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Abstract
In this paper, the nonparaxial solitons in a dimensionless coupled nonlinear Schrödinger 
system with cross-phase modulation, which enables the propagation of ultra-broad non-
paraxial pulses in a birefringent optical waveguide are studied. By noticing that the sys-
tem is a non-integrable one, and also diverse forms of solitary wave solutions by using the 
Hirota’s bilinear scheme are reached. The binary bell polynomials and bilinear transforma-
tion and also the related theorem for getting to the bilinear form of nonlinear system are 
noticed. In particular, five forms of function solution including soliton, bright soliton, sin-
gular soliton, periodic wave and singular form of solutions are investigated. To achieve this, 
an illustrative example of the coupled nonlinear Helmholtz systems is provided to demon-
strate the feasibility and reliability of the procedure is used in this study. The effect of the 
free parameters on the behavior of acquired figures of a few obtained solutions for two 
nonlinear rational exact cases was also discussed. We believe that our results would pave 
a way for future research generating optical memories based on the nonparaxial solitons.

Keywords  Nonparaxial solitons · Hirota bilinear technique · Soliton solution · Periodic 
wave · Coupled nonlinear Helmholtz systems

1  Introduction

In this paper, the generation of non-slowly varying electric fields is concerned in a physi-
cal setting of liquid crystals or birefringent optical fibers to the coupled nonlinear Helm-
holtz systems. The following dimensionless coupled equations can be utilized to specify 
the propagation of incoherently coupled and orthogonally polarized waveguide modes in a 
Kerr medium (Tamilselvan et al. 2016) as follows

where Σl, (l = 1, 2) symbolize the orthogonally polarized components of the optical modes 
and the variables z, and t, respectively, represent longitudinal and transverse co-ordinates. 
The second expression Λ in Eq. (1.1) is the non-paraxial parameter (NP) and correspond 

(1.1)iΣl,z + ΛΣl,zz +
�

2
Σl,tt + �(|Σl|2 + |Σ3−l|2)Σl = 0, l = 1, 2,
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to 1∕2k0L (Tamilselvan et al. 2016). The group-velocity dispersion (GVD) is stated by the 
parameter � and in this study, it is apportioned to be operating in the anomalous dispersion 
regime. Nonlinearity and its coupling parameters are denoted by using the terms � and � , 
respectively, which are attributed by the symmetry properties of third-order susceptibility 
tensor.

The evolution of broad optical beams in Kerr like nonlinear media can be well stated 
by the coupled nonlinear Helmholtz (CNLH) type equations. Equation (1.1) has been stud-
ied in Christian et al. (2006)) and bright and dark soliton solutions have been reported for 
focusing and defocusing nonlinearities respectively. Collision investigations of solitons in 
CNLH system revealed the fact that the interaction angle between two solitons is changed 
by altering the nonparaxial parameter (Chamorro-Posada and McDonald 2006). In Tamil-
selvan et al. (2016), the authors obtained a class of elliptic wave solutions of CNLH equa-
tions describing nonparaxial ultra-broad beam propagation in nonlinear Kerr-like media, 
in terms of the Jacobi elliptic functions and also discussed their limiting forms. Song et al. 
(2020) discussed a quartic eigenvalue problem of CNLH system arising in the context of 
an optical waveguiding problem involving atomically thick 2D materials. Also, the exact 
solutions of CNHE equations via the exp(−Φ(�))expansion method have been obtained 
(Singh et al. 2020).

Due to the unique physical properties of interaction between multiple coherent opti-
cal fields, a number of practical applications in optical transmission systems have been 
put forward such as switching, and modulators (Kivshar and Agrawal 2003). Also, the 
dynamics of optical modes traversing by way of the birefringent fiber can be mathemati-
cally governed by a system of coupled nonlinear Schrödinger equations, which results in 
a shape-preserving solution due to their multiple component natures. The vector soliton is 
produced when the nonlinearity of the fiber causes coupling between diverse optical modes 
during the propagation in the multimode optical fiber, which vector soliton provides an 
efficient way to a variety of practical applications such as channel wavelength division-
multiplexing, pulse generation, and high-speed optical switching (Hansryd et  al. 2002). 
Soliton interactions can be divided into two types: coherent interactions and incoherent 
interactions (Ku et al. 2005).

In the last decades, researchers have developed numerous methods such as, the gen-
eralized rational tan(�∕2)-expansion technique (Liu et  al. 2023), k-lump and k-kink 
solutions (Gu et  al. 2022), the extended sinh-Gordon equation expansion method (Ali 
et al. 2023), the multiple Exp-function method (Liu et al. 2018), the seismic wave atten-
uation (Bouchaala et al. 2022), the compressional seismic wave attenuation (Bouchaala 
et  al. 2019), the Hirota’s bilinear method (Manafian and Lakestani 2020), the stress 
and dynamic analysis of truck ladder chassis (Mahmoodi-k et al. 2014), dual unscented 
kalman filter algorithm method (Davoodabadi et  al. 2014), the quantum-mechanical 
method (Della Volpe and Siboni 2022), multiple soliton solutions and fusion interac-
tion phenomena (Wen and Xu 2013), the truncated Painlevé series (Ren et  al. 2019), 
single-lap adhesive joints method (Ghasemvand et  al. 2023), truss optimization with 
metaheuristic algorithms method (Aslanova 2020), the modified Pfaffian technique (Liu 
et al. 2021), linear spectral dynamic analysis method (Madina and Gumilyov 2020), a 
carver matrix and providing solutions (Zahedi and Golivari 2022), a random decrement 
signature and artificial neural network algorithm techniques (Mojtahedi et  al. 2022), 
logistic damping effect in chemotaxis models (Lyu and Wang 2023), the one-dimen-
sional attraction-repulsion Keller–Segel model (Jin and Wang 2015), fracture analysis 
of fluid-structure interactions (Dai et al. 2023), energy relaxation of hot electrons (Du 
et al. 2023), variable weighted iterative learning (Xu et al. 2023), the dynamics analysis 
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of Gompertz virus disease model (Wang et al. 2023), a novel data generation and quan-
titative characterization method (Sun et al. 2023), nonlinear energy recharging and con-
sumption (Xiao et al. 2021), the renewable energy sources (Jiang et al. 2022), a hybrid 
convolutional neural network (Erfeng and Ghadimi 2022; Han and Ghadimi 2022), a 
hybrid robust-stochastic approach (Cai et  al. 2019; Yu et  al. 2020), a optimal chiller 
loading (Saeedi et al. 2019), the distributed series reactor (Yuan et al. 2020), an intel-
ligent algorithm (Mir et  al. 2020), the deep learning method (Zhang et  al. 2022), the 
power systems (Chen et  al. 2022), dual-form of generalized nonlocal nonlinearity (Li 
et  al. 2023), high-order uncertain nonlinear systems (Guo and Hu 2023; Meng et  al. 
2023; Guo et al. 2023, 2023), nonlinear networked control systems (Zhong et al. 2022), 
and so forth (Bai et al. 2022; Xiang et al. 2023; Moghadam and Ebrahimi 2021; Brown 
and Mazumder 2021).

