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Abstract
The conductance and electronic transmission of Dirac electrons and holes across multibar-
rier Cantor-like graphene are investigated using on the transfer matrix method and Lan-
dauer–Buttiker formalism. Electric and magnetic fields are applied to the top of a mon-
olayer graphene to generate multiple electromagnetic barriers separated by quantum wells. 
The impact of the magnetic and electric fields as well as the quantum size on the behavior 
of the transmission coefficient and conductance is discussed. The results indicate that the 
transmission coefficients exhibit oscillations indicating the existence of resonant states in 
miniband energies separated by minigap energies. This phenomenon known as the bifurca-
tion process is more pronounced for a higher number of barriers. The behavior observed 
in the conductance variation reflects of the transmission coefficient especially for lower 
energies. Furthermore, the contour plot of the transmission coefficient shows the predomi-
nant impact of the incidence angle on the symmetry of the minigaps and minibands. These 
results are expected to be beneficial for experiments that improve the performance of new 
generations of devices based on multibarrier Cantor-like graphene systems.

Keywords  Transfer matrix method · Quantum wells · Multibarrier Cantor-like graphene · 
Magnetic field · Conductance

1  Introduction

In recent years, Graphene has emerged as the foremost two-dimensional material (El-
Shafai et  al. 2023; Novoselov et  al. 2005) thanks to its unique physical properties 
(Zhang et al. 2005; Gusynin and S.G.  2005; McCann and Falko 2006; Peres et al. 2006; 
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Calogeracos and Dombey 1999; Itzykson and Zuber 2006). The electronic and optical 
properties of graphene multilayers differ significantly from those of conventional semi-
conductors, mainly due to the chiral nature of Dirac carriers in graphene (Park et  al. 
2008a, 2008b). However, its low conductivity, which is an important characteristic of 
electronic transport, poses a significant challenge in many technological applications, 
especially in the development of optoelectronic devices (El-Shafai et  al. 2023; Novo-
selov et al. 2005; Zhang et al. 2005).

Another issue arises from the Klein-tunneling effect, whereby carriers incident at nor-
mal angles can be transmitted across potential barriers regardless of their width and height. 
This effect a substantial problem in confining of Dirac electrons. To address this limita-
tion, the application of a magnetic field has been proposed (Martino et al. 2007a, 2007b). 
When a magnetic field is applied, it introduces additional confinement to the Dirac carriers 
through the Lorentz force, deflecting their trajectories. This magnetic field-induced con-
finement offers better control over electronic transmission across multibarrier graphene and 
facilitates control over conductance. The application of the magnetic field can be achieved 
using ferromagnetic stripes or strains (Ramezani Masir et al. 2009; Pereira and Castro Neto 
2009).

Following the original results by Martino et al. (Martino et al. 2007a, 2007c), various 
theoretical and experimental studies on the impact of magnetic fields on electronic trans-
port in graphene have been conducted (Ramezani Masir et al. 2008a, 2008b, 2011; Ghosh 
and Sharma 2009; Dell’Anna and De 2009, 2011; Tan et  al. 2010; Xu et  al. 2007; Park 
and Sim 2008; Kormanyos et al. 2008; Oroszlany et al. 2008; Ghosh et al. 2008; Bliokh 
et al. 2010; Wang and Jin 2009; Häusler et al. 2008; Myoung and Ihm 2009; Myoung et al. 
2011). For instance, M. Ramezani Nasir demonstrated that single or bilayer graphene with 
multiple magnetic barriers could be utilized to realize wave-vector filters (Ramezani Masir 
et al. 2008a). Peeters et al. investigated the electronic transmission across magnetic barri-
ers, such as magnetic steps and delta functions (Ramezani Masir et al. 2008b). Their results 
indicated that transmission primarily depends on the direction of incident electrons. Fur-
thermore, they demonstrated that bound states are localized near the magnetic steps and the 
edges of magnetic barriers but not around the delta function barriers.

