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Abstract
In this report, we synthesized the neodymium-doped yttrium hydroxide nanobelts 
(Nd:Y(OH)3) using a facile route. The characterization methods, such as UV-Visible and 
photoluminescence spectroscopy, Raman, X-ray photoemission, Fourier transform infra-
red (FTIR) spectroscopy, and high resolution transmission electron microscopy (HRTEM), 
were applied to clarify the properties of the prepared colloidal sample. The structural char-
acteristics of the prepared sample were analyzed via X-ray diffraction (XRD) and HRTEM. 
The average size of the hexagonal crystal is about 25 nm, which shows the compatibility of 
XRD and HRTEM spectroscopy results. Absorbance and emission spectra of the synthe-
sized sample have demonstrated that the intensity of light emission by the colloidal sample 
is affected by the concentration of  Nd3+ ions. In this research, it has been shown that the 
excitation of the samples with the wavelengths of 355 and 360 nm almost does not change 
the blue emission spectra because the wavelengths are related to the nature of the  Nd+ 3, 
but with the excitation of 300 nm, the intensity of the emission spectra increases with the 
increase in the concentration up to 0.05 g (sample 2).
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1 Introduction

Rare earth elements, including yttrium, scandium, and lanthanides, have potential applica-
tions in many fields, such as medical, optical, and optoelectronic applications (Ascenzi, 
et al. 2020; Balaram 2019; Milanova and Tsvetkov 2021). These elements are employed in 
bioimaging, drug delivery, sensors, and optical devices, including displays, light-emitting 
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diodes (LEDs), lasers, and optical amplifiers (Huang, et al. 2022; Huang, et al. 2019; Chen, 
et al. 2018; Ma, et al. 2019; Rosa et al. 2020; Ning et al. 2019; Zhang et al. 2017; Watan-
abe, et al. 2019). They are known as attractive luminescence materials due to their narrow 
emission band and long emission lifetime over a wide range of wavelengths (UV/Visible/
NIR) (Hasegawa et  al. 2018). Nowadays, rare earth elements are used in different types 
of oxides, hydroxide, oxysulfide, oxysulfate, oxynitride, nitrides, metal-organic frame-
works (MOFs), and different complexes such as lanthanide Schiff base complexes, lantha-
nide azodicarboxylate compounds, or lanthanide-based hybrid materials (Khalid Hossain 
et al. 2021; Oliveira et al. 2021; Qian, et al. 2021; Holmes-Hewett et al. 2020; Younis et al. 
2021; Saraci, et al. 2020; Taha et al. 2020; Abdel Aziz, et al. 2020; Li and Li 2021; Belou-
sov et al. 2021; Ferreira da Rosa et al. 2020). As one of the important rare earth elements, 
yttrium compounds attract a lot of applications in a wide range of fields (Fisher 2004). 
For example, due to its high stability in air and resistance to degradation under applied 
voltages, europium doped yttrium oxide is known as one of the best red oxide phosphors 
that exhibits excellent luminescent characteristics (Zhang et al. 2017). Yttrium hydroxide 
with different lanthanide dopants such as  Er3+,  Eu3+, and  Tb3+ has also attracted more 
attention due to its unique spectral characteristics and 4f electron orbits shielded by  5s2 
and  5p6 shells of lanthanide ions (Zhu and Wang 2017). In the applications of lanthanide-
doped yttrium hydroxide, its morphology is often regarded as a particularly important fac-
tor that influences its optical properties, especially when it is at the nanometer scale (Li 
et al. 2009). Since the optical properties of nanomaterials are affected by the preparation 
process, different procedures such as co-precipitation and hydrothermal methods have been 
explored to control the shape and dimension of yttrium hydroxide (Li et al. 2009). Among 
these methods, hydrothermal synthesis is known as a promising route for the preparation 
of one-dimensional (1D) nanostructured materials (Fang, et al. 2003). As it was previously 
established, the hydrothermal method can be used to synthesize 1D yttrium hydroxide 
nanosheets (Wang, et al. 2003). Usually, the final products coexist with a mixture of 1D 
Y(OH)3 nanostructures. For example, Wang et al. (Wang, et al. 2003), prepared a mixture 
of nanobelts and nanosheets of Y(OH)3 with very low aspect ratios using optimal pH con-
ditions at 180 °C. Also, Fang et al. (2003) have synthesized the Y(OH)3 nanotubes with a 
little mixture of nanobelts by the hydrothermal method at 170 °C. It should be noted that in 
the hydrothermal method, the corresponding rare-earth oxide powders are used to synthe-
size the 1D nanostructures (sheet, wire, nanobelts, and tube) of Y(OH)3, and the presence 
of alkali in the hydrothermal processes is inevitable (Zhang, et al. 2008; Tat Su, et al. 2011; 
Hu, et al. 2007).