In the context of water wave theory, the complete study on the related physical sys-
tems were executed by exploring several integrable as well as non-integrable evolution 
equations in one and higher dimensions (Lakshmanan and Rajasekar 2003). Integrabil-
ity is a fascinating property to characterize any dynamical models in addition to exist-
ence of Lax pair and infinitely many conserved quantities. The ancillary techniques con-
taining direct algebraic techniques, auxiliary equation method, Kudryashov expansion 
method, Riccati-Bernoulli sub-ODE method, sinh-Gordon expansion method, cosh-tanh 
method, simplest equation method, and so on are utilized widely to get different classes 
of travelling wave solutions (Wazwaz 2009). Especially, these methodologies provide a 
variety of exotic wave patterns, including solitons, breathers, lumps, dromions, rogue 
waves, and elliptic waves. On the advantageous part, the Hirota bilinear method is an 
intermediate tool which can be utilized to extract the localized nonlinear wave solution 
to most of the integrable as well as a few class of non-integrable soliton models and it 
becomes a widely used tool to obtain several localized nonlinear wave solutions (Zhou 
et  al. 2021; Manafian et  al. 2020; Alimirzaluo et  al. 2021; Pourghanbar et  al. 2020; 
Dawod et al. 2023; Mehrpooya et al. 2021).

The general form of the fractional reduced differential transform method to (N+1)-
dimensional fractional order partial differential equations were studied (Arshad et  al. 
2017). The unstable non-linear Shrödinger dynamical models has been investigated analyt-
ically by utilizing the tow variable (G’/G)-expansion approach (Shehzad et al. 2023). The 
weakly nonlinear wave propagation theory in the occurrence of magnetic fields in fluids 
of superposed was studied. Also, soliton and other kinds solutions of (2+1)-dimensional 
elliptic nonlinear Schrödinger equation were constructed (Seadawy et al. 2020).

In this paper, some solutions including soliton, bright soliton, singular soliton, peri-
odic wave and singular form of solutions by Hirota bilinear method are also obtained.

Inspired by the previous work, the aim of the paper is to investigate the nonparaxial 
solitons and other form of solutions. The outline of the paper is as follows. In Sect. 2, 
the bilinear equations through Hirota operator for the CNLH system are obtained. Fur-
thermore, in Sect. 3, different forms of solitary wave solutions are established. Finally, 
the conclusions are provided in Sect. 3.5.3.

2 � Binary Bell polynomials and bilinear transformation

By way of Ma (2013) and A = A(x1, x2, ..., xn) we have
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with the multi-D Bell polynomials as

and we get

The multi-dimensional binary Bell polynomials can be stated as

The following properties are as

Proposition 2.1  Let �1 = ln(Ω1∕Ω2), �2 = ln(Ω1Ω2), then the relations between binary 
Bell polynomials and Hirota D-operator reads

with Hirota operator

Proposition 2.2  Take Ξ(�) =
∑

i �i�d1x1,...,djxj
= 0 and �1 = ln(Ω1∕Ω2), �1 = ln(Ω1Ω2), we 

have

which need to satisfy

The generalized Bell polynomials Υn1x1,...,njxj
(�) is as

(2.1)
Bn1x1,...,njxj

(A) ≡ Bn1,...,nj
(Ad1x1,...,djxj

)

= e−A�n1
x1
...�

nj
xj
eA,

Ad1x1,...,djxj
= �d1

x1
...�

dj
xj
A, A0xi

≡ A, d1 = 0, ..., n1;...;dj = 0, ..., nj,

(2.2)
B1(A) = Ax, B2(A) = A2x + A2

x
, B3(A) = A3x + 3AxA2x + A3

x
, ..., A = A(x, t),

Bx,t(A) = Ax,t + AxAt, B2x,t(A) = A2x,t + A2xAt + 2Ax,tAx + A2
x
At, ....

(2.3)

Cn1x1,...,njxj
(�1,�2) = Bn1,...,nj

(A)
���
Ad1x1,...,djxj

=

⎧
⎪⎨⎪⎩

�1d1x1,...,djxj
, d1 + d2 + ... + dj, is odd

�2d1x1,...,djxj
, d1 + d2 + ... + dj, is even.

(2.4)Cx(�1) = �1x, C2x(�1,�2) = �22x + �1
2
x
, Cx,t(�1,�2) = �2x,t + �1x�1t, ....

(2.5)Cn1x1,...,njxj
(�1,�2)

|||�1=ln(Ω1∕Ω2), �2=ln(Ω1Ω2)
= (Ω1Ω2)

−1Dn1
x1
...D

nj
xj
Ω1Ω2,

(2.6)
j∏

i=1

Dni
xi
g. � =

j∏
i=1

(
�

�xi
−

�

�x�
i

)ni

Ω1(x1, ..., xj)Ω2(x
�
1
, ..., x�

j
)

||||||x1=x�1,...,xj=x�j
.

(2.7)

�∑
i �1iBn1x1,...,njxj

(�1,�2) = 0,∑
i �1iBd1x1,...,djxj

(�1,�2) = 0,

(2.8)ℜ(� �, �) = ℜ(� �) −ℜ(�) = ℜ(�2 + �1) −ℜ(�2 − �1) = 0.
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The Cole–Hopf relation is as follows

with

By taking Σl(z, t) =
gl(z,t)

f (z,t)
, l = 1, 2 and inserting it into Eq. (1.1), one obtains bilinear form. 

According to above process, the below Theorem will be considered.

Theorem 2.3  By the below issues, one gets

where gl, l = 1, 2 are the complex functions and f is a real function. Plugging the above 
solution (2.14) into Eq. (1.1), we arrive at the bilinear equations as below

where ∗ shows the complex conjugate and D denotes the Hirota’s bilinear operator 
which manages with respect to the functions of z and t. The bilinear definitions for 
operator are

(2.9)(Ω1Ω2)
−1Dn1

x1
...D

nj
xj
Ω1Ω2 = Cn1x1,...,njxj

(�1,�2)
|||�1=ln(Ω1∕Ω2), �2=ln(Ω1Ω2)

(2.10)

= Cn1x1,...,njxj
(�1,�1 + �)

|||�1=ln(Ω1∕Ω2), �=ln(Ω1Ω2)

=

n1∑
k1

...

nj∑
kj

j∏
i=1

(
ni
ki

)
�k1x1,...,kjxj

(�)B(n1−k1)x1,...,(nj−kj)xj
(�1).

(2.11)Bk1x1,...,kjxj
(�1 = ln(�)) =

�n1x1,...,njxj

�
,

(2.12)

(Ω1Ω2)
−1Dn1

x1
...D

nj
xj
Ω1Ω2

|||Ω2=exp(�∕2), Ω1∕Ω2=�

= �−1

n1∑
k1

...

nj∑
kj

j∏
l=1

(
nl
kl

)
�k1x1,...,klxl

(�)�(n1−k1)x1,...,(nd−kl)xl
,

(2.13)

Bt(�1) =
�t

�
, B2x(�1, �) = �2x +

�2x

�
, B2x,y(�1,�2) =

�2x�y

�
+

2�x,y�x

�
+

�2x,y

�
.

