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Abstract
Yttrium-ions-doped strontium phosphate-based glasses were prepared by following 
the classical melt quenching method. This study focuses on discovering the influence of 
the yttrium dopant on the physical, optical, and structural characteristics of synthesized 
glasses. The structural analyzes were performed using X-ray diffraction and Fourier trans-
former infrared. All of the samples examined exhibit an amorphous character, according 
to XRD. FTIR absorption spectra revealed that the phosphate network was depolymer-
ized, which increased with the level of Y2O3 as the metaphosphate units decreased and the 
pyrophosphate species increased. The measured density values were used to evaluate the 
physical characteristics of the glasses samples. Density decreased from 2.108 to 2.099 g/
cm3, while molar volume values increased from 60.974 to 62.641  cm3/mol when the 
yttrium concentration content increased from 0.0 to 1.5 mol.%. The optical measurement 
shows that the band gap for the energy values decreased from 6.528 to 5.754 eV, showing 
the alteration of the structure of strontium phosphate by an effect of the yttrium content. 
In addition, it was concluded that the refractive index of the samples increases with the 
yttrium oxide content and is inversely related to their optical band gap. Moreover, when the 
number of Y3+ ions is increased, the electronic polarizability increases. The improvement 
of electronic polarizability gives a good medium for non-linear optical applications. The 
amount of Y3+ ions present has a linear connection with the optical basicity of the materi-
als studied. As a result, the studied glass materials could be useful in photonic applications.
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1  Introduction

In recent years, glasses made of silicates, germinates, borates, vanadates, mixed lattices of 
aluminum silicates, phosphates, boron silicate, and others have been the subject of numer-
ous research studies (Bouabdalli et al. 2021; Bouabdalli et al. 2023a, b; Bouabdalli et al. 
2022a, b, c, d, e, f, g, h; Elbatal et al. 2014; El Jouad et al. 2020; Mariscal-Becerra et al. 
2017; Rada et al. 2011; Ramzi et al. 2016). These glasses have the ability to incorporate a 
wide variety of chemical compounds as dopants into their structure, and at the same time, 
these dopants may incorporate significant amounts of rare earth into their own structures, 
imparting their (optical) characteristics. Phosphate glasses are among those that have been 
the subject of the most research because of their intriguing characteristics, such as low 
melting temperature, high thermal expansion coefficient, high transparency, low viscosity, 
low refractive index, low dispersion, and low phonon energy (Linganna and Jayasankar 
2012; Mahdi Bouabdalli et  al. 2022; Mariscal-Becerra et  al. 2017). This makes them 
important for many applications such as optical data transmission, sensing, detection, laser 
technologies, and solar cells (Bouabdalli et al. 2022a, b, c, d, e, f, g, h; Bouabdalli et al. 
2022a, b, c, d, e, f, g, h; Li et al. 2016; Linganna and Jayasankar 2012). Furthermore, phos-
phate glasses are not as effective as borosilicate glasses in vitrifying some nuclear wastes 
(Bouabdalli et al. 2022d, e, f, g, h, a, b, c; Karaçoban and Özdemir 2012). The vitrification 
of some nuclear waste is being considered using phosphate glasses. Moreover, as is well 
known, phosphate glasses are characterized by low chemical durability and high hygro-
scopic, therefore the addition of heavy metal oxides such as SrO to the phosphate-based 
glasses network matrix can enhance their physical, chemical durability, and mechanical 
strength, and increase glass formation capacity (Bouabdalli et al. 2022a, b, c, d, e, f, g, h; 
Bouabdalli et al. 2022a, b, c, d, e, f, g, h; Deepa et al. 2018; Sidek et al. 1998; Sreedhar 
et al. 2013). The structure of phosphate glasses is used to determine their characteristics. 
According to Brow’s review, phosphate glasses have a network-like structure made up of 
phosphor-oxygen tetrahedrons joined by one to three bridging oxygen atoms (BOs) (Brow 
2000). The number of bridging oxygen atoms in the PO4 tetrahedron is expressed as ’n’ in 
the Qn notation, indicating network connectivity, which is influenced by the composition of 
glass (Liang et al. 2011). Due to their low processing temperatures (less than 1000 °C) and 
lower glass transition temperatures, phosphate glasses have attracted the attention of both 
the technological and scientific domains (Makhkhas et al. 2013; Shih 2004).

