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Abstract
In this paper, We have developed a variety of new approximate solutions for the nonlinear 
fractional generalized Pochhammer-Chree equation (FGPCEs) using the fractional homot-
opy perturbation transform method via the Caputo-Fabrizio fractional derivative(CFFD) 
of order � where � ∈ (1, 2]. via Laplace transform technique.we investigate all concerned 
wave models that have been used in the examination for the propagation of harmonic waves 
in a cylindrical rod and several problems in fluid mechanics and wave theory in phys-
ics. Banach’s fixed point hypothesis is tested for governing the fractional-order model in 
order to establish the existence and uniqueness of the achieved solution. We considered the 
model in terms of arbitrary order with three cases and introduced corresponding numeri-
cal simulations to demonstrate and validate the effectiveness of the proposed algorithm. 
By assigning appropriate values to free parameters, dynamical wave structures of some 
approximate solutions are graphically demonstrated using 2D and 3D Fig. This method can 
also be used to approximate the solutions of other well-known equations in engineering 
physics, quantum field, and other applied sciences. Furthermore, various simulations are 
used to demonstrate the physical behaviors of the acquired solution with respect to frac-
tional integer order.
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1  Introduction

Nonlinear fractional differential equations(NFDEs) are mathematical equations that 
involve derivatives of fractional order. They combine the concepts of nonlinearity and 
fractional calculus, which extends the classical integer-order calculus to non-integer 
orders.

where D� is the fractional derivative operator of order �, u(t) represents the unknown func-
tion, f (t, u(t),D�u(t)) is a nonlinear function of t, y(t), and the fractional derivative D�u(t) 
of order � is taken with respect to t. Because fractional derivatives introduce memory 
effects into the system, the state of the system at any given time depends on both its recent 
history and its current inputs.  Due to the nonlinear nature of the equations, solving nonlin-
ear fractional differential equations is typically more difficult than solving linear fractional 
differential equations. To solve these equations, a number of numerical and analytical tech-
niques have been developed, including the Laplace transform, the Adomian decomposi-
tion method, and the variational iteration method. Numerical techniques include finite dif-
ference methods, numerical approximation schemes, and spectral methods (Caputo 1969; 
Miller and Ross 1993; Clarkson et al. 1986; Saxton 1985; Prakash et al. 2021; Yan et al. 
2022; WuFulai and Deng 2020; Baleanu et al. 2017; Veeresha et al. 2022; Akinyemi et al. 
2022; Li et al. 2002; Gao et al. 2022; Seadawy et al. 2021; Renu et al. 2021; Zhang and Ma 
1999; Kala et al. 2019; Li and Zhang 2002; Yan et al. 2021; Toprakseven 2021; Al-Smadi 
et al. 2021). Applications for nonlinear fractional differential equations can be found in a 
number of disciplines, such as physics, engineering, biology, finance, and control theory, 
where complex dynamics and memory effects are present but not well captured by integer-
order models (Ali 2021; Wazwaz 2008; Mohebbi 2012; Hawagfeh and Kaya 2004; kumar 
et al. 2022; Achab 2019). The nonlinear fractional generalized Pochhammer-Chree equa-
tion is a mathematical equation that combines elements of nonlinear dynamics, fractional 
calculus, and the Pochhammer-Chree equation. It explains the behavior of specific physical 
phenomena or systems where nonlinearity and fractional order derivatives are important 
factors. Through the use of the homotopy perturbation transform method and the propaga-
tion of longitudinal deformation waves in an elastic rod, this paper aims to investigate new 
approximation solutions to the generalized Pochhammer-Chree equation (Seadawy et  al. 
2021).

where �(u) is a rational function of u. Eq. (1) describes how a longitudinal deformation 
wave moves through an elastic rod. for �(u) = uq  for the value q = 2, 3, 5  respectively 
(Runzhang and Yacheng 2010), and numerically examined how two single wave solutions 
interacted.

Runzhang and Yacheng (2010). I have offered some explicit solitary wave solutions to (1) 
using the method for solving algebraic equations.

D�u(t) = f (t, u(t),D�u(t)).

(1)utt − uttxx − �(u)xx = 0.

(2)
�(u) = a1u + a2u

2 + u3,

�(u) = a1u + a2u
3 + a3u

5.
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In this work, we take into account the generalized PC equation.

In this equation �1, �2, and �3 are arbitrary constant and q > 0.
Let’Considering the nonlinear fractional PC Equation

where u = u(x, t)  is the unknown functions x and t, ut is the partial derivative of u with 
respect to t, ux is the partial derivative of u with respect to x. The equation also involves 
fractional differentiation, represented by the Caputo-Fabrizio-fractional derivative opera-
tor CF

0
D� with � ∈ (1, 2) . The parameters �2 and �3 represent coefficients of nonlinear terms 

in the equation. The solution to this equation depends on the initial and boundary condi-
tions specified for u(x, t) (Akinyemi et al. 2022; Li et al. 2002; Seadawy et al. 2021; Zhang 
and Ma 1999; Li and Zhang 2002; Wazwaz 2008; Mohebbi 2012), 224, Achab (2019); Ali 
et al. (2020); Runzhang and Yacheng (2010).

