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Abstract
This research opts to construct some innovative and further general solutions of nonlinear 
traveling waves to the time fractional Gardner and Sharma-Tasso-Olver equations, which 
are frequently used to investigate an electrical line of communication and contain elec-
trical energy as well as current, both of which are affected by distance and time, fission 
and fusion phenomena arise in optical fiber, and many more The new generalized (G′/G)-
expansion approaches applied to the proposed equations to find innovative, precise results 
via conformable derivatives. Some dynamical wave patterns of single solitons, double soli-
tons, singular-kink type waves, kink types waves, and other soliton solutions are achieved 
using the suggested technique with the aid of simulation package Maple and Mathemat-
ica and presented the solutions with 3D, contour, and vector plotlines to better depict the 
physical illustration. This approach produces some attractive, quicker-to-generate, simple, 
general results that are versatile, and novel outcomes for the suggested nonlinear fractional 
partial differential equations.
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1  Introduction

In past the few years, nonlinear fractional order partial differential equations (NLFPDEs) 
have garnered considerable attention for their ability to demonstrate the core components 
that underpin real-life problems. In real-world research, fractional partial differential equa-
tions of the nonlinear type are expressing a wide variety of factors, including optical fiber, 
plasma physics, turbulence, finance, mechanical engineering, biological systems of nonlin-
ear, control theory, and so on. It has been discovered to a wide range of physical objects, 
together with subordinate dissipative occupancy of components relapses, in a liquid, the 
movement of a huge meager surface, relaxation, and creeping characteristics are included 
in viscoelastic materials, and the PI�D� controller for dynamic control systems and many 
other sectors (Uddin et al. 2021a, b). Thus, NLFPDEs are applied in several sectors, includ-
ing modeling, describing, and predicting apparatuses related to engineering, bio-genetics, 
solid-state physics, optical fibers, physics of condensed material, elasticity, meteorology, 
electromagnetic, image and signal processing, plasma physics, chemical kinematics, oce-
anic spectacles, a neutron points kinematic model, electrical circuits, control and vibration, 
polymeric materials, finance, system identifications, quantum mechanics, landscape evolu-
tion, fluid dynamics and acoustics, medicine, and many more areas of applied mathematics 
and engineering (Arefin et al. 2022; Zaman et al. 2023).

The interest of this research is in wave motions towards the physical universe; the sub-
ject of traveling waves, which is very technical and well established, is also remarkable. 
The equations of nonlinear waves express dispersive systems of wave propagation such as 
elastic tubes, fluid flow, and liquid flow, as well as the ocean, rivers, gas bubbles, and lakes, 
along with the gravitational attraction of waves for a consistent domain and rescaling wave 
motion in nonlinear type. Traveling waves, their breaking on coasts, ship-generated waves 
on water, waves storm-generated in the ocean, riverine flooding, and limited oscillations in 
free liquid, such as lakes and ports, are all examples of wave difficulties (Uddin et al. 2018, 
2019a).

The rapidly growing of computer programming and software-based tools like Maple or 
Mathematica, a variety of mathematical and analytical approaches for finding solutions of 
NLFPDEs have already been established, namely the extended rational sinh-cosh approach 
and extended Tanh–Coth approach (Rizvi et al. 2020), the tanh method (Wazwaz 2004), resid-
ual power series method (Alquran et al. 2017), first-integral approach (Eslami and Rezaza-
deh 2016), modified rational sine–cosine functions method (Alquran 2023a; Alquran and Al 
Smadi 2023; Alquran and Jaradat 2023), (G�∕G2)-expansion technique (Faridi et al. 2023a), 
Kudryashov method (Ali et al. 2023), Extended tanh-function technique (Zaman et al. 2022), 
New extended direct algebraic method (Majid et al. 2023; Faridi et al. 2023b, c), modified 
auxiliary expansion technique (Al Alwan et al. 2023), new auxiliary equation approach (Ur 
Rahman et  al. 2023), Fractional Maclaurin series (Alquran 2023b), Φ6-model expansion 
(Asjad et  al. 2023), Sine–Gordon expansion approach (Yel et  al. 2020), novel Homotopy 
perturbation method (Alquran 2023c), and many more. In each of these, the new generalized 
(G�∕G)-expansion technique gaining popularity in recent years. Wang et al. (2008) proposed 
a simple technique known as the (G�∕G)-expansion technique for generating the solutions of 
travelling wave of numerous NLFPDEs. Several researchers have utilized this strategy to solve 
a wide range of nonlinear issues involving traveling waves. After that, researchers gradually 
improved and developed this process, resulting in the extended (G�∕G)-expansion technique, 
improved (G�∕G)-expansion technique, and other approaches (Naher and Abdullah 2016). The 
new generalized (G�∕G)-expansion approach described by Naher and Abdullah (2013) is an 
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original method for modifying (G�∕G)-expansion, and this approach can be used in a variety 
of physics contexts, particularly when dealing with fractional and integer nonlinear partial dif-
ferential equations (PDEs) and mathematical physics. These techniques are frequently used 
to identify exact solutions to differential equations and nonlinear PDEs involved in a variety 
of physical phenomena. Nonlinear optics, quantum mechanics, fluid mechanics, and general 
mathematical physics are among specific areas where these techniques can be used and where 
perfect solutions to nonlinear PDEs are desired. It is significant to remember that the suitabil-
ity of these methods may vary depending on the particulars of the equations being studied in 
terms of form and properties. Researchers often use these methods as part of their toolkit to 
find analytical solutions in various physical contexts.