According to research on conductivity in on glasses containing rare earth elements, the 
conductivity of glass decreases as the amount of rare earth ions increases because these 
ions move slowly and have large masses (Devidas et al. 2008; Gedam and Ramteke 2013).

Due to their high electrical conductivity, elements ranging from lanthanum to actinium are 
collectively referred to as rare earth elements (17 elements). Scandium and yttrium, in addi-
tion to these 15 lanthanides, also show 3 + oxidation states. We have selected yttrium oxide 
(Y2O3) as the dopant for the premade phosphate glasses from the many rare earth elements. 
Y2O3, one of the rare earth elements, is essential for changing several physical and chemi-
cal characteristics of glasses and ceramics. Studies reported that mixing Y2O3 with alkaline 
earth oxides such as SrO in glass composition improves its chemical, thermal, physical, and 
mechanical properties (Kaur et al. 2011; Singh, Kalia, and Singh 2015). These glasses have 
applications in the disciplines of photonics, optics, and biomedicine and have been shown 
to be extremely effective luminescence materials (Bouabdalli et al. 2022a, b, c, d, e, f, g, h; 
Sadek et  al. 2022). Heavy metal oxide-based glass matrices, such as Y2O3, have attracted 
a lot of attention. This is a result of their characteristics, as well as structural and physical 
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qualities such as low transformation temperatures, strong infrared transmission, high density, 
high refractive index, and high thermal expansion. In addition, they can be used to protect 
nuclear waste from radiation. Singh and al reported that the addition of Y2O3 to glasses gener-
ally increases their thermal stability (Singh et al. 2007).

In addition, glasses that include yttrium oxide are of special interest since Y2O3 has been 
found to significantly improve applications such as selective internal radiation therapy (SIRT) 
to treat liver tumors (Riaz et al. 2009, 2010; Salem and Hunter 2006), as well as the endur-
ance and physical qualities of glass (Bouabdalli et al. 2022d, e, f, g, h, a, b, c; Fu and Christie 
2017). It is well known that the composition of yttrium aluminosilicate glass used for in situ 
radiation therapy, with a formulation of 17.1 mol.% Y2O3, 18.9 mol.% Al2O3, and 64.0 mol.% 
SiO2, is very strong and non-resorbable (Erbe and Day 1993; Hyatt and Day 1987). Beta parti-
cles (from the Y90 isotope), which have a relatively short half-life of 64.2 h, are released when 
this glass (in the form of solid microspheres) is activated by neutron bombardment (Burrill 
et al. 2011; Kawashita et al. 2011; Triller et al. 1995).

Incorporating Y3+ into the smaller Zr4+ crystal lattice helped form stable cubic zirconia 
polymorphs, which are thus advantageous for dental implants; According to Borgonovo et al., 
yttrium-stabilized zirconia can be used as a dental implant material (Borgonovo et al. 2012). 
The use of neodymium-doped yttrium aluminum garnets (Nd: YAG) to cure cancer (Schena 
et al. 2017). In addition, the function of yttrium oxide nanoparticles for nerve cells has been 
investigated (Schubert et al. 2006). The Y2O3 nanoparticles functioned as antioxidants that can 
protect cells from cell death induced by oxidative stress. Although its insoluble compounds, 
such as yttrium oxides, are non-toxic, its water-soluble compounds, such as yttrium chlorides 
and yttrium nitrates, are regarded as somewhat hazardous (Cochran et al. 1950). According to 
a study by Dubois et al. on the toxicity of yttrium chloride, nitrate, and oxide in rats, insolu-
ble yttrium oxide (500 mg/kg) exhibited a relatively nontoxic behavior compared to soluble 
yttrium chloride (450 mg/kg) and yttrium nitrate (350 mg/kg) (DuBois 1956).