In general, it can be difficult to solve fractional partial differential equations analytically, 
so solutions are frequently approximated using numerical techniques. Different numerical 
techniques, such as finite difference methods, finite element methods, or spectral methods, 
may be used to solve the equation depending on the particular problem and circumstances 
(Baskonus et al. 2022; Veeresha et al. 2022, 2019; Chen et al. 2022; Veeresha 2021; Maraaba 
et  al. 2008). In the areas of mathematical modeling and applied sciences, research on the 
nonlinear fractional generalized Pochhammer-Chree equation is highly relevant. It has uses 
in many different physical phenomena and can be used to comprehend complex dynamics 
that appear in a variety of systems, from fluid mechanics to nonlinear optics. Insights into the 
behavior of the solution are provided by numerical simulations and analysis of this equation, 
which also advance scientific understanding of fractional calculus and nonlinear dynamics 
(Prakash and Kaur 2022; Ciancio et al. 2022; Baskonus et al. 2022; He 1999; Veeresha et al. 
2022). Nonlinear Partial differential equation research has important applications in many 
fields of science and engineering and plays a fundamental role in understanding and mod-
eling complex systems (Malik et  al. 2023; Asjad et  al. 2023; Iyanda et  al. 2023; Asghari 
et al. 2023a). To study the nonlinear partial differential equation (NLPDE) and its variations, 
researchers used fractional calculus (Asghari et al. 2023b; Akinyemi et al. 2021; Veeresha 
2022; Deepika and Veeresha 2023; Ramapura et  al. 2022; Lanre et  al. 20222; Wei et  al. 
2022; Esin et al. 2021).

In this present study: In Sect. 2 the Preliminaries. In Sect. 3 depicts a thorough explanation 
of the suggested method and the model’s solutions. In Sect. 4 Analysis of the Existence and 
Uniqueness solution of the model. In Sect. 5 a few numerical examples. In Sect. 6 is devoted 
to graphs and their graphical representation of them. at the end. In sect. 7 gives the conclu-
sion’s specifics.

(3)𝜕
2u

𝜕t2
=

𝜕
4u

𝜕t2𝜕x2
+

𝜕
2

𝜕x2

(
𝛽1u(x, t) + 𝛽2u

q(x, t) + 𝛽3u
2q−1(x, t)

)
. t > 0,

(4)

CF
0

D2𝛼

t
u =

𝜕
4u

𝜕t2𝜕x2
+

𝜕
2

𝜕x2

(
𝛽1u(x, t) + 𝛽2u

q(x, t) + 𝛽3u
2q−1(x, t)

)
.1 < 𝛼 ≤ 2, q, t > 0,

u(x, 0) = Φ(x), ut(x, 0) = Ψ.
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2 � Preliminaries

This section contains the detailed the used Laplace transform (LT), fractional differen-
tiation (RD), and Riemann-Liouville (R-L) fractional differentiation are presented along 
with some basic definitions (Yan et al. 2022; Veeresha et al. 2022; Akinyemi et al. 2022; 
Li et al. 2002).

Definition 2.1  For 𝛼 > 0 left (R-L) order fractional integral of � is defined as below (Wei 
et al. 2022; Esin et al. 2021).

Definition 2.2  For 0 < 𝛼 < 1  left (R-L) order fractional integral of �  is given as Esin et al. 
(2021).

Definition 2.3  For Caputo fractional derivative is define for  � ≥ 0  &  n ∈ N ∪ 0 is define 
as follows Esin et al. (2021).

Definition 2.4  Consider u be a function u ∈ H1(a1, b1), b1 > 0, 0 < 𝛼 < 1. The fractional 
caputo-fabrizio factional operator is define as below (Esin et al. 2021).

with a normalize functions �(�) which is depend on � ∈ �(0) = �(1) = 1.

Definition 2.5  For CFD for integer order of 0 < 𝛼 < 1.  is given by Esin et al. (2021).

Definition 2.6  Laplace transform (LT) for the (CFD) of order 0 < 𝛼 < 1. and m ∈ N is 
given by Esin et al. (2021).

we have, In particular

(5)a
I�
t
u(t) =

1

Γ(�) ∫
t

a

(t − �)�−1u(�)d�.

(6)(
a
D�

t
u)(t) =

d

dt
(
a
I�
t
u)(t) =

d

dt

Γ(1 − �) ∫
t

a

(t − �)−�u(�)d�.

(7)C
a
D�

t
u(t) =

1

Γ(1 − �) ∫
t

a

(t − �)n−�−1und�.