The time fractional Gardner equation is a crucial NLFPDE which has significant impact 
in nonlinear science and engineering.

where � denoted the fractional derivative and � is a non-zero arbitrary constant. The pro-
posed equation was linked to the modified KdV and Korteweg-de Vries equations. The 
improvement for the nonlinear equation of higher order defined to the equation in vari-
ous physical plasmas is the focus of our investigation into the nonlinear characteristics of 
shallow water solitary waves, quantum mechanics, fluid mechanics, oceanic spectacles, 
and many more (Daghan and Donmez 2016). Many physicists and mathematicians have 
recently been intrigued by the demonstrates equation, as a result, numerous ways were used 
to solve it, such as Li et al. (2020) using suggested equation work with complete discrimi-
nation system method, exp (−Φ(�))− expansion approach was applied the proposed equa-
tion by Singh et  al. (2021), using (G�∕G)-expansion technique (Bayrak 2018) solved the 
suggested equation and many more.

The time fractional STO equation has piqued the interest of various mathematicians and 
physicists. Consider the time fractional STO equation becomes:

where � denoted the fractional order derivative and a is a non-zero arbitrary constant. 
The fusion and fission characteristic arising in of solitons, optical fibers, physics of con-
densed material, quantum relativistic atom theory in one particle, the relativistic relation 
for energy–momentum, and interactions of electromagnetic fields are all examined by this 
equation in mathematical physics and engineering (Uddin et al. 2019b). This equation was 
examined by several methods, such as the generalized Kudryashov technique was applied 
to solving the suggested equation by Sirisubtawee et al. (2020), Abdouet al. (2020) using 
extended F-expansion method, new Iterative method was using to solved this equations 
by Khan et  al. (2018), Islam and Akter (2020) was using generalized Bernoulli  equa-
tion method to solved the mentioned equation.

The main objective of this research is to create a visually pleasing exact analytic solution 
for the aforementioned equations using a new generalized (G�∕G)-expansion approach based 
on well-known conformable derivatives. The rest of the paper will be structured in the man-
ner described below: the definition and the basic tools were announced in Sect. 2, In Sect. 3, 
the methodology for the new generalized (G�∕G)-expansion approach is demonstrated. We 
applied the mentioned approach, introduce previously to generate the accurate answer for the 
presented equation in Sect. 4. Section 5 holds physical explanation in brief. In the final por-
tion, the summary is offered.

(1.1)D�

t
� + 6

�
� − �2�2

�
�x +�xxx = 0;0⟨� ≤ 1, t⟩0,

(1.2)D𝛼

t
� + 3a�2

x
+ 3a�2

�x + 3a��xx + a�xxx = 0; t > 0, 0 < 𝛼 ≤ 1,
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2 � Definition and basic tools

Khalil et  al. (2014) established the conformable derivative. Take up the function 
f ∶ [0,∞) → ℝ . The �-order conformable derivative of f  is determine as Khalil et  al. 
(2014):

for all t > 0, 𝛼 ∈ (0, 1) . If f  is �-differentiable for some (0,⊣) , ⊣ > 0 , and lim
t→0+

f (�)(t) seems 
to be exist, formerly to clarify f (�)(0) = lim

t→0+
f (�)(t) . The theorems that follow demonstrate 

how conformable derivatives should be used to establish a few principles.
On the derivatives of addition, quotients, and products for the functions of fractional 

differentiable, For time scales, the conformable derivative is necessary, and this is obtained 
using the abovementioned theorem (Benkhettou et al. 2016).

Rendering to the description supplied by Khalil et al. (2014), The following theorem is 
satisfied by the conformable derivative, which gives several important qualities.