The literature has reported on the structural consequences of the addition of Y2O3 to sili-
cate glasses. As Y2O3 concentrations exceeded 5 mol%, Singh et al. analyzed the structural 
alterations of lithium borosilicate glasses with the addition of 0 to 15 mol% of Y2O3 and dem-
onstrated that Y2O3 operated as a network modifier (Singh et al. 2015). Simon et al. studied 
iron-containing yttrium aluminosilicate glasses using XPS analysis and mentioned that Y2O3 
functioned as a network modifier oxide in the silicate glass network (Simon et al. 2005). In 
their study of borosilicate glasses doped with Y2O3, Fayad et al. observed that, especially at 
concentrations greater than 1% by weight, Y2O3 preferred to behave as a network modulator 
rather than a former network (Fayad et  al. 2018). Moreover, the structure of glasses based 
on yttrium-doped phosphate was simulated using classical molecular dynamics, and Fu et al. 
found that the depolymerization of the phosphate network caused yttrium oxide to operate as a 
network modifier (Fu and Christie 2017).

The present work is devoted first to characterizing the structural composition of phosphate 
glass containing strontium oxide by doping it with yttrium oxide at different concentrations; 
second, to discover the physical properties of the strontium phosphate glasses doped with vari-
ous concentrations of yttrium; third, to study the effect of the addition of yttrium content on 
the optical properties of the prepared glasses.
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2 � Materials and methods

2.1 � Glass preparation

Four different glass formulations based on strontium phosphate in system 65 
(P2O5)–(35 − x) (SrO)–x (Y2O3) (where x varied from 0 to 1.5  mol.%) were prepared 
using the classic melt quenching technique using an ammonium dihydrogen phosphate 
(NH4H2PO4) for P2O5, Strontium carbonate (SrCO3) for SrO, and yttrium chloride (III) 
(YCl3∙6H2O) for Y2O3. The precursors were weighed, combined in an agate mortar, and 
then transferred to an alumina crucible, which was then placed in a furnace at 120 °C for 
24  h to evaporate the water and ammoniac. Finally, the temperature of the furnace was 
increased to 1100 °C to reach the melt for about 2 h as highlighted in Table 1. The resultant 
molten glass was then poured onto a steel plate for quenching and left to cool to room tem-
perature. Figure 1 presents the schematic of the synthesis process method used to prepare 
the desired glasses as reported in (Bouabdalli et al. 2023a, b).

2.2 � Characterization technique

2.2.1 � Powder X‑ray diffraction

XRD analysis was used to explore the amorphous character of each glass formulation. Data 
were collected using the X-ray diffractometer (Shimadzu model: XRD 6000 using CuKa 
radiation, λ = 0.154 nm), in the region of 5° to 70°.

2.2.2 � FTIR analysis

Infrared spectroscopy of the glass particles was also performed using a Brüker Tensor 27 
spectrometer (Brüker Optics, Germany) which was operated in absorbance mode. Spectra 
were recorded in the range of 400 to 1500 cm−1 utilizing a Standard Pike ATR cell (Pike 
Technologies, Inc., UK). OPUS software version 5.5 was used for the analysis.

2.2.3 � Physical parameters of the studied glasses

The density of pure and yttrium-doped strontium phosphate-based glasses was calculated 
using the mass/volume formula.

Table 1   Glass codes, drying and melting temperature used throughout the study

Glass code P2O5 
content
(mol.%)

SrO
content (mol.%)

Y2O3 content 
(mol.%)

Drying temp./
time (°C/h)

Melting 
temp./time 
(°C/h)

PSrY0.0 65 35 0 120/24 1100/2
PSrY0.5 65 34.5 0.5 120/24 1100/2
PSrY1.0 65 34 1 120/24 1100/2
PSrY1.5 65 33.5 1.5 120/24 1100/2
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where MT is the total mass of each glass sample, VT is the total volume of each glass 
sample.

The molar volume of the glass of phosphate according to the molecular weight (M) and 
density yields the following expression (Ahmadi et al. 2017):

where Vm is the molar volume and M is the total molecular weight of the multicomponent 
glasses system given by:

where xSrO , xP2O5
 , and xY2O3

 are the mole fractions of the constituent oxides; ZSrO , ZP2O5
 , and 

ZY2O3
 are the molecular weights of the constituent oxides.

The following quantities such as polaron radius (rp), ion concentration (Ni), field strength 
(F), and internuclear distance (ri) were evaluated by means of the relations.

(1)� =

M
T

V
T

(2)Vm =
M

�

(3)M = xSrOZSrO + xP2O5
ZP2O5

+ xY2O3
ZY2O3

(4)Ni =
N�X

Mav

Fig. 1   Schematic illustration of 
the method used to synthesize 
the phosphate glasses
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where N is the Avogadro number, X is the mole fraction of the dopant, and Mav is the aver-
age molecular volume (Ahmadi et al. 2017).