(8)CF
0

D𝛼

t
u(t) =

𝜆(𝛼)

1 − 𝛼) �
t

0

exp

[
−
𝛼(1 − 𝜉)

1 − 𝛼

]
u�(𝜉)d𝜉, t ≥ 0, 0 < 𝛼 < 1,

(9)CF
0

D�

t
u(t) =

2(1 − �)

�(�)(2 − �)
u(t) +

2�

�(�)(2 − �) �
t

0

u(�)d�, t ≥ 0,

(10)
L

[
CF
0

D
(m+�)
t u(t)

]
(s) =

1

1 − �

L[um+1(t)]L

[
exp

(
−�

(1 − �)
t

)]

=
sm+1L[u(t)] − smu(0) − sm−1u�(0)… − um(0)

s + �(1 − s)
.
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3 � Methodology

Let’s consider the following NPDEs via the Caputo-Fabrizio derivative:

for the initial conditions

When we apply the Laplace transform’s derivative rule to equation Eqs. (11–12), we get

here

Utilizing the inverse Laplace transform on Eq. (13), we yield’s

as a result of an infinite series

or nonlinear term is decomposable like

Hn are He’s polynomials that can be evaluated using the formula below (He 1999).

For the Eqs. (16–17) into Eq. (15), we obtained

L

[
CF
0

D
(m+�)
t u(t)

]
(s) =

sL(u(t))

s + �(1 − s)
, m = 0,

L

[
CF
0

D
(m+�)
t u(t)

]
(s) =

s2L(u(t)) − su(o) − u�(0)

s + �(1 − s)
, m = 1.

(11)CF
0

Dm+𝛼
t

u(x, t) + 𝛽u(x, t) + 𝜑u(x, t) = k(x, t), n − 1 < 𝛼 + m ≤ n,

(12)�
lu(x, 0)

�tl
= fl(x). l = 0, 1, 2,… n − 1.

(13)L[u(x, t)] = Θ(x, s) −

(
s + �(1 − s)

sn+1

)
L[�u(x, t) + �u(x, t)].

(14)Θ(x, s) =
1

sm+1
[smf0(x) + sm−1f1(x) +… + fm(x)] +

s + 𝛼(1 − s)

sm+1
k̃(x, s).

(15)u(x, t) = Θ(x, s) −L
−1

[(
s + �(1 − s)

sn+1

)
L[�u(x, t) + �u(x, t)]

]
.

(16)u(x, t) =

∞∑
n=0

pnum(x, t).

(17)�u(x, t) =

∞∑
n=0

pmHm(x, t).

(18)Hm(u0, u1, u2,… un) =
1

n!

�
m

�pm

[(
∞∑
m=0

piui

)]

p=0

. m = 0, 1, 2,… ;
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We obtained following approximations by equating the terms with similar powers in p in 
Eq. (19)

Finally, we derive the semi-analytic answer as a truncated series of approximations as

4 � Analysis of existence and uniqueness for fractional generalized 
Pochhammer‑Chree equation

In this section, We demonstrate the existence and uniqueness of the fractional GPC equa-
tion using a new CFD that lacks a singular kernel (Ali 2021).

Let’s consider the fractional generalized Pochhammer-Chree equation as:

Eq. (21) is written as follows:

Now, Eq. (22) is transformed into the Volterra integral equation as follows:

(19)

∞∑
m=0

um(x, t) = Θ(x, s) − pL−1

[(
s + �(1 − s)

sm+1

)
L

[
�

∞∑
m=0

pmum(x, t) +

∞∑
n=0

pmHm

]]
.

p0 ∶ u0(x, t) =Θ(x, s),

p1 ∶ u1(x, t) = −L
−1

[(
s + �(1 − s)

sm+1

)
L[�u0(x, t) + H0(u)]

]

p2 ∶ u2(x, t) = −L
−1

[(
s + �(1 − s)

sm+1

)
L[�u1(x, t) + H1(u)]

]

⋮

pm+1 ∶ um+1(x, t) = −L
−1

[(
s + �(1 − s)

sm+1

)
L[�um+1(x, t) + Hm+1(u)]

]
.

(20)u(x, t) =

∞∑
m=0

um(x, t).

(21)
CF
0

D2𝛼

t
u =

𝜕
4u

𝜕t2𝜕x2
+

𝜕
2

𝜕x2

(
𝛽1u(x, t) + 𝛽2u

q(x, t) + 𝛽3u
2q−1(x, t)

)
,

1 < 𝛼 ≤ 2, t > 0.

u(x, 0) = Φ(x), ut(x, t) = Ψ(x).

(22)u(x, t) − u(x, 0) − ut(x, 0) = I�[uttxx + (�1 + �2u
p + �3u

2p−1)xx].

