugasamy et al. (2020) developed a ratiometric electrochemical biosen-
sor using GQDs combined with acid-functionalized multiwall carbon nanotubes (MWC-
NTs) on a glassy carbon electrode surface (Arumugasamy et al. 2020). Their sensor exhib-
ited good electrocatalytic activity for DA oxidation, covering a dynamic linear range of 
0.25–250 μM, with a low detection limit of 95 nM. Chatterjee et  al. (2022) synthesized 
Boron and Sulfur co-doped GQDs (BS-GQDs) and utilized them as a label-free fluores-
cence-based sensor for the exceptionally sensitive and selective detection of DA. When DA 
was introduced, BS-GQDs displayed significant fluorescence intensity quenching within a 
broad concentration range of DA (0–340 μM), achieving LOD of 3.6 μM (Chatterjee et al. 
2022). This SPR-based sensor clearly outperforms existing detection methods employing 
the same material (GQDs) and its composites in constructing the sensing platform.

In order to study the binding affinity of GQDs/Au based sensor towards DA, the non-
linear fitting was applied to the experimental results based on Langmuir and Freundlich 
isotherm model as shown in Fig. 7. The Langmuir and Freundlich model’s equation is as 
follows (Vijayaraghavan et al. 2006):

Fig. 7  Experimental and fitting data to Langmuir and Freundlich model for the adsorption of DA on GQDs/
Au nanolayered film
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where Δ�
max

 represents the maximum value of the resonance angle shift, K indicates the 
affinity constant, C is the concentration of the analyte, and n represents the system hetero-
geneity index.

Langmuir and Freundlich isotherm model was well suited to the experimental results 
with K value of 1.610 ×  109  M−1 and correlation coefficient  R2 of 0.975. Langmuir and 
Freundlich exponent value was 0.565, and the Δθmax value produced from this model 
was so close to value obtained experimentally (1.386°).

All SPR curves were fitted to Gaussian model in order to calculate their full width 
half maximum (FWHM) values. The FWHM value obtained for the reference signal 
was 3.143° with detection accuracy of 0.318  (deg−1), where the detection accuracy is 
inversely related to FWHM (Ge et  al. 2022). The measurements conducted with DA 
resulted in SPR curves that were narrower than that for DW, where the obtained value 
for 1 pM DA was 2.671° as shown in Table 3. This suggests that injecting DA solution 
to touch the sensor film improved detection accuracy. This might be attributed to sen-
sor film deterioration with increased DA concentrations, which reduced film thickness 
and FWHM, where the primary resonance experienced a shift. When DA concentra-
tions were increased to 100 pM, the FWHM values continued to fall while the detection 
accuracy increased to 0.398  (deg−1). The injection of 1 nM DA resulted in an FWHM 
value of 2.605°, which thereafter dropped to 10 nM. The signal-to-noise ratio (SNR) is 
calculated by multiplying the resonance angle shift and the detection accuracy (Cen-
namo et  al. 2013; Daniyal et  al. 2018). The variation in SNR and detection accuracy 
values as a function of DA concentrations is shown in Fig. 8. The refractive index of the 
sensor film significantly changed with increasing DA concentrations, which shifted the 
SPR dips. As a consequence, the signals noise was decreased and SNR for this sensor 
were increased.

The strong affinity of DA for the GQDs sensing layer can be attributed to noncovalent 
interactions between the hydroxyl and carboxyl groups present on the GQDs and the 
diols, amine functional groups, and phenyl structure in DA. Additionally, π–π stacking 
forces further bolster the interaction between DA and the GQDs film (Ben Aoun 2017). 
These combined interactions contribute to the effective detection of DA by this sensor.

(4)Δ� =
Δ�

max
KC

n

1 + KCn

Table 3  The values of FWHM, 
detection accuracy and SNR of 
the developed sensor

DA Concentration 
(nM)

FWHM (deg) Detection accuracy 
 (deg−1)

SNR

0.000 3.143 0.318 0.000
0.001 2.671 0.374 0.000
0.01 2.649 0.377 0.001
0.1 2.514 0.398 0.221
1 2.605 0.384 0.319
10 2.496 0.401 0.445
100 2.886 0.347 0.480
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4  Conclusions

To conclude, GQDs thin film was prepared and integrated into SPR spectroscopy. Its 
sensing properties towards DA were investigated for various concentrations of DA solu-
tion ranging from 0.01 to 100 nM. Experimentally, the angular shifts of SPR dips were 
observed when DA concentrations were increased owing to the adsorption of DA on the 
surface of GQDs film which led to its morphological changes as was verified by FTIR 
and AFM analysis. The optical properties and thickness of this thin film were determined 
through fitting the experimental SPR curves to theoretical data based on TMM. This GQDs 
film combined with the plasmonic based sensing platform proved its efficiency in detecting 
induced variations in the refractive index of the sensing medium when the thin film was in 
contact with low concentrations of DA.
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