Due to the wide range of  Nd+ 3 emission spectra in the ranges of UV, visible, and NIR, 
it can be used in various applications such as telecommunications, bioimaging, laser active 
material, anticancer activities, etc. Therefore, in this approach, we first synthesize the neo-
dymium-doped yttrium hydroxide nanobelts using a facile route and phase (colloidal nano-
particles) that differs from other published reports (Tat Su et al. 2011; Hu et al. 2007). Then 
we doped different concentrations of  Nd3+ ions in the crystal to analyze the effects of these 
dopant concentrations on the optical properties of the host material. In our experiments, 
the blue-wavelength emission was recorded from the colloidal Y(OH)3 nanobelts embed-
ded with neodymium ions. Blue-wavelength light can serve in various applications such 
as displays and optical devices, biological fluorescence labeling, tricolor florescent lamps, 
and so on (Devi et  al. 2016; Vafaee et  al. 2011). The blue light emission was observed 
by exciting different nanoparticles such as  Bi3+:Y2O3 and  Bi3+:Y3Al5O12 thin films (Devi 
et al. 2016),  Eu2+:BaMgAl10O17,  Eu3+:Y2O3,  Dy3+:Y2O3 (Bhavani et al. 2016), Yb:  Y2O3 
(Deshmukh et al. 2017).
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2  Experimental procedure

In preparation of neodymium-doped yttrium hydroxide, first 0.1 g of yttrium oxide  (Y2O3, 
Merck Co.) and 0.017 g of neodymium oxide  (Nd2O3, Sigma-Aldrich Co.) were added to 
a mixed solution of absolute ethanol and deionized water, and then it was stirred at 80 °C 
to obtain a transparent solution. After that, 2 ml of hydrochloric acid (HCl 37%, Merck 
Co.) and 2 ml of acetic acid  (CH3COOH 99%, Merck Co.) were added to the precursor 
solution. The final solution was agitated for about 24 h to form the initial transparent col-
loidal sample. Then, with the same method, different colloidal samples were prepared with 
different  Nd3+ ion concentrations (0.03, 0.05, and 0.1 g). Finally, the optical properties of 
transparent colloidal solutions have been studied by UV-Visible, photoluminescence, and 
FTIR spectroscopy. The shape and morphology of the colloidal sample were determined 
using HRTEM. To prepare the powder of neodymium-doped yttrium hydroxide, a transpar-
ent colloidal solution was dried in the oven at 70 °C. The dried powder was characterized 
by XRD analysis. Also, Raman spectroscopy was used for monitoring  Nd3+ ions.