Many research papers have focused on periodic graphene systems and neglected aperi-
odic systems (Redouani and Jellal 2016; Biswas et al. 2017, 2010; Xu et al. 2019; Barbier 
et  al. 2010; Reyes-Villagrana et  al. 2017). However, in aperiodic systems, the symmetry 
of potential barriers is broken, leading to suppressed transmission of Dirac particles and 
the emergence of large gaps in the transmission coefficients. To the best of our knowledge, 
only a few works have addressed aperiodic systems in the presence of a magnetic field 
(Wei-Tao et al. 2013; Liu et al. 2013; Jonas 2015; Sun et al. 2010a, 2010b). For example, 
Wei-Tao Lu et al. investigated the transmission of Dirac electrons in Fibonacci and Thue-
Morse magnetic superlattices (Wei-Tao et al. 2013). They demonstrated that the transmis-
sion coefficient exhibits a scaling property and fragmented behavior with self-similarity. 
In Thue-Morse systems, the transmission coefficients exhibit more pronounced resonant 
peaks, which arise from completely transparent states. Lifeng Sun et al. studied the trans-
mission coefficients and conductance in fractal magnetic structures (Sun et  al. 2010a). 
Their findings reveal that the transmission spectra can be considered distinctive finger-
prints of the fractal structures, demonstrating the intricate relationship between magnetic 
structures and transport behaviors. R. Rodríguez-González et al. explored the transmission 
and conductance in Cantor graphene (Rodríguez-González   2017). They demonstrated that 
the magnetic field can be employed to control the transmission and conductance in gra-
phene-based structures.
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Despite the significant findings reported in the previous references, further investiga-
tion and explanation of the impact of electric and magnetic fields on electronic transport 
in graphene materials are needed to advance scientific understanding. In this study, we 
utilize the transfer matrix method (TMM) and the Landauer–Büttiker formalism to ana-
lyze the electronic transmission and conductance of magnetoelectric barriers deposited 
on top of a graphene layer. To incorporate the effects of these fields, we apply per-
pendicular electric and magnetic fields to a graphene monolayer in alternating regions, 
resulting in the creation of magnetic and electric barriers separated by well regions. 
Our objective is to explore the behavior of conductance and electronic transmission and 
observe how they are modified by varying structural parameters such as the number and 
sizes of barrier/well regions. The introduction of magnetoelectric barriers by applying 
electromagnetic fields in alternating regions represents a novel aspect of this study com-
pared to previously published results. Moreover, this study considers a larger number of 
wells and barriers, providing more detailed insights into the formation of minigaps and 
minibands as influenced by the applied fields. This behavior was inadequately discussed 
in previous studies.

The remaining sections of this paper are organized as follows: In Sect. 2, we explain the 
theoretical model with appropriate approximations. Section  3 discusses the transmission 
coefficients and conductance for various system configurations. Finally, in Sect. 4, our con-
clusions and findings are presented.

2 � Theory

The Dirac electrons motion under the effects of an electric and magnetic field can be 
described through the following equation (Sun et al. 2010a; Rodríguez-González  2017):

where vF represents the Fermi velocity of Dirac particles, and p = (px, py) is their momen-
tum operator. Within Landau gauge, the vector potential is given by A = (0,Ay, 0) . �0 
denotes the unitary matrix and V(x) represents the scalar potential. In our problem, the vec-
tor potential is given byA(x) = Ayŷ = B0lBŷ . The intensity and length of the magnetic field 
are designed by B0 and lB =

√
ℏ∕eB0 , respectively. The electric field applied to each gate 

generates a difference of potential equal to V0 in all barriers. The analytical resolution of 
Eq. (1) gives us the following dispersion relation:

+(−) signs are devoted for electrons (holes), qy and qx represent the components of par-
ticle’s wavevector. The wavefunctions describing the motion of holes and electrons along 
the structure can be written in the barrier regions as (Sun et al. 2010a; Rodríguez-González   
2017):

with
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In the well regions where the electric and magnetic fields are switched-off, the disper-
sion relation becomes:

Furthermore, the wavefunctions in well regions are formulated as following:

with

The transmission coefficient T(E) is computed using the transfer matrix method (Yeh 
2005; Markos and Soukoulis 2008; Rodríguez-González and Rodríguez-Vargas 2015). 
Using the conservation of the y component of the wavevector in well and barrier regions 
( ky = qy) and the continuity of the wavefunctions at each interface, we can connect the 
amplitudes of the input and output wavefunctions by a transfer Matrix M via the follow-
ing relation (Yeh 2005; Markos and Soukoulis 2008; Rodríguez-González and Rodríguez-
Vargas 2015):

where M represents the transfer matrix given by the following expression:

The propagation Pj and dynamic Dj matrices can be written as following:

The transmission coefficient  T(E)  is given by following expression (Myoung and Ihm 
2009; Myoung et al. 2011)
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With M11 represents the first element of the matrix M . Once the transmission coeffi-
cient is calculated, the conductance can be straightforwardly determined based on Lan-
dauer–Buttiker expression as (Wei-Tao et al. 2013)

EF is the Fermi level and G0 = 2e2LyE0∕h
2vF represents the fundamental conductance 

factor.  Ly stands the width of the system in the transversal direction (y axis) and � is the 
angle of incidence.