Here, Ni is the concentration of the ions.

Here, r is the radius of the polaron and Z is the atomic number of yttrium.

Here, Ni is the concentration of the ions.

2.2.3.1  UV–vis spectral measurements  The diffuse reflectance spectra of the glass pow-
ders obtained by grounding small glass blocks in a ceramic mortar were collected in 
the range of 100–1100 nm using a near-infrared UV–Vis spectrophotometer (UV-1800, 
Shimadzu, El Jadida, Morocco). The spectra were obtained with a resolution of 0.3 nm 
at room temperature.

The Kubelka–Munk function F(R) has a direct relationship with absorbance. As a 
result, the following relation was used to convert the F(R) values to the linear absorp-
tion coefficient (α):

where ‘’t’’ is the thickness of the sample.
In the limiting case of an infinitely thick sample, thickness and sample holder have 

no influence on the value of reflectance (r). In this case, the Kubelka–Munk equation at 
any wavelength becomes (Yakuphanoglu 2010; Zheng et al. 2011):

where R∞ = Rsample∕Rstandard . The following relational expression proposed by Tauc et al. 
(Brow 2000; Rada et al. 2012) was used.

Here, Eg is the band gap, h is Planck’s constant, v is the vibrational frequency, α is 
the absorption coefficient, and A is the proportional constant.

The acquired diffuse reflectance spectra were converted to the Kubelka–Munk func-
tion. Therefore, the vertical axis was converted to the quantity F (R∞), which was pro-
portional to the absorption coefficient. The α in the Tauc equation is substituted with F 
(R∞). Thus, in the actual experiment, the relational expression becomes (Zheng et al. 
2011):

(5)rp(A) =
1

2

(
�

6Ni

) 1

3

(6)F =
Z

r2

(7)ri(A) =

(
1

Ni

)1∕3

(8)� =
F(R)

t

(9)F(R∞) =
(1 − R∞)2

2R

(10)�hv = A
(
hv − Eg

) 1

2
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Therefore, the band gap Eg of a powder sample can be easily extracted by getting F(R∞) 
from Eq. (9) and plotting the [F(R∞)hv]2 against hv.

3 � Results and discussions

3.1 � XRD analysis

XRD of pure and yttrium-doped strontium phosphate glasses was recorded in the range 
of 5° to 70°. The results showed that the XRD pattern of the prepared phosphate glasses 
exhibited extensive diffusion with decreased scattering angles. It showed a long-range 
structural irregularity, a characteristic of an amorphous nature, as seen in Fig. 2. The XRD 
characterization graphs, which did not have identifiable or sharp peaks, confirmed that the 
prepared samples were amorphous. This behavior is consistent with earlier research (Arafat 
et al. 2020; El-Rehim et al. 2022).

(11)[F(R∞)hv]2 = B
(
hv − Eg

)

Fig. 2   XRD patterns for glass of 
the 65 P2O5–(35 − x) SrO–xY2O3 
phosphate system (where x = 0, 
0.5, 1, and 1.5 mol.%)
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The broad halo-peak XRD positions and their full width at half maximum (FWHM) 
for each of the examined glasses, determined by the origin program, are shown in Table 2. 
When the dopant impact on the strontium phosphate glass system was compared, it was 
discovered that, as the concentration of yttrium increases, the position of the XRD broad 
halo-peak shifts toward lower angles of diffraction, as shown in Table 2 and Fig. 2. Addi-
tionally, it has been found that as the amount of yttrium in phosphate glasses rises, so does 
the FWHM of the XRD broad halo-peak. This behavior may be explicated by the change in 
interatomic distances due to the yttrium dopant. It is also important to note that the amor-
phous nature of the glass structure was not affected by the addition of a dopant to the glass 
system. The results obtained are in good agreement with previous work published in the 
literature (Omar et al. 2016).