Theorem  1  Take up � ∈ (0, 1] and let that, f , g were �-differentiable at each point i.e., 
t > 0.

Additionally

(a)	 T�
(
cf + ⌈g

)
= ⌋T�(f ) + ⌈T�(g) , for all ⌋, ⌈ ∈ ℝ.

(b)	 T�(tp) = pt
√−�

 , for all p ∈ ℝ.
(c)	 T�(c) = 0 , constant for all function f (t) = c.
(d)	 T�(fg) = fT�(g) + gT�(f ).
(e)	 T�

(
f

g

)
=

gT� (f )−fT� (g)
g2

.

(f)	 Therefore, if f  be differentiable, so T�(f )(t) = t1−�
df

dt
.

Concerning the conformable derivative, Khalil et al. (2014) defines several more prop-
erties, such as the inequality of Gronwall’s, law of chain rule, Laplace transform, integra-
tion techniques, several Tailor series expansions, and function of exponential.

Theorem 2  Suspect that the function f  were an �-differentiable function to conformable 
differentiable besides assume that the function g develop also differentiable and determine 
to the interval of f  . Thus

3 � Execution of the methodology

Suppose the following is the basic NLFPDE formation:

(2.1)T�(f )(t) = lim
�→0

f
(
t + �t1−�

)
− f (t)

�
.

(2.2)T�(f◦g)(t) = t1−�g�(t)fg(t).

(3.1.1)
Z
(
�,D𝛼

t
�,D𝛽

x
�,D𝛼

t
D𝛼

t
�,D𝛼

t
D𝛽

x
�,D𝛽

x
D𝛽

x
�,………

)
= 0, 0 < 𝛼 ≤ 1, 0 < 𝛽 ≤ 1
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where Z be seems a polynomial of � , in this condition the undetermined function is 
�(x, y, t) = �(� ) , and the partial derivatives, as well as the derivatives connecting nonlin-
ear terms with subscripts.

Staircase 1 We gatherx , y and t , which are real variables through a compound variable �

where the numbers of wave symbolize by }, � and V denote to velocity of wave traveling. 
The wave transformation of (3.1.2) changes to Eq. (3.1.1) to an ordinary differential equa-
tion (ODE) and if � = �(� ):

where K be the derivatives for Z , which is polynomial for � , and the ordinary derivatives 
are superscripts with respect to �.

When 〈 = 0 and } = 1 , then the Eq. (3.1.2) turns into

As a possible scenario, we integrate Eq. (3.1.3) one either more times, because of the 
complexity avoided, the integration constant(s) would be zero.

Staircase 2 The exact solution of wave for Eq. (3.1.3) was given bellow:

hence either ⊣N  or ⌊N  possible to be zero, however both ⊣N  and ⌊N  seems to be zero by the 
same time, ⊣l and ⌊

l
(for all, l = 1, 2,… ,N) and ⌈ are arbitrary  constants that recognized 

subsequently and S(� ) is presented by

where G = G(� ) satisfies the ODE of nonlinear type was assumed beneath:

The key specifies for the derivative with respect to � ; real parameters considered as 
A,B, E and C . To estimate N  , which is the balance number and we use homogeneous 
balance technique to the higher order nonlinear term and the higher order derivatives 
term in Eq. (3.1.3).

Staircase 3 Substituting Eqs. (3.1.5) and (3.1.7) including Eq.  (3.1.6) into 
Eq.  (3.1.3) having N  achieved in Staircase 3, it gives a polynomial in (⌈ + S)N  and (
⌈ + S

)−N
(for all,N = 0, 1, 2,……) . Afterward, we specified every coefficient of 

the resulting polynomial to be zero, yielding a cluster of algebriace  equations for ⊣l , 
⌊l(forall, l = 1, 2,…… ,N) , ⌈ and V.

Staircase 4 In place of the general solution in Eq.  (3.1.7) is common, introducing 
the values of ⊣l , ⌊l(for all, l = 1, 2,… ,N) , ⌈ and V to Eq. (3.1.5), We get novel accurate 
solutions for traveling wave for the nonlinear PDE (3.1.1) that are of a more generic 
nature. Presenting the general solution of Eq. (3.1.7), now we take the next solutions of 
Eq. (3.1.6) were Ψ = A − C:

(3.1.2)�(x, y, t) = �(� ), � = }x
�

�
+ �y

�

�
− V t

�

�
,

(3.1.3)K
(
�,��,���,����,………

)
= 0,

(3.1.4)�(x, t) = �(� ), � = x − V t
�

�
,

(3.1.5)�(� ) =

N∑
l=0

⊣l(⌈ + S)l +
N∑
l=1

⌊l
(
⌈ + S

)−l
,

(3.1.6)S(� ) = (G�∕G),

(3.1.7)AGG
��

− BGG� − EG2 − C(G�)
2
= 0.