(23)

u(x, t) − u(x, 0) − ut(x, 0) =
2(1 − �)

(2 − �)M(�)

[
uttxx + (�1 + �2u

p + �3u
2p−1)xx

]

+
2�

(2 − �)M(�) ∫
t

0

[
uttxx + (�1 + �2u

p + �3u
2p−1)xx

]
d�.
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4.1 � Theorem

ref. Ali (2021) Θ(x, t, u, �1, �2, �3, p) If the following inequality exists, satisfy the Lip-
schitz condition and it is contractions.

where

Proof  Let’s as u   &  v consist of two bounded functions. Using triangular inequality and 
Eq. (25). we determine

since, u and v are positive, bounded, and constant 𝜂1, 𝜂2 > 0 s.t for all (x, t), ‖u‖ ≤ �1  and 
‖v‖ ≤ �2.

Let � = max{�1, �2}. The Lipschitz condition is met for the first order partial derivative 
function, �x   &. there is a number Q1,Q2 ≥ 0 s.t

Taking Q = Q4

1
+ Q2

2
(�1 + �2p�

p−1 + �3p�
2p−2), we get

Hence, Θ(x, t, u, �1, �2, �3, p)   satisfies the Lipschitz condition, and if 0 < Q ≤ 1 , then the 
theorem is established because it is a contraction.

Now, the main outcome can be stated. 	�  ◻

4.2 � Theorem

The following bet is provided

for, Eq. (4) the initial condition for the fractional generalised Pochhammer-Chree equation 
admits to the uniqueness and continuous solutions.

(24)0 < Q4

1
+ Q2

2
(𝛽1 + 𝛽2p𝜂

p−1 + 𝛽3p𝜂
2p−2) ≤ 1.

(25)Θ(x, t, �1, �2, �3, p) =
[
uttxx + (�1 + �2u

p + �3u
2p−1)xx

]
.

(26)

∥ Θ(x, t, u, �1, �2, �3, p) − Θ(x, t, v, �1, �2, �3, p) ∥≤∥ uttxx − vttxx ∥ +�1 ∥ uxx − vxx ∥

+ �2 ∥ up
xx
− vp

xx
∥ +�3 ∥ u2p−1

xx
− v2p−1

xx
∥ .

(27)
≤∥ �ttxx(u − v) ∥ +�1 ∥ �xx(u − v) ∥ +�2 ∥ �xx(u

p − vp) ∥ +�3 ∥ �xx(u
2p−1 − v2p−1) ∥ .

(28)

∥ Θ(x, t, u, �1, �2, �3, p) − Θ(x, t, v, �1, �2, �3, p) ∥≤ Q4

1
∥ (u − v) ∥ +�1Q

2

2
∥ (u − v) ∥

+ p�p−1�2Q
2

2
∥ (u − v) ∥ +�3pQ

2

2
�
2p−2 ∥ (u − v) ∥

≤ Q4

1
+ Q2

2
(�1 + �2p�

p−1 + �3p�
2p−2)‖(u − v)‖.

(29)∥ Θ(x, t, u, �1, �2, �3, p) − Θ(x, t, v, �1, �2, �3, p) ∥≤ Q‖u − v‖.

(30)
2Q(1 − 𝛼)

(2 − 𝛼)M(𝛼)
+

2Qt𝛼

(2 − 𝛼)M(𝛼)
< 1.
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Proof  We take into consideration Eq. (23), using the expression (25).

which implies the recurrence equation,

Let

Now we will demonstrate that the continuous ũ(x, t) = u(x, t)  solutions.

It is clear that

Additionally, in a very thorough manner, we have

Using the triangular inequality and the norm on both sides of Eq. (36) we obtain

applying Theorem 4.1 results

(31)

u(x, t) − u(x, 0) − ut(x, 0) =
2(1 − �)

(2 − �)M(�)

[
uttxx + (�1 + �2u

p + �3u
2p−1)xx

]

+
2�

(2 − �)M(�) ∫
t

0

[
uttxx + (�1 + �2u

p + �3u
2p−1)xx

]
d�.

(32)

u0(x, t) = u(x, 0) − ut(x, 0).

un(x, t) =
2(1 − �)

(2 − �)M(�)
Θ(x, t, un−1, �1, �2, �3, p)

+
2�

(2 − �)M(�) ∫
t

0

Θ(x, t, un−1, �1, �2, �3, p)d�.

(33)ũ(x, t) = lim
n→∞

un(x, t).

(34)Un(x, t) = un(x, t) − un−1(x, t).

(35)un(x, t) =

n∑
m=0

Um(x, t).

(36)

Un(x, t) =
2(1 − �)

(2 − �)M(�)

[
Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, un−2, �1, �2, �3, p)

]

+
2�

(2 − �)M(�) ∫
t

0

[
Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, un−2, �1, �2, �3, p)

]
d�.