3.2 � FTIR analysis

Fourier transform infrared (FTIR) spectroscopy was performed to explore any structural 
changes within the glasses produced. Figure 3 shows the FTIR spectra of 65 P2O5–(35 − x) 
SrO–xY2O3 glasses in the frequency region between 400 and 1500  cm−1. The spectra of 
the pure and yttrium-doped strontium phosphate glasses have similar spectral features. 
The FTIR spectra can be deconvoluted using Gaussian lines to the component bands for 
each one to study the origin of this characteristic FTIR symmetry. Other peaks have been 
obtained by deconvolution in the 400–1500  cm−1 wavenumber region. Table  3 lists the 

Table 2   The position and full 
width at half maximum (FWHM) 
of the XRD broad-halo peak of 
the strontium phosphate glasses 
as a function of the yttrium 
concentrations

Samples Position broad-halo peak 
(degree)

FWHM (degree)

PSrY0.0 25.4326 11.00232
PSrY0.5 25.12569 11.73809
PSrY1.0 25.09676 11.60451
PSrY1.5 24.91034 12.12556

Fig. 3   FTIR spectra for strontium 
phosphate-based glasses in the 
65 P2O5–(35 − x) SrO–x Y2O3 
system (with x = 0, 0.5, 1 and 
1.5 mol.%)
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band centers, the relative area of the deconvoluted peaks, and their assignments to the 
appropriate bands.

The specific deconvoluted spectrum for pure strontium phosphate glass is given in 
Fig. 4. The band around 534  cm−1 is due to the harmonics of the bending vibrations of 
the O–P–O linkages of basic structural units of phosphate glasses (Ahmed et  al. 2004; 
Doweidar et al. 2005). The wavenumber localized at 564 cm−1 is attributed to bending and 
torsional vibrations that can be assigned to overlapping vibrations involving the strontium 
oxygen polyhedral and (P2O7)4− groups that are characteristic of a structure dominated by 
Q1 tetrahedrons (Lai et al. 2012). In addition, at 738 cm−1, there is another band caused by 
the symmetric stretching vibrations of the P–O–P bridge in the Q1 units (Sene et al. 2004). 
Moreover, the strong IR absorbance centered at 907 cm−1 is attributed to the asymmetric 
stretching vibration of the P–O–P links of PO4 units (Sene et al. 2004). The broad band 
centered at 1046  cm−1 is assigned to the symmetric stretching mode of the O–P–O non-
bridging bond in the Q1 groups (Silva et al. 2010), indicating that the Q1 units are a com-
pletely major component of the structure of the glass of non-doped strontium phosphate. 

Table 3   The assignments and relative areas of different vibrational bands from FTIR spectra of 65 P2O5–
(35 − x) SrO–xY2O3 glasses

Frequency regions 
(cm−1)

Assignments Relative areas dependence of vibrational bands 
versus Y2O3 concentrations (x mol.%)

0 0.5 1 1.5

534–548 Network bend 0.75 0.93 1.51 8.46
564–583 Cation oxygen polyhedral and 

(P2O7)4− groups
3.32 1.80 2.79 0.42

721–738 (P–O–P)sym stretch (Q1) 7.66 4.47 7.81 7.60
902–907 (P–O–P)asym stretch (Q2) 4.72 2.49 4.95 6.25
1026–1046 (O–P–O)sym stretch (Q1) 15.79 9.74 18.71 22.37
1269–1277 (O–P–O)asym stretch (Q2) 4.11 2.95 5.38 6.73

Fig. 4   Deconvoluted FTIR spec-
tra of 65 P2O5–(35 − x) SrO–x 
Y2O3 glasses for x = 0 mol.%



	 E. M. Bouabdalli et al.

1 3

788  Page 10 of 25

The absorption band located at 1209 cm−1 is attributed to asymmetric stretching motions 
of the O–P–O non-bridging oxygen in the Q2 groups (Lu et al. 2015).

As examples represent for the nominal molar composition 0 ≤ x ≤ 1.5% range, the 
deconvolution in Gaussian bands of the spectrum for the x = 0.5% and x = 1% glasses, are 
given in Figs. 5 and 6, respectively. The incorporation of Y2O3 into the structural network 
of the parent-modified strontium phosphate glass is unmistakably shown by changes in 
the FTIR spectra of 65 P2O5–(35 − x) SrO–xY2O3 glasses (Fig.  4), which change as the 
Y2O3 content increases. The vibrations of structural units containing Y–O bonds can 
be observed in the lower frequency section of the FTIR spectra, while structural altera-
tions in the phosphate network are particularly evident in the high-frequency portion of 
the spectrum. The additions of yttrium content to the base glass result in a change of the 
absorbance band localized at 733 cm−1 to a higher wavenumber (738 cm−1). The shift of 