	 U. H. M. Zaman et al.

1 3

1295  Page 6 of 20

Cluster 1 For B ≠ 0, then Ω = B2 + 4E(A − C) > 0,

Cluster 2 For B ≠ 0, then Ω = B2 + 4E(A − C) < 0,

Cluster 3 For B ≠ 0, then Ω = B2 + 4E(A − C) = 0,

Cluster 4 For B = 0, then Δ = ΨE > 0,

Cluster 5 For B = 0, then Δ = ΨE < 0,

The benefits of the techniques employed over other ways in the literature, such as the 
exp-function method, tanh-function method, basic 

(
G�∕G

)
-expansion method, and so on. 

The proposed strategies provide further reliable traveling wave solutions with additional 
free parameters. These precise solutions are vital in revealing the underlying mechanics of 
physical phenomena. Having closed-form solutions for nonlinear evolution equations also 
makes it easier for numerical solvers to compare the accuracy of their results and aids in 
stability analysis. On the other hand, when solving reduced differential equations of third 
order or lower, using symbolic computation software such as Maple meaningfully rises the 
probability of finding valuable solutions to the corresponding algebraic equations. None-
theless, as the order of the equations increases, ensuring the existence of solutions for the 
resulting algebraic equations becomes less viable in general. In such cases, the proposed 
approaches are especially useful since they can include a greater number of arbitrary con-
stants than other existing methods. This feature enables these approaches to solve circum-
stances where other methods may fail.

(3.1.8)S(� ) =
�
G�∕G

�
=

B
2Ψ

+

√
Ω

2Ψ

C1sinh
�√

Ω

2A �

�
+ C2cosh

�√
Ω

2A �

�

C1cosh
�√

Ω

2A �

�
+ C2sinh

�√
Ω

2A �

� .

(3.1.9)S(� ) = (G�∕G) =
B
2Ψ

+

√
−Ω

2Ψ

−C1sin
�√

−Ω

2A �

�
+ C2cos

�√
−Ω

2A �

�

C1cos
�√

−Ω

2A �

�
+ C2sin

�√
−Ω

2A �

� .

(3.1.10)S(� ) =
(
G�∕G

)
=

B
2Ψ

+
C2

C1 + C2�
.

(3.1.11)S(� ) =
�
G�∕G

�
=

√
Δ

Ψ

C1sinh
�√

Δ

A �

�
+ C2cosh

�√
Δ

A �

�

C1cosh
�√

Δ

A �

�
+ C2sinh

�√
Δ

A �

� .

(3.1.12)S(� ) =
�
G�∕G

�
=

√
−Δ

Ψ

−C1sin
�√

−Δ

A �

�
+ C2cos

�√
−Δ

A �

�

C1cos
�√

−Δ

A �

�
+ C2sin

�√
−Δ

A �

� .
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4 � Solutions proposing and analyzing causes

4.1 � The time fractional gardner (FG) equation

By computer software such as Maple, we will create solutions of traveling wave for the 
time fractional FG equation in this sector. Let the equation looks like:

The resulting nonlinear complex wave transformation is applied:

where � denoted traveling wave velocity, complex tnsformation is � , and �, � is a constant 
(arbitrary). To investigate the nonlinear properties of shallow water solitary waves, this 
equation is known as the equation for various physical plasmas. Using Eq. (4.1.2), to the 
Eq. (4.1.1) and by the phases bellow, this equation could be transformed to a nonlinear type 
ODE. Also, integrating with respect to � once and considering integrating constant be zero 
and get:

where � = d

d�
.

Taking balance to the order of uppermost nonlinear term �3 and order of the uppermost 
linear term �′′ , produces homogeneous balance N  is one. So, the result of the Eq. (4.1.3) 
proceeds the formula bellow:

where evaluated constants are⊣0 , ⊣1 and ⌊
1
 . The leftward side turn to a polynomial in (⌈ + S) 

by replacing (4.1.4) and (4.1.5) through (3.1.5). Tapping a null value in every of this poly-
nomial’s coefficients produces the sequential arithmetic equations of⊣0 , ⊣1 and ⌊

1
, �, �and⌈ 

(which we omit to show for clarity). The outcomes of our oversimplified set of equations 
are displayed below:

where Ω = B2 + 4E(A − C) = B2 + 4EΨ,⊣0 , ⊣1 and ⌊
1
 are free parameters.