(37)

‖Un(x, t)‖ = ‖un(x, t) − un−1(x, t)‖
≤ 2(1 − �)

(2 − �)M(�)
‖Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, un−2, �1, �2, �3, p)‖

+
2�

(2 − �)M(�)
‖�

t

0

�
Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, un−2, �1, �2, �3, p)

�‖d�

≤ 2(1 − �)

(2 − �)M(�)
‖Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, un−2, �1, �2, �3, p)‖

+
2�

(2 − �)M(�) �
t

0

‖Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, un−2, �1, �2, �3, p)d�‖.
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which is comparable to

Applying the recursive principle to Eq. (39), we obtain

Shows that the problem has a solution and is being worked on.
It proves that

If Eq. (4) has solutions, then let’s

Therefore, according to Eq. (35),the difference ℜn(x, t) between  ũ(x, t) and un(x, t) should 
tend to zero. as n ⟶ ∞ , as follows

We obtain this using Theorem 4.1

therefore, when n ⟶ ∞ ,then ℜn ⟶ 0 and the RHS provides

(38)

‖Un(x, t)‖ ≤ 2(1 − �)

(2 − �)M(�)
Q‖un−1 − un−2‖ + 2�

(2 − �)M(�)
Q�

t

0

‖un−1 − un−2‖d�.

(39)‖Un(x, t)‖ ≤ 2(1 − �)

(2 − �)M(�)
Q‖Un−1‖ + 2�

(2 − �)M(�)
Q�

t

0

‖Un−1‖d�.

(40)‖Un(x, t)‖ ≤
��

2(1 − �)

(2 − �)M(�)

�n

+

�
2�Qt

(2 − �)M(�)

�n�
u(x, 0).

(41)u(x, t) = lim
n→∞

un(x, t).

(42)ℜn(x, t) = ũ(x, t) − un(x, t). for n ∈ N

(43)

ũ(x, t) − un(x, t) =
2(1 − �)

(2 − �)M(�)

[
Θ(x, t, u,�1, �2, �3, p) − Θ(x, t, un, �1, �2, �3, p)

]

+
2�

(2 − �)M(�) ∫
t

0

[
Θ(x, t, u, �1, �2, �3, p) − Θ(x, t, un, �1, �2, �3, p)

]
d�.

(44)

‖ũ(x, t) − un(x, t)‖ =
2(1 − �)

(2 − �)M(�)
‖Θ(x, t, u, �1, �2, �3, p) − Θ(x, t, un, �1, �2, �3, p)‖

+
2�

(2 − �)M(�) �
t

0

‖Θ(x, t, u, �1, �2, �3, p) − Θ(x, t, un, �1, �2, �3, p)‖d�,

≤ 2(1 − �)

(2 − �)M(�)
‖u − un‖ + 2�

(2 − �)M(�) �
t

0

‖u − un‖,

≤ 2(1 − �)

(2 − �)M(�)
‖ℜn‖ + 2�

(2 − �)M(�) �
t

0

‖ℜn‖.

(45)lim
n→∞

un(x, t) = ũ(x, t).
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With the information above, we can use the equation u(x, t) = ũ(x, t) as a solution to the 
continuous than Eq. (4)

Consequently, when we apply the Lipschitz condition to Θ , we get

Considering the initial condition and the limit when n ⟶ ∞, we obtain

Finally, we consider u and v to be two different solutions to Eq. (4) in order to ensure 
uniqueness. The Lipschitz condition for Θ then yields.

This results in

Therefore, ‖u(x, t) − v(x, t)‖ = 0 if

Hence proved. 	�  ◻

5 � Numerical Examples

Example 5.1  Consider the following Eq. (4) at �1 ≠ 0, �2 ≠ 0 and �3 = 0  Then, we have

(46)
u(x, t) − 2(1 − �)

(2 − �)M(�)
Θ(x, t, u, �1, �2, �3, p) +

2�
(2 − �)M(�) ∫

t

0
Θ(x, t, u, �1, �2, �3, p)d�

= ℜn(x, t) +
2(1 − �)

(2 − �)M(�)
[

Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, u, �1, �2, �3, p)
]

+ 2�
(2 − �)M(�) ∫

t

0

[

Θ(x, t, un−1, �1, �2, �3, p) − Θ(x, t, u, �1, �2, �3, p)
]

d�.

(47)

‖u(x, t) − 2(1 − �)

(2 − �)M(�)
Θ(x, t, u, �1, �2, �3, p) +

2�

(2 − �)M(�) �
t

0

Θ(x, t, u, �1, �2, �3, p)d�‖

≤ ‖ℜn(x, t)‖ +
�

2(1 − �)Q

(2 − �)M(�)
+

2�Qt

(2 − �)M(�)

�
‖ℜn−1(x, t)‖.