3 � Results and discussion

3.1 � Electric field effects

As mentioned above, the theoretical model was used to investigate the transmission coeffi-
cient and the conductance in multibarrier system under the effects of electric and magnetic 
fields. Figure  1 shows the studied structure. It consists of a graphene monolayer sitting 
above a non-interacting SiO2 substrate.

The graphene layer and SiO2 are sandwiched between back and top gates. The back gate 
(BG) is used to control the Fermi level; however, the top gates are used to select the desired 
electric and magnetic fields. For all numerical calculations, we adopt B0 = 0.1T  as the unit 
of magnetic field, for which the magnetic length is lB = 811 Å. The unit energy is equal to 
E0 = 7meV .

At first the behavior of the transmission coefficient was analyzed as a function of the 
particle’s incident energy as shown in Fig. 2a–f. The number of barriers varies between 

(13)G
/
G0

= EF

�∕2

∫
−�∕2

T
(
EF , �

)
cos (�)d�

Magnetic field,                A(x),                          V(x)

Fig. 1   Schematic representation of graphene multibarrier under magnetic field. The top gates are used to 
apply magnetic and electric fields
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N = 2 and 7. The structure is symmetric dw = dB = lB and the magnetic field is switched-
off (B = 0) . In this only the effect of an electric field was considered. By examining these 
figures, it is clearly shown that the transmission coefficient demonstrated oscillations for all 
cases. These oscillations are multiplied when N increases and the resonant peaks become 
more pointed. For instance, by examining the case of two barriers (N = 2), see Fig. 2a, we 
observe only three resonant states for positive energy (E > 0) . However, for N > 2 , These 
three resonant states are transformed into three energy minibands separated by minigaps. 
Each energy minibands present (N − 1) resonant states. The minigaps become well defined 
for higher values of N which represents an interesting result for technological applications 
especially in electronic filters. For negative energy (holes), it is demonstrated that the split 
of the resonant peaks into miniband gaps is less pronounced compared to that obtained in 
the case of electrons. Furthermore, the depth of the minigaps becomes deeper by increas-
ing the number of barriers. In addition, it is found that all the minigaps in the transmission 
coefficient of the holes do not reach zero energy. It means that the Dirac electrons can be 
suppressed perfectly than the holes for higher values of N.

To further analyze the behavior of the transmission coefficient and its dependence on 
the angle of incidence � , the variation of  T(E, �) for different values of N  are plotted in 
Fig. 3a–f. It is clear that the number of minibands and minigaps increase withN . The trans-
mission is at its maximum for zero incidence, which confirms the Klein-Tunneling effect. 
For higher values of� , the mingaps separating the minibands become larger for the elec-
trons ( E > 0) . In the case of the holes, the minigaps are less deep and large, which confirms 
the results observed in Fig. 2a–f obtained for� = �∕6 . Furthermore, a regular increase of 
the number of resonant peaks around E = 0 with the number of barriers is obtained. For 
instance, the transmission has one peak for N = 2; two peaks forN = 3 ; and so on. In gen-
eral, there are (N − 1) peaks contained in the central miniband.

After discussing the behavior of the transmission coefficient, we evaluated the conduct-
ance in the absence of a magnetic field. We used the same physical parameters as before 
to calculate the conductance. Figure 4a–f illustrate the conductance as a function of the 

Fig. 2   Transmission coefficient as a function of incident energy for different number of barriers; a N = 2, b 
N = 3, c N = 4, d N = 5, e N = 6, f N = 7; � = �∕6 ; dw = dB = lB ; V0 = 2 E0; B = 0 T
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incident energy for different numbers of barriers. The conductance exhibits peaks and val-
leys. The number of peaks near the zero-energy region is proportional to the number of bar-
riers. The conductance shows small oscillations in other energy regions (higher and lower 
values). The staircase-like variations observed for higher energies are attributed to addi-
tional resonant states that appear in the transmission coefficient as the energy increases. In 

Fig. 3   Contour plots of the transmission coefficients versus the angle of incidence and energy for different 
number of barriers a N = 2, b N = 3, c N = 4, d N = 5, e N = 6, f N = 7; dw = dB = lB ; V0 = 2 E0; B = 0 T

Fig. 4   Conductance as a function of energy for different barriers number; a N = 2, b N = 3, c N = 4, d N = 5, 
e N = 6, f N = 7; dw = dB = lB ; V0 = 2 E0; B = 0 T



	 W. Belhadj et al.

1 3

1171  Page 8 of 15

fact, the conductance is a sum over energy and therefore exhibits more oscillations with an 
increasing number of resonant states.