(2.14)Σl(z, t) =
gl(z, t)

f (z, t)
, l = 1, 2,

(2.15)

(
iDz + ΛD2

z
+

1

2
D2

t

)
(gl.f ) = 0,

(
ΛD2

z
+

1

2
D2

t

)
(f .f ) = �

2∑
l=1

glg
∗
l
,
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3 � Solitary wave solutions

In this section according to the rational transformation (2.14) the following cases will be ana-
lyzed as:

3.1 � Nonparaxial soliton solutions

By supposing the below function

Afterwards, inserting Σl = gl(z, t)∕f (z, t), l = l, 2 Eq. (2.15) and using relations (2.16) and 
taking the coefficients of the nonlinear expressions to zero, yield a system of algebraic 
equations including below:

(2.16)

Dz(gl.f ) =
�g1

�z
f − g1

�f

�z
,

D2
z
(gl.f ) =

�2g1

�z2
f − 2

�g1

�z

�f

�z
+ g1

�2f

�z2
,

D2
t
(gl.f ) =

�2g1

�t2
f − 2

�g1

�t

�f

�t
+ g1

�2f

�t2
,

D2
z
(f .f ) = 2f

�2f

�z2
− 2(

�f

�z
)2,

D2
t
(f .f ) = 2f

�2f

�t2
− 2(

�f

�t
)2.

(3.1)
f (z, t) = h1 sin(b1�1) exp(b2�2), gl(z, t) = ml exp(icl�l+2), l = 1, 2,

�l = �lz + �l(t) + �l, l = 1, 2, 3, 4.

4 iΛ b1c1�1�3 − 4Λ b1b2�1�2

+ 2 ib1c1�1�3 − 2 b1�1b2�2 + 2 ib1�1 = 0,

4 iΛ b2c1�2�3 + 2Λ b1
2�1

2 − 2Λ b2
2�2

2

+ 2Λ c1
2�3

2 + 2 ib2c1�2�3 + b1
2�1

2 − b2
2�2

2

+ c1
2�3

2 + 2 ib2�2 + 2 c1�3 = 0,

4 iΛ n1b1c2�1�4 − 4Λ b1b2�1�2n1

+ 2 in1b1c2�1�4 − 2 b1�1b2�2n1 + 2 ib1�1n1 = 0,

4 iΛ b2c2�2�4 + 2Λ b1
2�1

2 − 2Λ b2
2�2

2

+ 2Λ c2
2�4

2 + 2 ib2c2�2�4 + b1
2�1

2 − b2
2�2

2 + c2
2�4

2 + 2 ib2�2 + 2 c2�4 = 0,

4 iΛ b2c2�2�4n2 + 2Λ b1
2�1

2n2

− 2Λ b2
2�2

2n2 + 2Λ c2
2�4

2n2 + 2 ib2c2�2�4n2

+ b1
2�1

2n2 − b2
2�2

2n2 + c2
2�4

2n2+

2 ib2�2n2 + 2 c2�4n2 + 4 iΛ n1b1c2�1�4 − 4Λ b1b2�1�2n1 + 2 in1b1c2�1�4

− 2 b1�1b2�2n1 + 2 ib1�1n1 = 0.
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By solving the above equations get the following results:

3.1.1 � Set I solutions

Then, the solution is

Further, the following analysis can be extended to explore multiple soliton dynamics on 
arbitrary backgrounds in a straightforward manner. Figure 1 depicts the impact of treat-
ment of singular soliton solution where graphs of Σl, l = 1, 2 are given with the following 
chosen values

in Eq. (3.3). We investigate the dynamics of general nonparaxial solitons received from the 
Hirota bilinear technique, which is presented in Fig. 1. From the figure, it is apparent that 
the solitons exhibit a stable propagation in both components of CNLH system as shown in 
Figs. 1.

(3.2)

b1 =

√

2
(

2
(

iΛ �4c2 − Λ b2�2 + i
)

�1
2 +

(

ic2�4 − b2�2
)

�1
2
)

Λ
(

ic2�4 − b2�2
)

+ 2 i
(

ic2�4 − b2�2
)

�1
2 − �1

2

�1

√

2Λ �1
2 + �1

2
,

�3 =
i
(

iΛ �4c2 − 2Λ b2�2 + i
)

Λ c1
, �3 =

−i
(

2 iΛ �1�4c2 − 2Λ b2�1�2 + b2�1�2 + i�1
)

�1c1
,

�4 =
i
(

2 iΛ �1�4c2 − 2Λ b2�1�2 − b2�1�2 + i�1
)

�1c2
.

(3.3)
Σl(z, t) =

ml exp(icl�l+2)

h1 sin(b1�1) exp(b2�2)
, l = 1, 2,

�k = �kz + �k(t) + �k, k = 1, 2, 3, 4.

(3.4)

Λ = 0.1e − 2, � = 1, �1 = 1, �2 = 1,

�4 = 1, c1 = 1, c2 = 2, b1 = 1, b2 = 2.5, h1 = 1,

�1 = 1,m1 = 2,�2 = 2,�4 = 3, �1 = 1, �2 = 1, �3 = 2.5,

(3.5)Σ1 = 2
e−0.005000000000 t+1.004000000 it+2.500000000 z−1002.0 iz−2.500000000+2.500000000 i

sin ((1.021552097 − 2.457045519 i)(t + z + 1))
,

(3.6)

Λ = 0.1e − 2, � = 1, �1 = 1, �2 = 1,

�4 = 1, c1 = 1, c2 = 2, b1 = 1, b2 = 2.5, h1 = 1,

�1 = 1,m2 = 2,�2 = 2,�4 = 3, �1 = 1, �2 = 1, �4 = 2.5,

(3.7)Σ2 = 2
e0.0050 t−1.004 it+2 iz−2.5+5.0 i−2.5 z

sin ((1.021552097 − 2.457045519 i)(t + z + 1))
,
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3.1.2 � Set II solutions

Then, the solution is

Figure  2 depicts the impact of treatment of singular soliton solution where graphs of 
Σl, l = 1, 2 are given with the following parameters

(3.8)

b1 =

√

2
(

2 iΛ �1
2�4c2 − 2Λ b2�12�2 + ic2�4�1

2 − b2�2�1
2 + 2 i�12

)

Λ
(

ic2�4 − b2�2
)

− 2 ib2�2�1
2 − 2 c2�4�1

2 − �1
2

√

2Λ �1
2 + �1

2�1

,

�3 =
c2�4
c1

, �3 =
i
(

2 iΛ �1�4c2 − 2Λ b2�1�2 − b2�1�2 + i�1
)

�1c1
, �4 =

i
(

2 iΛ �1�4c2 − 2Λ b2�1�2 − b2�1�2 + i�1
)

�1c2
.