3  Result and discussion

In order to characterize the crystallinity of the colloidal sample, it was dried at 70 °C, and 
an X-ray diffraction pattern was applied with a PANalytical (XPert PRo MPD) diffractom-
eter. Figure 1 shows the XRD pattern of the prepared colloidal neodymium-doped yttrium 
hydroxide nanobelts with the Miller indices that were plotted using Fullprofe software. It 

Fig. 1  XRD pattern of neodymium doped yttrium hydroxide nanobelts with the miller indices and SAED 
pattern
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can be found from this figure that nanobelts have a hexagonal phase (space group P63/m) 
matched with the International Centre for Diffraction Data (ICDD( code, which is related 
to yttrium hydroxide (ref. code: 00-009-0062). The six parameters of a unit cell are a = 6.26 
Å, b = 6.26 Å, c = 3.54 Å, α = 90°, β = 90°, and γ = 120° in which the 3 edges are; a, b, and 
c, and the angles between the edges are; α, β, γ. Also, according to Bragg’s equation, these 
indices and their positions were successfully adopted with the related lattice. Also, the 
Scherrer equation was applied to show the crystallite size of samples (Muniz et al. 2016):

 which D is the crystallite size, k is a shape constant that is approximately equal to 0.89, 
and “λ” is the incident wavelength that is Cu wavelength (1.5406 Å) in this report. “θ” and 
FWHM are the incident angle and full width half-maximum of the diffraction peak, respec-
tively. The average crystalline size using the highest peak of the XRD pattern is approxi-
mately 27 nm, which is consistent with the HRTEM result. In Fig. 1, an X-ray diffraction 
pattern is adopted with selected area electron diffraction (SAED), which has an elliptical 
shape because of the morphology and structure of the nanobelt (Wu et al. 2005; Shi and 
Li 2021; Deng et al. 2009). Selected area electron diffraction (SAED) which is attached to 
Fig. 1, confirms the crystallinity of the prepared sample.

The dislocation density (δ) determines the crystallinity degree of nanoparticles, which 
is the size of the crystal defects contained by a crystal. The relationship between crystallite 
size (D) and dislocation density is as follows:

In our research, δ approximately equals 0.04 (nm)−2. So it shows that the Nd:Y(OH)3 
nanobelts have a high degree of crystallinity. The strain value (ε) of a crystal shows its 
alignment and is determined by the following equation:

which  is the width of the full wide half-maximum (FWHM) intensity, k is a shape con-
stant that is approximately equal to 0.89, and “λ” is the incident wavelength that is Cu 
wavelength (1.5406 Å) in this report. “θ” and D are the incident angle and crystallite size, 
respectively. In our research, ε approximately equals 3.2 ×  10−3, which is a very low value 
and shows that the Nd:Y(OH)3 nanobelts lack strain. As the crystallite size (D) decreases, 
the strain value (ε) decreases, and the dislocation density (δ) increases (Sutapa et al. 2018; 
Kumar, et al. 2019).

HRTEM, as an image produced by a type of electron microscope, is used to collect the 
structural, chemical, and morphological information of nanomaterials, especially suspen-
sions and colloids. To characterize the shape and size of yttrium hydroxide with a dopant 
of neodymium colloid nanoparticles, HRTEM was applied with FEI Tecnai G2 F20 Super-
Twin TEM device with accelerating voltage of 200 kv. HRTEM images of the colloidal 
sample are shown in Fig. 2. As can be seen from this figure, the shape of the particles in 
the colloidal sample is a nanobelt with approximate width of 25 nm.

The transparent colloidal samples were analyzed by PerkinElmer. Lambda 25 UV–Vis-
ible spectrometer. So we illustrated the absorption spectrum of the prepared samples as 
shown in Fig. 3. As can be seen from this figure, the spectrum has five absorption peaks 
placed at 360, 522, 577, 740, and 794 nm. Those absorption peaks are due to the existence 
of  Nd3+ ions in the host. In the following, to investigate the energy required for photolu-
minescence spectroscopy of the sample, it was excited with a shorter wavelength (higher 

(1)D = (k × �)∕(FWHM × cos �)

(2)� = 1∕D2

(3)� cos � = (k�/D) + 4� sin�
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energy) than other absorption wavelengths (300  nm). Then, the synthesized sample was 
excited by all the absorption peaks to create the photoluminescence spectra.