3.1.1 � Magnetic field effects

In this section, the electric field is switched-off, and a magnetic field is applied. Figure 5a–f 
display the variation of  T(E) as a function of incident energy for different barrier number.

In this case, the magnetic field is equal to B = 0.1T  . In this case, the transmission coef-
ficient exhibits some oscillations indicating the existence of resonant states within the min-
ibands separated by minigaps. The behavior of the transmission coefficient in this case is 
different to that in absence of magnetic field (see Fig. 2a–f). The main observation is that 
the number of minibands in positive region of energy is reduced. In fact, when the mag-
netic field is applied, a shift of Dirac cones in the direction of wave-vector component (qy) 
occurs. In other words, the term ( v2

F

(
ℏqy + eAy

)2 in the expression (2) will introduce a 
translation of resonant energy values. This energetic shift is responsible to the disappear-
ance of the second miniband in positive energy region (E > 0) which was present in the 
absence of the magnetic field (Fig. 2a–f).

The contour plot of T(E, �) in the presence of magnetic field is given by Fig. 6a–f. By 
comparing these variations to those obtained in Fig. 3a–f, we observe that in the absence of 
magnetic field, the transmission coefficient is symmetric with respect to normal incidence 
(� = 0).

This behavior becomes absent when the magnetic field is applied. Furthermore, addi-
tional minibands and minigaps are obtained in the region of positive incidence close to 
� = �∕3 . This number of minibands increase with the number of barriers. The main obser-
vation is the relationship between resonant states of the central miniband around (E = 0) 
and the number of barriers. This central miniband contains one resonant state for (N = 2) , 
two resonant states for (N = 3) , and so on. In general, we obtain (N − 1) resonant states for 
a structure containing N barriers. In addition, it is clear from this figure that the resonant 

Fig. 5   Transmission coefficient as a function of incident energy for different barriers number; a N = 2, b 
N = 3, c N = 4, d N = 5, e N = 6, f N = 7; ;dw = dB = lB;� = �∕6 ; V0 = 0; B = 0.1 T
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states are sharper at positive incidence (𝜃 > 0) than those obtained at negative angles 
(𝜃 < 0) . This dissymmetry is caused by the application of the magnetic field.

The variation of the conductance under the impact of magnetic field is given by 
Fig.  7a–f. By examining the expression of the conductance given in Eq.  (13), we see 
that it is obtained by summing over all the values of transmission channels and incident 
angles between  −�∕2 and �∕2 . This means that its behavior is closely related to that of 

Fig. 6   Contour plots of the transmission coefficients as a function of both angle of incidence and energy 
for different number of barriers a N = 2, b N = 3, c N = 4, d N = 5, e N = 6, f N = 7; dw = dB = lB; V0 = 2 E0; 
B = 0.1 T

Fig. 7   Variation of conductance as a function of energy for different barriers number; a N = 2, b N = 3, c 
N = 4, d N = 5, e N = 6, f N = 7; dw = dB = lB ; V0 = 2 E0; B = 0.1 T
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the transmission coefficient. Mathematically, when a Fermi energy is selected and then an 
integration over all the possible angles between −�∕2 and �∕2 is done, the minibands and 
minigaps and the peaks of resonant states will be reflected in the conductance. Further-
more, the symmetric or asymmetric characteristics observed in the transmission coefficient 
is also repeated in the features of the conductance. By analyzing Fig. 7a, i.e. (N = 2) , we 
remark the existence of two minibands. Each one contains one peak. However, for (N = 3 ), 
these minibands are split and then displayed two peaks. In general, there are (N − 1) peaks 
for N barriers. Furthermore, by increasing the number of barriers N , the oscillatory char-
acteristics observed in each miniband becomes less perceptible. All these behaviors reflect 
the features previously observed in the transmission coefficients variation.