(48)
u(x, t) = u(x, 0) +

2(1 − �)

(2 − �)M(�)
Θ(x, t, u, �1, �2, �3, p)

+
2�

(2 − �)M(�) ∫
t

0

Θ(x, t, u, �1, �2, �3, p)d�.

(49)
‖u(x, t) − v(x, t)‖ ≤ 2(1 − �)Q

(2 − �)M(�)
‖u(x, t) − v(x, t)‖

+
2�Qt

(2 − �)M(�)
‖u(x, t) − v(x, t)‖.

(50)‖u(x, t) − v(x, t)‖
�
1 −

2(1 − �)Q

(2 − �)M(�)
−

2�Qt

(2 − �)M(�)

�
≤ 0.

(51)
2(1 − 𝛼)Q

(2 − 𝛼)M(𝛼)
+

2𝛼Qt

(2 − 𝛼)M(𝛼)
< 1.
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than the initial conditions

With the aid of the anticipated algorithm, we have

here

The first few components of a homotopy polynomial are written as

The result of comparing the coefficients of similar powers of p is

By carrying on in this manner, we can obtain the final element of the iteration formulas.
Consequently, the approximate answer is

Example 5.2  Consider Eq. (4) at �1 ≠ 0, �2 = 0 and �3 ≠ 0  Then, we have

than the initial conditions

With the aid of the anticipated algorithm, we have

(52)CF
0

D2�

t
u =

�
4u

�t2�x2
+

�
2

�x2

(
�1u(x, t) + �2u

2(x, t)
)
,

(53)u(x, 0) =
2�1

�2

sec h2(x), ut(x, 0) =
4
√
−�1�2√
3�2

tanh(x) sec h2(x).

(54)

∞∑
m=0

�m(x, t) = u0(x, t)

+ pL−1

[(
s + �(1 − s)

s2

)
L

[
�1(

∞∑
m=0

pmum(x, t))xx + �2

∞∑
m=0

pmHm(�)

]]
.

∞∑
m=0

pmHm(x, t) = (u2
0
)x.

(55)

H0(u) = (u2
0
)x

H1(u) = (2u0u1)x

H2(u) = (2u0u2 + 2u2
1
)x

⋮

(56)u0(x, t) =
−2�1

�2

sec h2x +
4
√
−�1�2

−
√
3�2

tanh(x) sec h2(x).

(57)u(x, t) =

∞∑
m=0

um(x, t).

(58)CF
0

D2�

t
u =

�
4u

�t2�x2
+

�
2

�x2

(
�1u(x, t) + �3u

3(x, t)
)
,

(59)u(x, 0) =

√
2�1√

−�3(x + �)
, ut(x, 0) =

√
2�1√

−�3(x + �)2
.
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here

The first few components of a homotopy polynomial are written as

The result of comparing the coefficients of similar powers of p is

By carrying on in this manner, we can obtain the final element of the iteration formulas.
Consequently, the approximate answer is

Example 5.3  Consider Eq. (4) at �1 ≠ 0, �2 ≠ 0 and �3 ≠ 0  Then, we have

than the initial conditions

With the aid of the anticipated algorithm, we have

(60)
∞∑
m=0

�m(x, t) = u0(x, t)

+ pL−1

[(
s + �(1 − s)

s2

)
L

[
�1

(
∞∑
m=0

pmum(x, t)

)

xx

+ �3

∞∑
m=0

pmHm(�)

]]
.

∞∑
m=0

pmHm(x, t) = (u3
0
)x.

(61)

H0(u) = (u3
0
)x

H1(u) = (3u2
0
u1)x

H2(u) = (6u0u
2

1
+ 3u2

0
u2)x

⋮

(62)u0(x, t) =

√
2�1√

−�3(x + �)
+ t

√
2�1√

−�3(x + �)2
.,

(63)u(x, t) =

∞∑
m=0

um(x, t).

(64)CF
0

D2�

t
u =

�
4u

�t2�x2
+

�
2

�x2

(
�1u(x, t) + �2u

2(x, t) + �3u
3(x, t)

)
,

(65)

u(x, 0) =
−�2

3�3
(1 − tanh

⎛⎜⎜⎝
x

���� �
2

2

2(2�2
2
− 9�1�3)

⎞⎟⎟⎠
, ut(x, 0)

=
�
2

2

9
√
−2�

3

2

3

sec h2
⎛⎜⎜⎝
x

���� �
2

2

2(2�2
2
− 9�1�3)

⎞⎟⎟⎠
.
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Table 1   The numerical value 
3-term FHPTM approximate 
solution for the different value of 
� and �1 = 1.5, �2 = 1 for Ex. 5.2

x t � = 1.25 � = 1.5 � = 1.75 � = 2

0.2 0.2 −1.423330 −1.723720 −2.024100 −2.324480
0.4 −0.951232 −1.259120 −1.567000 −1.874890
0.6 −0.351395 −0.556716 −0.762037 −0.967359
0.8 0.197040 0.0509282−0.0951832 −0.241295