The band gap calculation of Nd:Y(OH)3 nanobelts is done, according to the following 
equation and using the absorption spectrum:

which α is the absorption coefficient, h is Plank’s constant, ν is the photon’s frequency, 
A is a constant almost equal to one at the absorption edge,  Eg is the band gap, and n is an 
index that characterizes the optical absorption process, theoretically equal to 0.5, 1.5, 2, or 
3 for direct allowed, direct forbidden, indirect allowed, and indirect forbidden transitions, 
respectively (Gaeeni et al. 2022; Aliakbari et al. 2020). So according to Eq. 4, for the direct 
allowed transition of Nd:Y(OH)3 nanobelts,  Eg equals 5.4898 eV, as shown in Fig. 4:

Figure 5 shows the best form of the emission spectra from the Avantes-Avaspec-2048 
spectrometer. In Fig.  5, however, the excitation of the initial colloidal sample with 

(4)�h� = A(h� − Eg)
n

Fig. 2  HRTEM images of colloidal yttrium hydroxide with dopant of neodymium nanobelts. The diameter 
of the nanobelt is about 25 nm
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wavelengths of 300 and 360 nm gives approximately 409 nm emission. The peak shift from 
blue to violet suggests the presence of defects such as the low concentration of neodymium 
ions and the effect of the yttrium hydroxide structure (Biju et al. 2018; Dhas et al. 2020; 
Jan et al. 2014). The FTIR spectrum examines the nature and purity of each chemical bond 
formed in the samples by identifying fluctuations. Figure 6 shows the FTIR curve that was 
plotted using the Bruker Alpha II FTIR spectrometer. 3427  cm− 1 of vibration indicates the 
presence of the O-H bond. Carbonate and nitrate bonds are also recorded in the range of 

Fig. 3  Absorption spectra of the initial colloidal samples

Fig. 4  (αhν)2 versus hν plot for 0.017%  Nd+ 3 doped Y(OH)3 nanobelts
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1590 to 1650 and 1384  cm− 1, respectively. 621  cm− 1 vibration shows Y-O bonding in the 
sample (Nandiyanto et al. 2019; Yang et al. 2007; Aghazadeh et al. 2011).

In the following of the experiment, we characterized the three samples embedded with 
different concentrations of  Nd3+ ions to show and describe the effects of various  Nd3+ 
ion concentrations in photoluminescence spectra. All of them were excited by 300, 355, 
and 360 nm, so that all related emissions, especially the blue emission, are demonstrated. 
The excitation of all three samples at the wavelengths of 355 and 360 nm is approximately 

Fig. 5  Emission spectrum of the initial colloidal sample

Fig. 6  FTIR spectrum of the initial colloidal sample
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equal. The reasons for the small differences include attenuation due to different concen-
trations, self-trapping, and scattering of energy transfer. Therefore, these wavelengths 
depend on the nature of the ions (neodymium) in this complex. Due to the importance of 
dopant concentration, only sample 2 (0.05 g) has maximum emission, and the intensities 
of samples 1 and 3 are approximately equal when the samples are excited by the 300 nm 
wavelength. Figures 7, 8 and 9 show the three emission spectra of the samples using the 
Avantes-Avaspec-2048 spectrometer. As seen in Fig. 9 (excitation by 360 nm) as well as 
Fig.  8 (excitation by 355 nm), all three samples show a blue emission spectrum. But in 
Fig. 7 (excitation by 300 nm), in addition to blue emission, due to higher excitation energy, 
violet emission was also observed. Note that there are two peaks in the excitation wave-
length range, and twice of them are related to the validity of the experiment.