4 � Quantum barrier and well widths effect

In the rest of this paper, the impacts of quantum size and magnetic fields on the transmis-
sion coefficients will be discussed. To do this, we have considered a width of barriers equal 
to the double of that of quantum wells (dB = 2dw) . Figures 8a–f and 9a–f display the vari-
ation of the transmission coefficient without and with magnetic field, respectively. With-
out magnetic field, the figures show some minibands alternated by minigaps for electrons 
(E > 0) and holes (E < 0) . The number of resonant states increases in each miniband by 
increasing the number of barriers. From these figures, it is clear that the central miniband 
located around zero energy contains the large number of resonant states. This central mini-
band becomes well defined and almost symmetric with respect to zero energy for higher 
number of barriers. By applying a magnetic field intensity (B = 0.1 T) (see Fig. 9a–f), the 
behavior of the transmission changes dramatically. In fact, the minibands and minigaps of 
holes transmission (E < 0) still almost unchanged by applying B. However, the transmis-
sion of electrons (E > 0) is considerably affected by the application of the magnetic field. 
In fact, the two minibands which were present without B are now suppressed. In other 

Fig. 8   Transmission coefficient as a function of energy for different number of barriers; a N = 2, b N = 3, c 
N = 4, d N = 5, e N = 6, f N = 7; � = �∕6 ; dB = 2dw = 2lB ; V0 = 2 E0; B = 0 T
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words, the magnetic field acts as a filter. It favorize the transmission of holes and suppress 
that of the electrons.

Finally, the effects of quantum wells width on the transmission coefficient with and 
without the presence of magnetic field are given in Figs.  10a–f and 11a–f, respectively. 
The quantum well width in these cases is twice of that of the barriers (dw = 2dB). It is clear 
from these figures that the number of resonant states is multiplied if compared to those 
appeared in the symmetric case (dw = dB) . The minibands and minigaps are well defined 

Fig. 9   Transmission coefficient as a function of energy for different number of barriers; a N = 2, b N = 3, c 
N = 4, d N = 5, e N = 6, f N = 7; � = �∕6 ; dB = 2dw = 2lB ; V0 = 2 E0; B = 0.1 T

Fig. 10   Transmission coefficient as a function of energy for different number of barriers; a N = 2, b N = 3, c 
N = 4, d N = 5, e N = 6, f N = 7;� = �∕6 ; dw = 2dB = 2lB ; V0 = 2 E0; B = 0 T
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and the separations between different resonant states is almost constant. Furthermore, the 
transmission coefficient touches the unity for all particles (holes and electrons). When the 
magnetic field is applied, the number of resonant states in all minibands is reduced. As a 
result, the magnetic field suppress the transmission of electrons by doubling the barriers 
widths but keep small miniband regions by doubling the quantum well widths. This result 
is interesting to tune and select the desired transmission of carriers (holes and electrons) by 
selecting the suitable widths and applying an external magnetic field.

5 � Conclusion

In conclusion, the transmission and conductance of multibarrier graphene systems under 
the impact of quantum size, and electric, and magnetic fields were theoretically discussed. 
Their impacts on the behavior of the minibands and minigaps of the transmission coeffi-
cients and conductance are discussed in detail. Symmetric and asymmetric cases 

(
dw = dB

)
 

and 
(
dw ≠ dB

)
 were considered. Our results showed that the transmission coefficients dis-

play some minibands sandwiched between minigaps. The number of resonant states in each 
miniband increases considerably with the number of barriers. For N barriers, we obtain 
(N − 1) resonant states. In addition, it was found that in the symmetric case 

(
dw = dB

)
 , the 

application of magnetic field reduces the number of minibands and resonant states of elec-
trons (E > 0) , but the holes are less affected. However, in the asymmetric case 

(
dB = 2dw

)
 , 

the application of a magnetic field completely suppresses the minibands of electrons 
(E > 0) for an odd number of barriers ( N = 3, 5and7) and display one resonant state for 
even number of barriers ( N = 2, 4and6) . The variations of the transmission coefficient with 
the angle of incidence were discussed by plotting the contour plot T(E, �) . The obtained 
results show that the transmission coefficient depends considerably on the angle of inci-
dence. The total transmission at normal incidence (� = 0) known as Klein-Tunneling effect 
was demonstrated.

Fig. 11   Transmission coefficient as a function of energy for different number of barriers; a N = 2, b N = 3, c 
N = 4, d N = 5, e N = 6, f N = 7;� = �∕6 ; dw = 2dB = 2lB ; V0 = 2 E0; B = 0.1 T
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