0.4 0.2 −1.025390 −1.088320 −1.151240 −1.214170
0.4 −0.676851 −0.718734 −0.760616 −0.802498
0.6 −0.469653 −0.692032 −0.914412 −1.136790
0.8 −0.33667 −1.16681 −1.99695 −2.827090

0.6 0.2 −0.732125 −0.718292 −0.704459 −0.690627
0.4 −0.461438 −0.497809 −0.534180 −0.570551
0.6 −0.299709 −0.632505 −0.965301 −1.298100
0.8 −0.0747195 −1.08902 −2.10331 −3.117610

0.8 0.2 −0.513774 −0.493642 −0.473509 −0.453377
0.4 −0.245250 −0.260247 −0.275243 −0.290240
0.6 −0.014403 −0.174311 −0.334218 −0.494125
0.8 0.270171 −0.184387 −0.638945 −1.093500

(a) (b)

Fig. 1   (a) Plots of u(x, t) with respect to x for varying � , for Ex 5.1; and (b) exact solutions for Ex. 5.1
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here

(66)

∞∑
m=0

�m(x, t) = u0(x, t)

+ pL−1

[(
s + �(1 − s)

s2

)
L

[
�1(

∞∑
m=0

pmum(x, t))xx + �2

∞∑
m=0

pmHm(�) + �3

∞∑
m=0

pmHm(�)

]]
.

∞∑
m=0

pmHm(x, t) = (u2
0
)x + (u3

0
)x.

Fig. 2   The combined dark-bright soliton solution of u(x, t) in Ex.1
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The first few components of a homotopy polynomial are written as

The result of comparing the coefficients of similar powers of p is

(67)

H0(u) = (u2
0
)x + (u3

0
)x

H1(u) = (2u0u1)x + (3u2
0
u1)x

H2(u) = (2u0u2 + 2u2
1
)x + (6u0u

2

1
+ 3u2

0
u2)x

⋮

Table 2   The numerical value 
3-term FHPTM approximate 
solution for the different value 
of � and �1 = 1.5, �2 = −0.5 for 
Ex.−5.2

x t � = 1.25 � = 1.5 � = 1.75 � = 2

0.2 0.2 2.46491 2.47377 2.48262 2.49147
0.4 2.91435 2.984797 3.05524 3.12568
0.6 3.36569 3.60125 3.836798 4.07235
0.8 3.73106 4.28189 4.832719 4.68259

0.4 0.2 2.05898 2.063040 2.06711 2.07117
0.4 2.379997 2.412149 2.4443 2.47645
0.6 2.70148 2.80833 2.91518 3.02204
0.8 2.98331 3.23173 3.48015 3.72858

0.6 0.2 1.76695 1.76902 1.7711 1.77317
0.4 2.00886 2.02519 2.04151 2.05783
0.6 2.25085 2.30484 2.35883 2.41281
0.8 2.47255 2.5975 2.72245 2.84739

0.8 0.2 1.54692 1.54807 1.54921 1.55036
0.4 1.73625 1.74523 1.75421 1.7632
0.6 1.92554 1.95515 1.98475 2.01436
0.8 2.1036 2.17187 2.24014 2.30841

(a) (b)

Fig. 3   (a) Plots of u(x, t) with respect to x for varying � , for Ex 5.2;  and (b) exact solutions for Ex. 5.2
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By carrying on in this manner, we can obtain the final element of the iteration formulas 
(Tables 1, 2 and 3).

Consequently, the approximate answer is

(68)

u0(x, t) =
−�2

3�3
(1 − tanh

⎛⎜⎜⎝
x

���� �
2

2

2(2�2
2
− 9�1�3)

⎞⎟⎟⎠
+ t

�
2

2

9
√
−2�

3

2

3

sec h2
⎛⎜⎜⎝
x

���� �
2

2

2(2�2
2
− 9�1�3)

⎞⎟⎟⎠
.

(69)u(x, t) =

∞∑
m=0

um(x, t).

Fig. 4   The rational function solution of u(x, t) in Ex.5.2
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6 � Result and discussion

In this section, to analyze the solutions, we make use of graphical representations. We talk 
about the generalised Pochhammer-Chree equation with nonlinear fractions. For each of 
the solutions, a graph was made and a description of it was given. We ran some numerical 
calculations in Mathematica to demonstrate the dynamical behavior of the model and test 
the viability of our analysis regarding the existence of interior equilibrium and the corre-
sponding initial conditions. we will display the graphical analysis of the model under con-
sideration in this section. Fig. 1a the 2D graph fractional order of derivative value � where 
(� = 1.25, 1.5, 1.75, 2), �1 = 1.5, �2 = 1 and x = 2, 0 ≤ t ≤ −5.