Fig. 5   Deconvoluted FTIR spec-
tra of 65 P2O5–(35 − x) SrO–x 
Y2O3 glasses for x = 0.5 mol%

Fig. 6   Deconvoluted FTIR spec-
tra of 65 P2O5–(35 − x) SrO–x 
Y2O3 glasses for x = 1 mol.%
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the band was attributed depolymerization of the phosphate network, subsequently reducing 
the chains and increasing Q1 pyrophosphate groups. Furthermore, the band localized at 
900 cm−1 also showed similar behavior, changing from 900 to 907 cm−1 to characterize the 
transition from chain to pyrophosphate, increasing the disorder in the glass network (RUL-
MONT et al. 1991). The shift of νas(P–O–P) bands toward a higher wave number when the 
content of the yttrium content increases, a similar trend is observed for the IR spectra for 
glasses of P2O5-CaO-Na2O-Y2O3 when the amount of Na2O decreases (Arafat et al. 2020). 
In addition, the position of a prominent band at 1262 cm−1 (produced by the asymmetric 
stretching of PO2−) is relocated to 1266 cm−1 by adding the amount of yttrium concentra-
tions. Additionally, we notice that as the Y2O3 content in the strontium phosphate glasses 
increases, the location of the IR band’s peaks shifts to the lower wavenumber side. It is in 
line with earlier research (Sene et al. 2008; Shajan et al. 2017).

3.3 � Study on physical properties

The physical characteristics of rare-earth-ions-doped strontium phosphate-based glasses 
depend on the physical glass matrix. The nature and quantity of glass that forms and the 
network modifier used to affect the physical structure. As a result, the physical characteris-
tics of the glasses examined were calculated using the formula in (Dejneka et al. 1995) and 
are shown in Table 4. The density measurement of the strontium phosphate-based glasses 
decreased from 2.108 to 2.099  g/cm3 when the content of the yttrium concentrations 
increased from 0.0 to 1.5 mol.% as demonstrated in Fig. 7. The reduction in the density of 
the strontium phosphate glasses can be attributed to the replacement of a larger SrO den-
sity (4.7 g/cm3) with a smaller relative density of YCl3 (2.67 g/cm3). Moreover, a decrease 
in densities was probably caused by the formation of non-bridging oxygen (NBO) atoms 
around the doping ions (Aryal et  al. 2018; Mohan et  al. 2007). With increasing yttrium 
concentrations, the molar volume of the glasses based on strontium phosphate increased 
from 60.974 to 62.641 cm3/mol. This increase in the molar volume of the strontium-phos-
phate-based glasses may be explained by a decrease in the compactness of the glasses. In 
addition, the increase in volume can be indicated by changes in the structural units of the 
glass, which can be confirmed by FTIR.

The radius of the polaron shrank as the concentration of trivalent yttrium ions 
increased, as seen in Table  4. The decrease in the polaron radius as the content 
of yttrium trivalent ions increased in the strontium phosphate glasses was a sig-
nal of decreased deformed lattice sites of the glasses studied. Similarly, as doping 

Table 4   Physical properties of yttrium-doped phosphate glasses

Property PSrY0.0 PSrY0.5 PSrY1.0 PSrY1.5

Density (g/cm3) 2.108 2.105 2.102 2.099
Average molecular weight (g/mol) 128.530 129.529 130.528 131.526
Molar volume (cm3/mol) 60.974 61.530 62.086 62.641
Concentration of Y3+ (Ni, 1020 ions/cm3) 0.0 0.490 0.970 1.442
Polaron radius (rp, A) 0.0 11.018 8.771 7.685
Inter-ionic distance (ri, nm) 0.0 67.770 58.211 53.301
Field strength (F, Å−2) 0.0 0.321 0.507 0.660
Number of bonds per unit volume (nb, 1029 m−3) 0.137 0.136 0.135 0.134
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concentrations increased, the inter-ionic distances between Y3+ ions reduced, indicating 
a rise in the field strength around the ions (Table 4). As doping concentrations increase, 
attractive forces between ions and the nearby structural elements become stronger, caus-
ing field strengths to increase and the inter-ionic distance to decrease (Ramesh et  al. 
1997). The increased field strength increased as the amount of Y3+ ion availability per 
unit volume increased as the concentration of rare earth ions increased (Fig. 8).