(3.9)
Σl(z, t) =

ml exp(icl�l+2)

h1 sin(b1�1) exp(b2�2)
, l = 1, 2,

�k = �kz + �k(t) + �k, k = 1, 2, 3, 4.

Fig. 1   Plot of soliton solution (3.3) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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(3.10)

Λ = 0.1e − 2, � = 1, �1 = 1, �2 = 1, �4 = 1, c1 = 1, c2 = 2, b1 = 1, b2 = 2.5, h1 = 1,

�1 = 1,m1 = 2,�2 = 2,�4 = 3, �1 = 1, �2 = 1, �3 = 2.5,

(3.11)Σ1 = 2
e0.0050 t−1.004 it+2 iz−2.5+2.5 i−2.5 z

sin ((1.021552097 − 2.457045519 i)(t + z + 1))
,

(3.12)

Λ = 0.1e − 2, � = 1, �1 = 1, �2 = 1, �4 = 1, c1 = 1, c2 = 2, b1 = 1, b2 = 2.5, h1 = 1,

�1 = 1,m2 = 2,�2 = 2,�4 = 3, �1 = 1, �2 = 1, �4 = 2.5,

(3.13)Σ2 = 2
e0.0050 t−1.004 it+2 iz−2.5+5.0 i−2.5 z

sin ((1.021552097 − 2.457045519 i)(t + z + 1))
,

Fig. 2   Plot of soliton solution (3.8) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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in Eq. (3.8). We investigate the dynamics of general nonparaxial solitons received from the 
Hirota bilinear technique, which is presented in Fig. 2. From the figure, it is apparent that 
the solitons exhibit a stable propagation in both components of CNLH system as shown in 
Figs. 2.

3.1.3 � Set III solutions

3.2 � Singular soliton solutions

Supposing the below function

Afterwards, inserting Σl = gl(z, t)∕f (z, t), l = l, 2 Eq. (2.15) and using relations (2.16) and 
taking the coefficients of the nonlinear expressions to zero, yield a system of algebraic 
equations including below:

Also, by solving −2Λ b1
2h1

2�1
2 − h1

2b1
2�1

2 −
(||m1

||
)2
� −

(||m2
||
)2
� = 0 we can get to the 

amplitude of solitary wave as below

By solving the above equations get the following results:

(3.14)
Σ1 =

m1e
−1∕2

−2Λ tb2�2+2 iΛ tc2�4−2 iΛ c1�3+2 b2�2Λ+iz

Λ

h1 sin

�
1∕2

√
1−4 ib2c2�2�4Λ+2 b2

2�2
2Λ−2 c2

2�4
2Λ(z�1+�1)

�1Λ

� ,

(3.15)
Σ2 =

m2e
1∕2

2 iΛ tc2�4+2 iΛ c2�4−2Λ tb2�2−2 b2�2Λ−iz

Λ

h1 sin

�
1∕2

√
1−4 ib2c2�2�4Λ+2 b2

2�2
2Λ−2 c2

2�4
2Λ(z�1+�1)

�1Λ

� .

(3.16)
f (z, t) = h1 sinh(b1�1), gl(z, t) = ml exp(icl�l+1), l = 1, 2,

�l = �lz + �l(t) + �l, l = 1, 2, 3.

− 4 iΛ c1�2b1�1 − 2 ic1�2b1�1 − 2 ib1�1 = 0,

2Λ b1
2�1

2 − 2Λ c1
2�2

2 + b1
2�1

2 − c1
2�2

2 − 2 c1�2 = 0,

− 4 iΛ c2�3b1�1 − 2 ic2�3b1�1 − 2 ib1�1 = 0,

2Λ b1
2�1

2 − 2Λ c2
2�3

2 + b1
2�1

2 − c2
2�3

2 − 2 c2�3 = 0.

(3.17)
h1 = ±

√
−
(
2Λ �1

2 + �1
2
)
�

((||m1
||
)2

+
(||m2

||
)2)

(
2Λ �1

2 + �1
2
)
b1

.
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3.2.1 � Set I solutions

Then, the solution is

(3.18)

�1 =

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)

�1

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

,

�2 =
c2�3
c1

,

�2 = −

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c1
,

�3 = −

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c2
.

(3.19)
Σl(z, t) =

ml

h1
exp(icl�l+1) csch(b1�1),

l = 1, 2, �k = �kz + �k(t) + �k, k = 1, 2, 3.

Fig. 3   Plot of soliton solution (3.19) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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Figure  3 depicts the impact of analysis of singular soliton solution where graphs of 
Σl, l = 1, 2 are given with the following parameters

in Eq. (3.19). We investigate the dynamics of general nonparaxial solitons received from 
the Hirota bilinear technique, which is presented in Fig.  3. From the figure, it is appar-
ent that the solitons exhibit a stable propagation in both components of CNLH system as 
shown in Figs. 3.

3.2.2 � Set II solutions

Then, the solution is

Figure  4 depicts the impact of analysis of singular soliton solution where graphs of 
Σl, l = 1, 2 are given with the following chosen parameters

(3.20)
Λ = 0.1e − 2, � = −1, �3 = 1, c1 = 1, c2 = 2, b1

=
2

3
,m1 = 2,�2 = 2,�1 = 1, �1 = 1, �2 = 1, �3 = 2.5,

(3.21)Σ1 = 0.6643035869
ei(−1.888571085 it+2 z+1)√

(|1|)2 + (|2|)2 sinh (2∕3 t + 1.254031265 iz + 2∕3)

,

(3.22)
Λ = 0.1e − 2, � = −1, �3 = 1, , c1 = 1, c2 = 2,

b1 =
2
3
,m1 = 2,�2 = 2,�1 = 1, �1 = 1, �2 = 1, �3 = 2.5,

(3.23)Σ2 = 1.328607174
e2 i(−0.9442855426 it+z+2.5)√

(|1|)2 + (|2|)2 sinh (2∕3 t + 1.254031265 iz + 2∕3)

,

(3.24)

�1 =

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)

�1

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

,

�2 = −
Λ c2�3 + 1

Λ c1
,

�2 =

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c1
,

�3 = −

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c2
.

(3.25)
Σl(z, t) =

ml

h1
exp(icl�l+1) csch(b1�1),

l = 1, 2, �k = �kz + �k(t) + �k, k = 1, 2, 3.

(3.26)
Λ = 0.1e − 2, � = −1, �3 = 1, c1 = 1, c2 = 2, b1

=
4

3
,m1 = 2,�2 = 2,�1 = 1, �1 = 1, �2 = 1, �3 = 2.5,
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in Eq. (3.24). We investigate the dynamics of general nonparaxial solitons received from 
the Hirota bilinear technique, which is presented in Fig.  4. From the figure, it is appar-
ent that the solitons exhibit a stable propagation in both components of CNLH system as 
shown in Figs. 4.