A commission International DeI’Eclairage (CIE) chromaticity diagram using the PL 
spectrum of sample 2 in Fig. 9 was prepared and shown in Fig. 10. The CIE color chro-
maticity coordinates are to be calculated as (x,y) = (0.1860, 0.2814) using OriginPro soft-
ware. It can be observed that the position of these chromaticity coordinates is located in the 
blue region, which shows that by careful design, Nd:Y(OH)3 nanobelts can be applied in 
UV lamps and blue LEDs (Guner et al. 2019; Kumar et al. 2021).

As mentioned, blue light has various technological applications in displays and opti-
cal devices, biological fluorescence labeling, tricolor fluorescent lamps, and so on (Devi 
et al. 2016; Vafaee et al. 2011). Hari Krishna et al. (2014) reported the photolumines-
cence spectra of hexagonal Y(OH)3:Ni2+ and cubic  Y2O3:Ni2+ nanophosphors at room 

Fig. 7  PL emission spectra of the prepared sample excited by 300 nm wavelength with different  Nd3+ con-
centrations respectively (0.03 g, 0.05 and 0.1 g)
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temperature. Upon 306 nm excitation, they observed an intense emission at 374 nm, 
which can be attributed to the charge transfer band. In addition, their samples have emit-
ted weak bands in the three regions, i.e., blue (420–485 nm), green (527 nm), and red 
(733 nm). At first, they stated that these emission peaks were due to the  Ni2+ ions. The 
 Ni2+ ions belong to the  d8 configuration, and the degenerate free ion 3 F ground state 
of  Ni2+ splits as a consequence of the crystal field. In an octahedral environment, the 
orbital singlet 3A2g has the lowest energy level. They concluded that the emission in the 
blue, green, and red regions can be assigned to the 3T1(3P)→3A2(3 F), 1T2(1D)→3A2(3 
F) and 1T2(1D)→3T2(3 F) transitions of  Ni2+ ions, respectively. However, the mecha-
nism of blue emission in the  Ln3+-doped host crystals is different. For  Nd3+-doped host 
materials, two different mechanisms were reported for the reason of blue emission, in 
which high-intensity laser excitation produced emissions in the range from 400 to 500 
nm due to the population of high energy levels, such as 2P1/2 or self-frequency dou-
bling of the  Nd+ 3,  4F3/2 →  4I9/2 laser emission (Mougel et al. 1999; Moura et al. 2015). 
In  Nd3+-doped nanocrystals, the up-conversion process is very popular. This process 
occurs when higher-energy photons emit for the sample after the absorption of lower-
energy photons (Rocha et  al. 2014). In our study, we used a 325 nm excitation wave-
length, and therefore, the up-conversion process could not occur. It was reported that 
the blue emission can be caused by self-trapped excitons (STE) (Engelsen, et al. 2016). 
Broad bands of intrinsic emission are related to relaxation of STE and are detected in 
wide-gap crystals (Lushchik et al. 2000). Previously, it was reported that the colloidal 
nanocrystals have the potential to emit visible light (blue) due to the trap sites, which 

Fig. 8  PL emission spectra of the prepared sample excited by 355 nm wavelength with different  Nd3+ con-
centrations respectively (0.03 g, 0.05 and 0.1 g)
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Fig. 9  Emission spectra of the prepared sample excited by 360 nm wavelength with different  Nd3+ concen-
trations respectively (0.03, 0.05 and 0.1 g)