Phase 1
The following traveling wave solutions are obtained by replacing Eq.  (4.1.5) to 

Eq. (4.1.4), with Eq. (3.1.8) and shortened (consider C2 = 0 but C1 ≠ 0 ;C2 ≠ 0 but C1 = 0):

(4.1.1)D𝛼

t
� + 6

(
� − 𝜀2�2

)
�x +�xxx = 0;0 < 𝛼 ≤ 1, t > 0.

(4.1.2)� = �x + �
t�

�
, �(x, t) = �(� ),

(4.1.3)�� + 3��2 − 2��3 + �3
�

�� = 0,

(4.1.4)�(� ) = a0 + a1(d + S)1 + b1(d + S)−1,

(4.1.5)

d = −
A + �B
2Ψ

, � = �, � = −

(
4EΨ − B2

)

A2
, a0 = 1, a1 =

�Ψ

A , and b1 =
1

4

A2 − �2Ω

ΨA�
,
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where Ω, andΨ = A − C are using as free parameters, also � and � are conformable coef-
ficient, let � = � =

1

2
.

Phase 2
Another two solutions from staircase-2 were obtained in a similar way, which are as 

follows:

where Ω, andΨ = A − C are using as free parameters, also � and � are conformable coef-
ficient, let � = � =

1

2
.

Phase 3
From staircase 3 we obtain another solutions as

where Ω, andΨ = A − C are using as free parameters, also � and � are conformable coef-
ficient, let � = � =

1

2
.

(4.1.6)

�11
(x, t) = 1 +

1

4

�
−2 +

√
Ωcoth

�√
Ω

4

�
�x + �

t
�

�

���

+
1

16

�
4 − Ω

Ψ2

��
−2 +

√
Ωcoth

�√
Ω

4

�
�x + �

t
�

�

���−1

,

(4.1.7)

�12 (x, t) = 1 + 1
4

[

−2 +
√

Ωtanh

{
√

Ω
4

(

�x + � t
�

�

)

}]

+ 1
16

(4 − Ω
Ψ2

)

[

−2 +
√

Ωtanh

{
√

Ω
4

(

�x + � t
�

�

)

}]−1

,

(4.1.8)

�13
(x, t) =1 +

1

4

�
−2 +

√
−Ωcot

�√
−Ω

4

�
�x + �

t
�

�

���

+
1

16

�
4 − Ω

Ψ2

��
−2 +

√
−Ωcot

�√
−Ω

4

�
�x + �

t
�

�

���−1

,

(4.1.9)

�14
(x, t) =1 +

1

4

�
−2 −

√
−Ωtan

�√
−Ω

4

�
�x + �

t
�

�

���

+
1

16

�
4 − Ω

Ψ2

��
−2 −

√
−Ωtan

�√
−Ω

4

�
�x + �

t
�

�

���−1

,

(4.1.10)

�15
(x, t) = 1 +

1

4

⎡
⎢⎢⎢⎣
−2 +

C2

C1 + C2

�
�x + �

t�

�

�
⎤
⎥⎥⎥⎦

+
1

16

�
4 − Ω

Ψ2

�⎡⎢⎢⎢⎣
−2 +

C2

C1 + C2

�
�x + �

t�

�

�
⎤⎥⎥⎥⎦

−1

,
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Phase 4
Get two more solutions by using the staircase-3

where Ω, andΨ = A − C are using as free parameters, also � and � are conformable coef-
ficient, let � = � =

1

2
.

Phase 5
Finally, from the staircase 5 we achieved the following solutions

(4.1.11)

�16 (x, t) = 1 + 1
2

[

−1 +
√

Δcot

{
√

Δ
2

(

�x + � t
�

�

)

}]

+ 1
16

(4 − Ω
Ψ2

)

[

−1 +
√

Δcot

{
√

Δ
2

(

�x + � t
�

�

)

}]−1

,

(4.1.12)

�17 (x, t) = 1 + 1
2

[

−1 +
√

Δtan

{
√

Δ
2

(

�x + � t
�

�

)

}]

+ 1
16

(4 − Ω
Ψ2

)

[

−1 +
√

Δtan

{
√

Δ
2

(

�x + � t
�

�

)

}]−1

,

Fig. 1   The solution of (4.1.12), display kink shape wave for �17
(x, t) to ( 0 < x < 10 and 0 < t < 10)
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where Ω, andΨ = A − C are using as free parameters, also � and � are conformable coef-
ficient, let � = � =

1

2
.