(3.27)Σ1 = 1.330369615
ei(1.496033653 it−1002.0 z+1)√

(|1|)2 + (|2|)2 sinh (4∕3 t + 1.986764478 iz + 4∕3)

,

(3.28)
Λ = 0.1e − 2, � = −1, �3 = 1, c1 = 1, c2 = 2, b1 =

4

3
,

m1 = 2,�2 = 2,�1 = 1, �1 = 1, �2 = 1, �3 = 2.5,

(3.29)Σ2 = 2.660739229
e2 i(−0.7480168264 it+z+2.5)√

(|1|)2 + (|2|)2 sinh (4∕3 t + 1.986764478 iz + 4∕3)

,

Fig. 4   Plot of soliton solution (3.24) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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3.2.3 � Set III solutions

3.3 � Bright soliton solutions

Supposing bright soliton solutions as the below function

By putting Σl = gl(z, t)∕f (z, t), l = l, 2 Eq. (2.15) and using relations (2.16) and taking 
the coefficients of the nonlinear expressions to zero, yield a system of algebraic equations 
including below:

Also, by solving 2Λ b1
2h1

2�1
2 + h1

2b1
2�1

2 −
(||m1

||
)2
� −

(||m2
||
)2
� = 0 we can get to the 

amplitude of solitary wave as below

Therefore, the form of solutions is as below

By solving the above equations get the following results:

(3.30)Σ1 =
m1e

ic1

�
t�3c2

c1
−1∕2

z

c1Λ
+�2

�√
2

�
Λ �1

2b1�
−�

����m1
��
�2

+
���m2

��
�2�

sinh
�
b1

�
1∕2

z
√
2Λ c2

2�3
2−1

b1Λ
+ �1

�� ,

(3.31)Σ2 =
m2e

ic2

�
t�3−1∕2

z

c2Λ
+�3

�√
2

�
Λ �1

2b1�
−�

����m1
��
�2

+
���m2

��
�2�

sinh
�
b1

�
1∕2

z
√
2Λ c2

2�3
2−1

b1Λ
+ �1

�� .

(3.32)
f (z, t) = h1 cosh(b1�1), gl(z, t) = ml exp(icl�l+1),

l = 1, 2, �l = �lz + �l(t) + �l, l = 1, 2, 3.

2Λ b1
2�1

2 − 2Λ c1
2�2

2 + b1
2�1

2 − c1
2�2

2 − 2 c1�2 = 0,

− 4 iΛ c1�2b1�1 − 2 ic1�2b1�1 − 2 ib1�1 = 0,

2Λ b1
2�1

2 − 2Λ c2
2�3

2 + b1
2�1

2 − c2
2�3

2 − 2 c2�3 = 0,

− 4 iΛ c2�3b1�1 − 2 ic2�3b1�1 − 2 ib1�1 = 0.

(3.33)
h1 = ±

√(
2Λ �1

2 + �1
2
)
�

((||m1
||
)2

+
(||m2

||
)2)

(
2Λ �1

2 + �1
2
)
b1

.

(3.34)

Σl = ±
ml

(
2Λ �1

2 + �1
2
)
b1√(

2Λ �1
2 + �1

2
)
�

((||m1
||
)2

+
(||m2

||
)2)

exp(icl�l+1)sech(b1�1), l = 1, 2.
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3.3.1 � Set I solutions

Then, the solution is

(3.35)

�1 =

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)

�1

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

,

�2 =
c2�3
c1

,

�2 = −

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c1
,

�3 = −

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c2
.

(3.36)
Σl(z, t) =

ml

h1
exp(icl�l+1) sech(b1�1), l = 1, 2,

�k = �kz + �k(t) + �k, k = 1, 2, 3.

Fig. 5   Plot of bright soliton solution (3.36) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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Figure 5 depicts the impact of analysis bright soliton solution where graphs of Σl, l = 1, 2 
are given with the following values

in Eq.  (3.36). We investigate the dynamics of general bright solitons received from the 
Hirota bilinear technique, which is presented in Fig. 5. From the figure, it is apparent that 
the solitons exhibit a stable propagation in both components of CNLH system as shown in 
Figs. 5.

3.3.2 � Set II solutions

Then, the solution is

Figure  5 depicts the impact of analysis of singular soliton solution where graphs of 
Σl, l = 1, 2 are given with the following chosen parameters

(3.37)
Λ = 0.1e − 2, � = 1, �3 = 1, , c1 = 2, c2 = 3, b1 =

5

4
,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,

(3.38)Σ1 = 5.001160405
e2 i(−0.2423331108 t+3∕2 z+1)√

(|2|)2 + (|3|)2 cosh (5∕2 t + 1.204438920 z + 5∕4)

,

(3.39)
Λ = 0.1e − 2, � = 1, �3 = 1, , c1 = 2, c2 = 3, b1

=
5

4
,m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,

(3.40)Σ2 = 7.501740608
e3 i(−0.1615554072 t+z+2.5)√

(|2|)2 + (|3|)2 cosh (5∕2 t + 1.204438920 z + 5∕4)

,

(3.41)

�1 =

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)

�1

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

,

�2 = −
Λ c2�3 + 1

Λ c1
,

�2 = −

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c1
,

�3 = −

√

−
(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 − b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 − 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c2
.

(3.42)
Σl(z, t) =

ml

h1
exp(icl�l+1) sech(b1�1),

l = 1, 2, �k = �kz + �k(t) + �k, k = 1, 2, 3.

(3.43)
Λ = 0.1e − 2, � = 1, �3 = 1, , c1 = 2, c2 = 3, b1 = 2,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,
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in Eq.  (3.42). We investigate the dynamics of general bright solitons received from the 
Hirota bilinear technique, which is presented in Fig. 6. From the figure, it is apparent that 
the bright solitons exhibit a stable propagation in both components of CNLH system as 
shown in Figs. 6.

(3.44)Σ1 = 8.081071928
e2 i(−1.605298328 t−501.5000000 z+1)√

(|2|)2 + (|3|)2 cosh (4 t + 12.76579187 z + 2)

,

(3.45)
Λ = 0.1e − 2, � = 1, �3 = 1, , c1 = 2, c2 = 3, b1 = 2,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,

(3.46)Σ2 = 12.12160789
e3 i(−1.070198885 t+z+2.5)√

(|2|)2 + (|3|)2 cosh (4 t + 12.76579187 z + 2)

,

Fig. 6   Plot of soliton solution (3.42) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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3.3.3 � Set III solutions

such that Λ
(
b1
)2(

2Λ c2
2𝜇3

2 − 1
)
> 0.