Fig. 10  CIE chromaticity coordinates of initial colloidal sample
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are involved in the trapping of initially produced electron-hole pairs and are considered 
pathways for radiative recombination (Gaeeni, et al. 2015). Colloidal nanocrystals can 
also emit blue due to surface defects or oxygen vacancies (Sasani Ghamsari et al. 2016). 
Recently, Xie et al., (2020) prepared neodymium (III)  (Nd3+) doped  CsPbBr3 nanocrys-
tals through the ligand-assisted reprecipitation method at room temperature with tun-
able photoemission from green to deep blue with a central wavelength at 459 nm, 90% 
quantum yield, and a spectral width of 19 nm. They used first-principles calculations to 
reveal that the increase in photoluminescence quantum yield upon doping is driven by 
an enhancement of the exciton binding energy due to increased electron and hole effec-
tive masses and an increase in oscillator strength due to the shortening of the Pb-Br 
bond. Since the colloidal nanobelts were doped by  Nd3+ ions, the recorded blue emis-
sion may be due to the down-conversion process. In the down-conversion process, the 
absorption of higher-energy photons (with a shorter wavelength) leads to emission with 
a longer wavelength than excitation photons, such as doping  Nd3+ or  Er3+ in nanocrys-
tals. These processes are divided into two types: quantum cutting and downshifting 
(DS). In quantum cutting, a higher-energy photon is transformed into two lower-energy 
photons. In DS, a higher-energy photon is transformed into a longer-wavelength one, 
and excess energy is lost in the form of heat (Rocha et al. 2014; Osipov et al. 2009; Dar-
shan et al. 2016).

Raman spectroscopy was applied to characterize the structural and phase transitions of 
materials. Figure 11 shows the Raman spectroscopy of neodymium-doped yttrium hydrox-
ide with a Renishaw spectrometer, which is excited by 532 nm. Three peaks in 311.1  cm− 1, 
403.9  cm− 1, and 483.3  cm− 1 are attributed to  Ag translatory,  E2g translatory, and  Eg libera-
tion modes, respectively. These modes belong to the Raman spectra of yttrium hydroxide 
and confirm the hexagonal structure of the sample with a space group of P63/m. Raman 

Fig. 11  Raman spectrum of neodymium-doped yttrium hydroxide nanobelts powder
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spectra of pure yttrium hydroxide can be found in Ref. (Gadipelly et al. 2021). A compari-
son between the Raman spectra of Nd:Y(OH)3 and a pure yttrium hydroxide is shown in 
Fig. 12. The difference between these two plots confirms the successful neodymium dop-
ing process. Peaks that occurred in 3349.5  cm− 1 and 366.94  cm− 1 were also assigned to 
the –OH band and Y-O respectively. Other peaks are related to carbonate and nitrate bands 
(Deshmukh et al. 2017; Gadipelly et al. 2021; Swanson et al. 1978; Guo, et al., 2009; Li 
et al. 2004).

4  Conclusion

In this manuscript, we synthesized the neodymium-doped yttrium hydroxide nanobelts 
(Nd:Y(OH)3) and then repeated it with three different concentrations of  Nd3+ ions. In the 
following, the samples were analyzed to show that this route of synthesis was completed 
successfully and to investigate the effect of  Nd3+ ion concentrations. The FTIR curve of the 
initial sample ensures that the synthesis has been done properly. The XRD pattern of the 
initial sample with Miller indices confirms the structure of Y(OH)3. Scherrer equation and 
HRTEM are also applied to synthesized samples to show the dimension and morphology 
of the nanocrystals. Also, it was shown that their results matched. The Raman spectrum 
also confirms the hexagonal structure of yttrium hydroxide and shows the neodymium 
dopant in the sample. Absorbance and emission spectra of the synthesized sample have 
demonstrated that the intensity of light emission by the colloidal sample is affected by the 
concentration of  Nd3+ ions. The blue emission of three samples that were excited by 350, 
355, and 360 nm indicates that 355 and 360 nm wavelengths are related to the nature of the 
particle (neodymium), and in excitation by 300 nm wavelength, the emission intensity of 
sample 2 (0.05 g) is the maximum one.

Fig. 12  The comparison between Raman spectrum of neodymium-doped yttrium hydroxide nanobelts 
powder (red) and Raman spectrum of yttrium hydroxide (black). 348.4  cm− 1, 403.9  cm− 1 and 483.3  cm− 10 
peaks are related to Nd- translation modes and Nd-O-H bands. (Color figure online)
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