4.2 � The time fractional Sharma‑Tasso‑Olver (STO) equation

Consider the time fractional STO equation becomes:

where a ≠ 0. We then apply the consequent complex nonlinear wave transformation:

(4.1.13)
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2
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2
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,

(4.1.14)

�19 (x, t) = 1 + 1
2
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−Δtan

{
√

−Δ
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�x + � t
�

�
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}]

+ 1
16

(4 − Ω
Ψ2

)

[

−1 −
√

−Δtan

{
√

−Δ
2

(

�x + � t
�

�

)

}]−1

,

(4.2.1)D𝛼

t
� + 3a�2

x
+ 3a�2

�x + 3a��xx + a�xxx = 0;t > 0, 0 < 𝛼 ≤ 1,

Fig. 2   Illustration of the solution (4.1.7), represented singular-kink shape wave for �12
(x, t) to ( 0 < x < 60 

and 0 < t < 150)
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wherever � be the velocity of traveling wave. Numerous applications of the proposed equa-
tion are now used, such as the energy–momentum connection with relativistic energy, a 
quantum relativistic atom, and electromagnetic field interactions. Exploiting Eq.  (4.2.2), 
to the Eq. (4.2.1) and this equation could be transformed to a nonlinear type ODE. Also, 
integrating with respect to � one time and contemplating zero as constant for integration 
and obtained:

where � = d

d�
 . Taking balance to the higher order nonlinear term �3 and the higher order 

linear term �′′ , produces homogeneous balance N  is one. So, the result of Eq.  (4.2.3) 
given the subsequent formula:

where evaluated constants denoted ⊣0 , ⊣1 and ⌊
1
 . The leftward side turn to a polynomial 

in (⌈ + S) by replacing (4.2.4) and (4.2.5) with  (3.1.5). Tapping a null value in every of 
this polynomial’s coefficients produces a sequential arithmetic equation for ⊣0 , ⊣1 and 
⌊
1
, �, �and⌈ (which we omit to show for clarity). The results of our oversimplified solution 

of the equations are displayed below:

where Ω = B2 + 4E(A − C) = B2 + 4EΨ,Ψ = A − C,⊣0 , ⊣1 and ⌊
1
 are free parameters.

Segment 1
The traveling wave solutions are produced by substituting Eq. (4.2.5) to the Eq. (4.2.4), 

amongst the Eq. (3.1.8), and simplifying the equations (consider C2 = 0 but C1 ≠ 0 ;C2 ≠ 0 
butC1 = 0):

where Ω, andΨ = A − C are using as free parameters, also � are conformable coefficient, 
let � = � =

1

2
.

Segment 2
Obtain the corresponding exact solutions by substituting Eq. (4.2.5) to the Eq. (4.2.4), 

adding Eq. (3.1.9), and shortening (consider C2 = 0 but C1 ≠ 0 ;C2 ≠ 0 but C1 = 0):

(4.2.2)� = x + �
t�

�
,�(x, t) = �(� ),

(4.2.3)�� + 3a��
� + a�3 + a��� = 0,
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2Ψ
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A
2
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A
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(4.2.6)
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(4.2.7)
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(4.2.8)
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Fig. 3   The solution of (4.1.9), shows the periodic-type singular-kink shape wave for �14
(x, t) to ( 0 < x < 12 

and 0 < t < 12)

Fig. 4   The Illustration of the result (4.1.10), shows singular-kink shape wave for �15
(x, t) to ( 0 < x < 10 

and 0 < t < 10)
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where Ω, and Ψ = A − C are using as free parameters, also � are conformable coefficient, 
let � = � =

1

2
.

Segment 3
Equation (4.2.5) is substituted to Eq. (4.2.4) through Eq. (3.1.10) to simplify, and result 

is

where Ω, andΨ = A − C are using as free parameters, also � are conformable coefficient, 
let � = � =

1

2
.

Segment 4
Attain the solutions for the following traveling wave by replacement Eq.  (4.2.5) into 

Eq. (4.2.4) and Eq. (3.1.11) (consider C2 = 0 but C1 ≠ 0 ;C2 ≠ 0 butC1 = 0):

where Ω, andΨ = A − C are using as free parameters, also � conformable coefficient, let 
� = � =

1

2
.

Segment 5
In order to simplify the given answers, Eq. (4.2.5) can be substituted to Eq. (4.2.4), with 

Eq. (3.1.12), (consider C2 = 0 but C1 ≠ 0 ;C2 ≠ 0 butC1 = 0):

where Ω, andΨ = A − C are using as free parameters, also � are conformable coefficient, 
let � = � =

1

2
.