3.4 � Periodic solutions

Supposing periodic wave solutions as the below function

By putting Σl = gl(z, t)∕f (z, t), l = l, 2 Eq. (2.15) and using relations (2.16) and taking 
the coefficients of the nonlinear expressions to zero, yield a system of algebraic equations 
including below:

Also, by solving −2Λ b1
2h1

2�1
2 − h1

2b1
2�1

2 −
(||m1

||
)2
� −

(||m2
||
)2
� = 0 we can get to the 

amplitude of solitary wave as below

Therefore, the form of solutions is as below

By solving the above equations get the following results:

(3.47)Σ1 =

m1e
ic1

�
t�3c2

c1
−1∕2

z

c1Λ
+�2

�√
2

�
2Λ c2

2�3
2−1

Λ b1
2 b1

2

�
�

����m1
��
�2

+
���m2

��
�2�

cosh
�
b1

�
1∕2

z
√
2Λ c2

2�3
2−1

b1Λ
+ �1

�� ,

(3.48)Σ2 =

m2e
ic2

�
t�3−1∕2

z

c2Λ
+�3

�√
2

�
2Λ c2

2�3
2−1

Λ b1
2 b1

2

�
�

����m1
��
�2

+
���m2

��
�2�

cosh
�
b1

�
1∕2

z
√
2Λ c2

2�3
2−1

b1Λ
+ �1

�� ,

(3.49)
f (z, t) = h1 cos(b1�1), gl(z, t) = ml exp(icl�l+1), l = 1, 2,

�l = �lz + �l(t) + �l, l = 1, 2, 3.

2Λ b1
2�1

2 + 2Λ c1
2�2

2 + b1
2�1

2 + c1
2�2

2 + 2 c1�2 = 0,

− 4 iΛ c1�2b1�1 − 2 ic1�2b1�1 − 2 ib1�1 = 0,

2Λ b1
2�1

2 + 2Λ c2
2�3

2 + b1
2�1

2 + c2
2�3

2 + 2 c2�3 = 0,

− 4 iΛ c2�3b1�1 − 2 ic2�3b1�1 − 2 ib1�1 = 0.

(3.50)
h1 = ±

√(
2Λ �1

2 + �1
2
)
�

((||m1
||
)2

+
(||m2

||
)2)

(
2Λ �1

2 + �1
2
)
b1

.

(3.51)

Σl = ±

√
−
(
2Λ �1

2 + �1
2
)
�

((||m1
||
)2

+
(||m2

||
)2)

(
2Λ �1

2 + �1
2
)
b1

exp(icl�l+1)sec(b1�1), l = 1, 2.
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3.4.1 � Set I solutions

Then, the solution is

Figure 7 depicts the impact of analysis periodic wave solution where graphs of Σl, l = 1, 2 
are given with the following chosen parameters

(3.52)

�1 =

√

−
(

4Λ2c22�32 + 2Λ b12�12 + 4Λ c2�3 + 1
)(

2Λ c22�32 + b12�12 + 2 c2�3
)

�1

4Λ2c22�32 + 2Λ b12�12 + 4Λ c2�3 + 1
,

�2 =
c2�3
c1

, �2 = −

√

−
(

4Λ2c22�32 + 2Λ b12�12 + 4Λ c2�3 + 1
)(

2Λ c22�32 + b12�12 + 2 c2�3
)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 + 2Λ b12�12 + 4Λ c2�3 + 1
)

c1
,

�3 = −

√

−
(

4Λ2c22�32 + 2Λ b12�12 + 4Λ c2�3 + 1
)(

2Λ c22�32 + b12�12 + 2 c2�3
)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 + 2Λ b12�12 + 4Λ c2�3 + 1
)

c2
.

(3.53)
Σl(z, t) =

ml

h1
exp(icl�l+1) sec(b1�1),

l = 1, 2, �k = �kz + �k(t) + �k, k = 1, 2, 3.

(3.54)
Λ = 0.1e − 2, � = −1, �3 = 1, , c1 = 2, c2 = 3, b1 = 1,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,

Fig. 7   Plot of periodic wave solution (3.53) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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in Eq.  (3.53). We investigate the dynamics of general periodic wave received from the 
Hirota bilinear technique, which is presented in Fig. 7. From the figure, it is apparent that 
the solitons exhibit a stable propagation in both components of CNLH system as shown in 
Figs. 7.

3.4.2 � Set II solutions

Then, the solution is

Figure 8 depicts the impact of analysis periodic wave solution where graphs of Σl, l = 1, 2 
are given with the following parameters

(3.55)Σ1 = 3.960520280
e2 i(−1.576343096 it+3∕2 z+1)√

(|2|)2 + (|3|)2 cos (2 t + 6.267765789 iz + 1)

,

(3.56)
Λ = 0.1e − 2, � = −1, �3 = 1, , c1 = 2, c2 = 3, b1 = 1,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,

(3.57)Σ2 = 5.940780420
e3 i(−1.050895397 it+z+2.5)√

(|2|)2 + (|3|)2 cos (2 t + 6.267765789 iz + 1)

,

(3.58)

�1 =

√

−
(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 + b12�1
2 + 2 c2�3

)

�1

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

,

�2 =
c2�3
c1

, �2 = −

√

−
(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 + b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c1
,

�3 = −

√

−
(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 + b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c2
.

(3.59)
Σl(z, t) =

ml

h1
exp(icl�l+1) sec(b1�1),

l = 1, 2, �k = �kz + �k(t) + �k, k = 1, 2, 3.

(3.60)
Λ = 0.1e − 2, � = −1, �3 = 1, , c1 = 2, c2 = 3, b1 = 1,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,

(3.61)Σ1 = 3.960520280
e2 i(−1.576343096 it−501.5000000 z+1)√

(|2|)2 + (|3|)2 cos (2 t + 6.267765789 iz + 1)

,

(3.62)
Λ = 0.1e − 2, � = −1, �3 = 1, , c1 = 2, c2 = 3, b1 = 1,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5,
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in Eq.  (3.59). We investigate the dynamics of general periodic wave received from the 
Hirota bilinear technique, which is presented in Fig. 8. From the figure, it is apparent that 
the solitons exhibit a stable propagation in both components of CNLH system as shown in 
Figs. 8.

3.4.3 � Set III solutions

(3.63)Σ2 = 5.940780420
e3 i(−1.050895397 it+z+2.5)√

(|2|)2 + (|3|)2 cos (2 t + 6.267765789 iz + 1)

,

(3.64)Σ1 =

m1e
ic1

�
−

t�3c2

c1
−1∕2

z

Λ c1
+�2

�√
2

�
−2Λ c2

2�3
2+1

Λ b1
2 b1

2

�
−�

����m1
��
�2

+
���m2

��
�2�

cos
�
b1

�
1∕2

z
√
−2Λ c2

2�3
2+1

b1Λ
+ �1

�� ,

Fig. 8   Plot of soliton solution (3.59) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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such that 
(
2Λ c2

2𝜇3
2 − 1

)
< 0.