Table 3   The numerical value 
3-term FHPTM approximate 
solution for the different value of 
�  and �1 = 1.5, �2 = 1, �3 = −0.1 
for Ex. 5.3

x t � = 1.25 � = 1.5 � = 1.75 � = 2

0.2 0.2 −8.816482 −8.80085 −8.78522 −8.76959
0.4 −8.41922 −8.38735 −8.35548 −8.32361
0.6 −8.04242 −7.99601 −7.94961 −7.9032
0.8 −7.68986 −7.63269 −7.57551 −7.51833

0.4 0.2 −8.058295 −8.03634 −8.01438 −7.99242
0.4 −7.67341 −7.63294 −7.59247 −7.55199
0.6 −7.31452 −7.26059 −7.20667 −7.15274
0.8 −6.98255 −6.92158 −6.86061 −6.79964

0.6 0.2 −7.32485 −7.30123 −7.2776 −7.25398
0.4 −6.95376 −6.91243 −6.8711 −6.82977
0.6 −6.60925 −6.55703 −6.50482 −6.4526
0.8 −6.29002 −6.23444 −6.17885 −6.12326

0.8 0.2 −6.62274 −6.60078 −6.57883 −6.55687
0.4 −6.26693 −6.22983 −6.19274 −6.15564
0.6 −5.93497 −5.88987 −5.84478 −5.79968
0.8 −5.62431 −5.57853 −5.53275 −5.48697

1.25

1.5

1.75

2

(a) (b)

Fig. 5   (a) Plots of u(x, t) with respect to x for varying � , for Ex 5.3;  and (b) exact solutions for Ex. 5.3
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(b)  the display 3D analysis of the exact solutions u(x,  t)  with parametric value 
�1 = −1.5, �2 = 1 and −60 ≤ x ≤ 75, − 60 ≤ t ≤ 75.

Figure 2a–d the display 3D graph to show the dynamical behavior of fractional order 
to of � Ex.5.1. Figure  3a  the 2D graph fractional order of derivative value � where 
(� = 1.25, 1.5, 1.75, 2), �1 = 1.5, �3 = −0.5 and x = 1, � = 1 0 ≤ t ≤ 2.

(b)  the display 3D analysis of the exact solutions u(x,  t)  with parametric value 
�1 = −1.5, �3 = −0.5,  &  � = 1 and −15 ≤ x ≤ 15, − 15 ≤ t ≤ 15 . Figure 4a–d the dis-
play 3D graph to show the dynamical behavior of fractional order to of � Ex.5.2.

Figure  5a  the 2D graph fractional order of derivative value � where 
(� = 1.25, 1.5, 1.75, 2), �1 = 1.5, �2 = 1, �3 = −0.1 and x = 8, 0 ≤ t ≤ 1.

(b)  the display 3D analysis of the exact solutions u(x,  t)  with parametric value 
�1 = 1.5, �2 = 1, �3 = −0.1 and −10 ≤ x ≤ 15, − 10 ≤ t ≤ 15.

Figure  6a–d  the display 3D graph to show the dynamical behavior of fractional 
order to of � Ex.5.3. It is apparent form these figures that as the value of �  increases, 

Fig. 6   The dynamic behavior of 3D plot of u(x, t) solution in Ex.5.3
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respectively. The technique employed is an effective mathematical tool for finding various 
types of solutions to numerous NGPCEs.

7 � Conclusions

In this paper, We have developed a variety of new approximate solutions for the FGPC Eq. 
(4) using symbolic computation and the fractional homotopy perturbation transform method 
via the Caputo-Fabrizio fractional derivative(CFFD) of order � where � ∈ (1, 2]. The 
FHATM provides a simple description for adjusting and controlling the convergence of the 
series solution by selecting appropriate auxiliary parameter �.  We continued our research 
in Prakash et al. (2021); Toprakseven (2021), where we stated the existence and uniqueness 
results for fractional initial value problems of the form Eq. (4) with different three initial con-
dition Eq. (4) and potential applications such as Fractional calculus enrichment, Nonlinearity, 
and soliton solutions, Numerical simulations, Applications in physics and beyond and Future 
research directions.  There are a number of directions for additional research, even though 
we have made significant progress in comprehending the properties of the equation. Future 
research could focus on examining the stability of solitons, multi-dimensional extensions of 
the equation, and the effects of additional nonlinear terms. It should be noted that the pro-
posed method could also be used to solve nonlinear GPCEs fractional differential equations 
involving the CFD of order � ∈ (1, 2] , such as the FHPTM (He 1999). It is possible to con-
clude that the FHATM is simple to use and effective at finding approximate solutions to many 
fractional physical problems that arise in various fields of science and engineering. Further-
more, 2D and 3D graphs of some solutions were presented to demonstrate the physical char-
acteristics of the acquired solutions. Additionally, real-world applications and experimental 
validation of the equation’s predictions can provide valuable insights.
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