(4.2.9)
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Fig. 5   The image of the solution (4.2.7), represented double soliton shape wave with �22
(x, t) to the dura-

tion ( 0 < x < 2900 and 0 < t < 3000)

Fig. 6   The solution of (4.2.14), display the periodic shape wave for �28
(x, t) to ( 0 < x < 50 and 0 < t < 20)
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5 � Physical explanation

Utilizing fractional order derivatives and dynamical changes in the parameters, the graphi-
cal clarification and physical explanation of the exact traveling wave solutions for the three 
kinds of sketches using Mathematica for the given equations will be discussed in this part.

The 3D plotline is represented as a planar or curved surface using a three-dimensional 
cartesian coordinate system, as seen in (a). A curve linking the points where the formula 
(function) belongs equal value was also a function of the two-variable contour line, as 
shown in (b). Finally, by using the vector plot shown in (c), we may determine a waves 
direction. The plots describe a change of natures, like kink shape wave, singular-kink 
shape, single-soliton shape wave, double soliton shape, singular soliton wave shape, peri-
odic soliton wave shape and few more types, which are made by choosing the right param-
eters and giving a physical explanation.

The diagrams below show many structures, together with the renowned solitons shape, 
such as the solutions of �17

(x, t) ( 0 < x < 10 to 0 < t < 10 ) in Fig. 1 presented the kink 
shape solution of traveling wave that both sides have infinite wings. In this circumstance, 
we utilize A = 2, C = 1 , E = 1andΨ = 1 that remainders in Cluster-4. The result �19

(x, t) 
( 0 < x < 10 to 0 < t < 10 ) for (4.1.14) depicted similar figure to the Cluster-5. Kink waves 
are asymptotic waves that change asymptotic states in an upward or downward direction. 
The kink solution comes close to becoming a constant at infinity. For the time FG equa-
tions, those traveling wave solutions exist.

Fig. 7   The solution of (4.2.15), display the single-soliton shape wave for �29
(x, t) to ( 0 < x < 70 and 

0 < t < 20)
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The solution of �12
(x, t)(0 < x < 60 to 0 < t < 150 ) showed a singular-kink shape wave 

result, depicted in Fig.  2 and �11
(x, t) ( 0 < x < 60 to 0 < t < 340 ) for (4.1.6) depicted 

familiar figure for A = 2, C = 1 , E = 1andΨ = 1 that is in Cluster-1, also The result of 
�15

(x, t)(0 < x < 10 to 0 < t < 10 ) presented same shape wave solution, depicted in Fig. 4 
for Cluster-3 by A = 2, C = 1 , E = −1andΨ = 1 . In Fig. 3, we showed periodic-type singu-
lar-kink shape wave for �14

(x, t) ( 0 < x < 12 to 0 < t < 12 ) for Cluster-2 by A = 2, C = 1 , 
E = −1andΨ = 1 . For time FG equations, those traveling wave solutions exist (Figs. 4 and 
5).   

The profile of the solution �28
(x, t) ( 0 < x < 20 to 0 < t < 0.80 ) showed a periodic soli-

tary wave solution, presented in Fig. 6, here A = 2, C = 1 , E = 1andΨ = 1 that is in Clus-
ter-4. Impulsive systems, self-reinforcing systems, diffusion–reaction- advection systems, 
etc. all depend heavily on periodic traveling waves. The periodic results are periodic solu-
tions of traveling wave. Periodic solutions can be found using the conventional wave equa-
tion �tt = �xx.

Now, Fig.  5 depicts the portrayal of double solitons shape wave result of �22
(x, t) 

( 0 < x < 2900 to 0 < t < 3000 ). Here, we usage A = 2, C = 1 , E = 1andΨ = 1 in this sce-
nario, that is still in Cluster-1 represented to the result (4.2.7) and the result (4.2.6) is also 
given the double solitons shape wave result of �21

(x, t) ( 0 < x < 1000 to 0 < t < 1000).
In addition, the depiction of Fig.  7 reveals the single-soliton shape wave for �29

(x, t) 
( 0 < x < 70 to 0 < t < 20 ) for Cluster-05 were as long as in the illustration of the result 
(4.2.14) here, we make use of A = 2, C = 1 , E = −1andΨ = 1 for the time fractional STO 
equations. The wave solution of �13

(x, t) ( 0 < x < 40 to 0 < t < 50 ) for Cluster-02 in (4.1.8), 
�16

(x, t) ( 0 < x < 900 to 0 < t < 400 ) for Cluster-4 in (4.1.11) and �18
(x, t) ( 0 < x < 100 

to 0 < t < 100 ) for Cluster-5 in (4.1.13) are also epitomized familiar traveling wave solu-
tion for the time FG equation. It is essential to inform that the solutions of wave �23