3.5 � Singular form of solutions

Supposing singular form of solution as the below function

By putting Σl = gl(z, t)∕f (z, t), l = l, 2 Eq. (2.15) and using relations (2.16) and taking 
the coefficients of the nonlinear expressions to zero, yield a system of algebraic equations 
including below:

Also, by solving −2Λ b1
2h1

2�1
2 − h1

2b1
2�1

2 − �
(||m1

||
)2

− �
(||m2

||
)2

= 0 we can get to 
the amplitude of solitary wave as below

Therefore, the form of solutions is as below

By solving the above equations get the following results:

3.5.1 � Set I solutions

(3.65)Σ2 =

m2e
ic2

�
t�3−1∕2

z

Λ c2
+�3

�√
2

�
−2Λ c2

2�3
2+1

Λ b1
2 b1

2

�
−�

����m1
��
�2

+
���m2

��
�2�

cos
�
b1

�
1∕2

z
√
−2Λ c2

2�3
2+1

b1Λ
+ �1

�� ,

(3.66)
f (z, t) = h1 sin(b1�1), gl(z, t) = ml exp(icl�l+1), l = 1, 2,

�l = �lz + �l(t) + �l, l = 1, 2, 3.

4 iΛ c1�2b1�1 + 2 ic1�2b1�1 + 2 ib1�1 = 0,

2Λ b1
2�1

2 + 2Λ c1
2�2

2 + b1
2�1

2 + c1
2�2

2 + 2 c1�2 = 0,

4 iΛ c2�3b1�1 + 2 ic2�3b1�1 + 2 ib1�1 = 0,

2Λ b1
2�1

2 + 2Λ c2
2�3

2 + b1
2�1

2 + c2
2�3

2 + 2 c2�3 = 0.

(3.67)
h1 =

√
−
(
2Λ �1

2 + �1
2
)
�

((||m1
||
)2

+
(||m2

||
)2)

(
2Λ �1

2 + �1
2
)
b1

.

(3.68)

Σl = ±

√
−
(
2Λ �1

2 + �1
2
)
�

((||m1
||
)2

+
(||m2

||
)2)

(
2Λ �1

2 + �1
2
)
b1

exp(icl�l+1)csc(b1�1), l = 1, 2.

(3.69)

h1 = 1∕2

√

−2Λ �1
2�

(

(

|

|

m1
|

|

)2 +
(

|

|

m2
|

|

)2
)

Λ �1
2b1

, c1 = 1∕2

√

−2Λ
(

4Λ2b12�12 − 1
)

Λ�2
, �1 = 0,

c2 = 1∕2

√

−2Λ
(

4Λ2b12�12 − 1
)

Λ�3
, �2 = −

�2
√

−2Λ
(

4Λ2b12�12 − 1
)

, �3 = −
�3

√

−2Λ
(

4Λ2b12�12 − 1
)

.
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Then, the solution is

Figure 9 depicts the impact of analysis singular wave solution where graphs of Σl, l = 1, 2 
are given with the following parameters

(3.70)
Σl(z, t) =

ml

h1
exp(icl�l+1) csc(b1�1),

l = 1, 2, �k = �kz + �k(t) + �k, k = 1, 2, 3.

(3.71)
Λ = 0.1e − 2, � = −1, �1 = 2, b1 = 1,m1 = 2,m2 = 3,

�2 = 2,�3 = 3, �1 = 1, �2 = 1, �3 = 2.5,

(3.72)Σ1 = 0.016
e11.18025044 i(2 t−44.72171732 z+1)√

0.008 (|2|)2 + 0.008 (|3|)2 sin (2 z + 1)

,

Fig. 9   Plot of singular solution (3.69) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2



	 Y. Qian et al.

1 3

1022  Page 24 of 31

in Eq.  (3.69). We investigate the dynamics of general singular soliton received from the 
Hirota bilinear technique, which is presented in Fig. 9. From the figure, it is apparent that 
the solitons exhibit a stable propagation in both components of CNLH system as shown in 
Figs. 9.

3.5.2 � Set II solutions

Then, the solution is

Figure  10 depicts the impact of analysis treatment of singular solution where graphs of 
Σl, l = 1, 2 are given with the following values

(3.73)
Λ = 0.1e − 2, � = −1, �1 = 2, b1 = 1,m1 = 2,m2 = 3,

�2 = 2,�3 = 3, �1 = 1, �2 = 1, �3 = 2.5,

(3.74)Σ2 = 0.024
e7.453500295 i(3 t−67.08257598 z+2.5)√

0.008 (|2|)2 + 0.008 (|3|)2 sin (2 z + 1)

,

(3.75)

�1 =

√

−
(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 + b12�1
2 + 2 c2�3

)

�1

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

,

�2 =
c2�3
c1

, �2 = −

√

−
(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 + b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c1
,

�3 = −

√

−
(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)(

2Λ c22�32 + b12�1
2 + 2 c2�3

)(

2Λ c2�3 + 1
)

(

4Λ2c22�32 + 2Λ b12�1
2 + 4Λ c2�3 + 1

)

c2
,

h1 =

√

−�
(

(

|

|

m1
|

|

)2 +
(

|

|

m2
|

|

)2
)

√

−2 Λ(2Λ c2 2�3 2+b1 2�1
2+2 c2�3)�1

2

4Λ2c2 2�3 2+2Λ b1 2�1
2+4Λ c2�3+1

+ �1
2b1

.

(3.76)
Σl(z, t) =

ml

h1
exp(icl�l+1) csc(b1�1),

l = 1, 2, �k = �kz + �k(t) + �k, k = 1, 2, 3.

(3.77)
Λ = 0.1e − 2, � = −1, �3 = 2, c1 = 2, c2 = 3, b1 = 1,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 1,

(3.78)Σ1 = 7.784458700
e2 i(−2.608708939 it+3 z+1)√

(|2|)2 + (|3|)2 sin (4 t + 20.62220506 iz + 2)

,

(3.79)
Λ = 0.1e − 2, � = −1, �3 = 2, c1 = 2, c2 = 3, b1 = 1,

m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 1,

(3.80)Σ2 = 5.905832211
e3 i(−1.331141041 it+2 z+1)√

(|2|)2 + (|3|)2 sin (2 t + 7.892140556 iz + 1)

,
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in Eq. (3.76). We investigate the dynamics of general singular solution received from the 
Hirota bilinear technique, which is presented in Fig. 10. From the figure, it is apparent that 
the solitons exhibit a stable propagation in both components of CNLH system as shown in 
Figs. 10.

3.5.3 � Set III solutions

(3.81)

Σ1 =
m1e

ic1

⎛
⎜⎜⎝
t

√
−(4Λ2c22�32+2Λ b1

2�1
2+4Λ c2�3+1)(2Λ c2

2�3
2+b1

2�1
2+2 c2�3)(2Λ c2�3+1)

(4Λ2c22�32+2Λ b1
2�1

2+4Λ c2�3+1)c1
−

z(Λ c2�3+1)
Λ c1

+�2

⎞
⎟⎟⎠

h1 sin

�
b1

�
t�1 +

z

√
−(4Λ2c2

2�3
2+2Λ b1

2�1
2+4Λ c2�3+1)(2Λ c2

2�3
2+b1

2�1
2+2 c2�3)�1

4Λ2c2
2�3

2+2Λ b1
2�1

2+4Λ c2�3+1
+ �1

�� ,

Fig. 10   Plot of singular solution (3.76) ( |Σ
l
|2 ) such as left graphs |Σ

1
|2 and right graphs |Σ

2
|2
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such that h1 =

√
−�

(
(|m1|)2+(|m2|)2)(4Λ2c2

2�3
2+2Λ b1

2�1
2+4Λ c2�3+1)

�1b1
.

4 � Physical interpretation of solutions

The (1+1)-dimensional coupled nonlinear Helmholtz systems has been examined by 
using Hirota’s bilinear scheme. Three exact solutions to soliton, bright soliton, sin-
gular soliton, periodic wave and singular form of solutions have been obtained for 
Eq. (1.1). All the solutions depicted solitary wave solutions in the form of rational 
wave solutions. The physical phenomena of the solution graphs of (1+1)-dimen-
sional coupled nonlinear Helmholtz systems is given as follows: Fig.  1 repre-
sents the singular soliton behaviour of Eqs. (3.5) and (3.7) for the parametric values 
Λ = 0.1e − 2, � = 1, �1 = 1, �2 = 1, �4 = 1, c1 = 1, c2 = 2, b1 = 1, b2 = 2.5, h1 = 1,�1 = 1,m1 = 2,�2 = 2,�4 = 3, �1 = 1, �2 = 1, �3 = 2.5  . 
However, Fig.  2 depicts the singular soliton behav-
iour of Eqs. (3.11) and (3.13) for the parametric values 
Λ = 0.1e − 2, � = 1, �1 = 1, �2 = 1, �4 = 1, c1 = 1, c2 = 2, b1 = 1, b2 = 2.5, h1 = 1,�1 = 1,m1 = 2,�2 = 2,�4 = 3, �1 = 1, �2 = 1, �3 = 2.5  . 
Figure 3 represents the soliton behaviour of Eqs. (3.21) and (3.23) for the parametric val-
ues Λ = 0.1e − 2, � = −1, �3 = 1, c1 = 1, c2 = 2, b1 =

2
3 ,m1 = 2,�2 = 2,�1 = 1, �1 = 1, �2 = 1, �3 = 2.5 . 

Figure 4 shows the soliton behaviour of Eqs. (3.27) and (3.29) for the parametric values 
Λ = 0.1e − 2, � = −1, �3 = 1, c1 = 1, c2 = 2, b1 =

4
3 ,m1 = 2,�2 = 2,�1 = 1, �1 = 1, �2 = 1, �3 = 2.5   . 

While, the bright soliton behaviour of Eqs. (3.38) and (3.40) for the parametric values 
Λ = 0.1e − 2, � = 1, �3 = 1, , c1 = 2, c2 = 3, b1 =

5
4 ,m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5 

has been seen in Fig.  5. And the bright soliton behav-
iour of Eqs. (3.44) and (3.46) for the parametric values 
Λ = 0.1e − 2, � = 1, �3 = 1, , c1 = 2, c2 = 3, b1 = 2,m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5 
has been seen in Fig.  6. Also, the periodic wave behav-
iour of Eqs. (3.55) and (3.57) for the parametric values 
Λ = 0.1e − 2, � = −1, �3 = 1, , c1 = 2, c2 = 3, b1 = 1,m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5 
has been seen in Fig.  7. Moreover, the periodic wave behav-
iour of Eqs. (3.61) and (3.63) for the parametric values 
Λ = 0.1e − 2, � = −1, �3 = 1, , c1 = 2, c2 = 3, b1 = 1,m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 2.5 
has been shown in Fig.  8. While, Fig.  9 displays the singu-
lar wave behaviour of Eqs. (3.72) and (3.74) for the parametric values 
Λ = 0.1e − 2, � = −1, �1 = 2, b1 = 1,m1 = 2,m2 = 3,�2 = 2,�3 = 3, �1 = 1, �2 = 1, �3 = 2.5   . 
Finally, the singular wave behaviour of Eqs. (3.78) and (3.80) for the parametric values 
Λ = 0.1e − 2, � = −1, �3 = 2, c1 = 2, c2 = 3, b1 = 1,m1 = 2,m2 = 3,�1 = 2, �1 = 1, �2 = 1, �3 = 1 
has been displayed in Fig. 10.

(3.82)

Σ2 =
m2e

ic2

⎛
⎜⎜⎝
−

t

√
−(4Λ2c22�32+2Λ b1

2�1
2+4Λ c2�3+1)(2Λ c2

2�3
2+b1

2�1
2+2 c2�3)(2Λ c2�3+1)

(4Λ2c22�32+2Λ b1
2�1

2+4Λ c2�3+1)c2
+z�3+�3

⎞
⎟⎟⎠

h1 sin

�
b1

�
t�1 +

z

√
−(4Λ2c2

2�3
2+2Λ b1

2�1
2+4Λ c2�3+1)(2Λ c2

2�3
2+b1

2�1
2+2 c2�3)�1

4Λ2c2
2�3

2+2Λ b1
2�1

2+4Λ c2�3+1
+ �1

�� ,
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5 � Comparison and novelty

Here, some concrete instances of our research findings and critically evaluate their original-
ity are offered. Plenty of computational and approximate solutions to the issue at hand have 
been devised utilizing five modern analytical and numerical schemes. These solutions have 
been presented in a number of various ways employing numerical plots (1-10), displaying 
phenomena like singular soliton, soliton, bright soliton, periodic wave, and singular wave 
solutions in three-dimensional and density approaches. When presenting our findings, we 
compared them to those that had already been published (Christian et al. 2006; Chamorro-
Posada and McDonald 2006; Song et al. 2020) to highlight the uniqueness of our findings. 
It is clear that our results are not consistent with those found in these publications.

6 � Conclusion

To conclude, the nonparaxial solitary wave by using the Hirota’s bilinear scheme were 
analytically constructed. We noticed that the systems was non-integrable. The impact of 
nonparaxiality on the physical parameters such as speed and amplitudes of solitary waves 
were emphasized. The binary bell polynomials and bilinear transformation to the nonlin-
ear system were studied. In particular, five forms of function solution including soliton, 
bright soliton, singular soliton, periodic wave and singular form of solutions were studied. 
To achieve this, an illustrative example of the coupled nonlinear Helmholtz systems was 
provided to demonstrate the feasibility and reliability of the procedure used in this study. 
The effect of the free parameters on the behavior of acquired figures to a few obtained solu-
tions for two nonlinear rational exact cases was also discussed. For a better understanding 
on the resulting dynamics, a categorical discussion and clear graphical demonstration for 
solitons and periodic wave on both constant and spatially-varying backgrounds were pro-
vided. Further, the periodic and hyperbolic solutions with arbitrary spatial backgrounds for 
the considered model (1.1) through bilinear transformation were obtained. The obtained 
results will be an important addition along the context of nonlinear wave manipulation 
in higher-dimensional models due to controllable backgrounds. The present investigation 
shall also be extended to several other solitonic models towards improved understanding on 
the dynamical characteristics of respective nonlinear waves
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