(x, t) 
( 0 < x < 0.10 to 0 < t < 0.40 ), �24

(x, t) ( 0 < x < 0.10 to 0 < t < 2 ), �26
(x, t) ( 0 < x < 1500 

to 0 < t < 1500 ) and �27
(x, t) ( 0 < x < 1300 to 0 < t < 3100 ) were showed the familiar fig-

ure with respectively (4.2.8), (4.2.9), (4.2.11) and (4.2.12) to time fractional STO equation.
Solitons are special category of solitary wave. Solitary waves explain wave dynamics in 

diffraction and dissipative materials using evolution equations of nonlinear type by solutions 
like soliton. Solitons explain multiple-soliton solutions while solitons designate single-soliton 
solutions (Wazwaz 2009). At last, it is noteworthy to say that the wave results for �25

(x, t) in 
Cluster-3 were undefined to time fractional STO equations.

The graphics to the suggested equations solution are established here. We express the many 
forms of images generated applying those mentioned equations while avoiding equal shape 
that intersections through the displayed image also.

6 � Results comparison

This part demonstrates the novelty and effectiveness of our research. As a result of our 
investigation, we found that the obtained solutions have a substantial association with the 
ones that have already been created. In order to solve the aforementioned equations and 
obtain certain proven results, prior researchers used a number of techniques. The new gen-
eralized (G�∕G)-expansion approach is applied to the aforementioned equations using the 
confirmable derivative, and we find numerous effective results that are both more general 
and fresher than those of the previous researchers.
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In the beginning, the novelty of the space–time fractional Gardner equation is discussed. 
This problem was also studied by Zaman et al. (2023) and Korpinar et al. (2020). We com-
pared their established solutions to our acquired solutions, which are shown in the picture 
below:

The solutions (4.1.7) and (4.1.12) in the aforementioned picture were shown to be com-
parable to the solutions (4.1.31) of Zaman et al. (2023), which are denoted by the blue tone. 
The suggested equation offers different results than those derived by Korpinar et al. (2020), 
which are shown by zero symbol in black box. It is also remarkable to note that some of 
our successful ideas are entirely original, highlighting our originality and displaying them 
in a green tone.

Additionally, we contrasted our findings from the space–time fractional STO equation 
with those from He et  al. (2013) and Gómez (2015), which are depicted in the picture 
below:
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According to the aforementioned graph, solutions (4.2.6) and (4.2.7) were comparable 
to solutions (23) of He et al. (2013), which were highlighted in blue. The red-colored solu-
tions and (4.2.12) are equivalent to solutions (2.4.6) of Gómez (2015). Also, we can state 
that we have a few wholly original answers, which we labeled novel solutions and high-
lighted in green.

In the section on physical explanation, we depict Figs. 1, 2, 5, and 7, which are similar 
to the previously published results. Furthermore, Figs.  1, 2, 3, 4, 6 and 7 provided new 
solutions from previously established solutions. As a result, it is clear that we have some 
completely unique solutions, which we can refer to as novel solutions.

7 � Conclusion

We have developed a large number of complete, advanced general solitary solutions of the 
wave to the time FG equation and fractional STO equations utilizing reliable generalized 
(G�∕G)-expansion techniques using conformable derivative were presented in this study. 
We have generated closed-form solutions to the recommended equations, together with sin-
gular-kink wave shaped, periodic solitary formed, kink-shaped, periodic-type singular-kink 
shape, double soliton shaped, single-soliton formed, and some undefine soliton formed of 
travelling wave solutions with a change of free parameters. These flexible parameters have 
significant insinuations, for example the possibility to discovery specific results by chang-
ing the values of free parameter a single solution. The accuracy of the data obtained in 
this study was confirmed by converting them back to NLFPDEs and using the computa-
tional software Maple to find them. Visual representations of solitary wave behaviors in 
space and time are already made, proving the reliability and trustworthiness of the sug-
gested methodologies. The attain solutions can be applying to the study of phase separa-
tion, optics, plasma physics, two-phase fluid flows, non-linear vibration, thermal science, 
analysis of image, nanofluids, fluid dynamics, mathematical biology, quantum physics, 
motion by mean curvature, and many other. The ability to fully comprehend the nonlin-
ear water wave theory solutions that engineers and coastal researchers employ to construct 
harbors and coastlines is quite beneficial. So that, the approved technique is trustworthy, 
direct, effective, conformable, also it affords many solutions for the fresh physical model of 
NLFPDEs that developed in physical mathematics, applied mathematics, and engineering.
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