The average phosphorus-phosphorus distance, which may be determined using the 
formula below, can also be used to study the impact of the yttrium concentration on the 
phosphate glass system.

where, NA is the number Avogadro and XP represents the molar fraction of P2O5. ⟨dP−P⟩ 
is found to vary from 406.72 × 10−02 to 410.02 × 10−02 Å with increasing the content of 
yttrium.

The oxygen packing density (OPD) and the packing density are also important 
parameters that explain the system of the glasses. Packing density, VP (Veeranna Gowda 
2013) is the measure of the rigidity of any oxide system that could be determined by the 
following equation:

(12)⟨dP−P⟩ =
�

Vm

2NA

�
1 − XP

�
�1∕3

Fig. 7   Change in molar volume and density of the strontium phosphate-based glasses in relation to the 
yttrium concentration
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Here, Vi represents the packing factor and Xi is the mole fraction of the composition. 
The packing factor (Vi) of an oxide MXOY having M and O ions of ionic radii rM and rO can 
be given by the following relationship:

The Vi of P2O5 = 34.8 cm3/mol and Y2O3 = 24.8 cm3/mol are available in the literature 
(Inaba et al. 1999). For SrO, it is 10.46 cm3/mol, calculated in this work via Eq. (10). It is 
clearly confirmed that the packing density decreases from 0.4293 to 0.4216 with increasing 
yttrium concentration, increasing the molar volume of the glasses prepared.

The OPD describes the association of oxygen atoms in the glass network, which can be 
calculated using the formula (Singh et al. 2015). It is discovered that as the yttrium level in 
the studied phosphate glass increases, the OPD varies between 59.04 and 57.95 mol/l.

The number of bonds per unit volume, nb, of the glasses can be calculated by the follow-
ing relationship (Hager and El-Mallawany 2010; Lide 2004):

(13)V
P
=

1

V
m

∑
V

i
X

i

(14)V
i
=

4�N
A

3

(
Xr

3

M
+ Yr

3

O

)

(15)n
b
=

∑
n
s

N�

M

Fig. 8   The variation of the inter-ionic distance and field strength parameters according to the Y3+ ion con-
centrations



	 E. M. Bouabdalli et al.

1 3

788  Page 14 of 25

where ns is the number of bonds per unit of glass formula, ns = (coordination number of 
each cation)*(number of cations in the glass formula unit), N represents the number Avog-
adro, M is the molecular weight of the glass and  � its density. Table 4 shows the computed 
values of nb.

Figure 9 demonstrates the variation observed in the packing density 
(
Vp

)
 , ⟨dP−P⟩ and the 

oxygen packing density (OPD) with the change in the composition of yttrium. The forma-
tion of additional non-bridging oxygen and small bond modifications are responsible for 
this change. In addition, the number of bonds per unit of glass volume (nb) is determined 
using CNi, the coordination number of the cations immediately taken from the literature 
(Lide 2004). The nb value is observed to decrease as the amount of yttrium in the glass 
increases, confirming the variance in the molar volume and density values.

3.4 � Optical properties

3.4.1 � Reflectance spectra

Diffuse reflectance UV–Vis spectra of pure and yttrium-doped strontium phosphate 
glasses were recorded to characterize their structural features, as shown in Fig.  10. The 
glass matrices (PSrY0.0) presents the lowest reflectivity in the Ultraviolet region compared 
to the yttrium-doped glasses and it has the highest reflectivity in the visible region. The 
Kubelka–Munk transformed reflectance spectra of these prepared glasses are presented in 
Fig. 11. By extrapolating the linear portion of these spectra to meet the hν axis at [F (R∞)
hν]2 → 0, the values of the band gap (Eg) have been determined. The optical band gaps as-
quenched samples fall in the insulator region. The undoped strontium phosphate glasses 
(PSrY0.0) exhibit the highest value of the energy band gap around 6.528  eV. When the 

Fig. 9   Variation of packing density, < dP−P > × 10−2 Å and OPD (mol/l) with yttrium concentration
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yttrium concentration was increased from 0.0 to 1.5 mol.% in strontium phosphate glasses, 
the optical band gap decreased from 6.528 eV for PSrY0.0 to 5.754 eV for PSrY1.5.

The decrease in the optical band gap of the strontium phosphate glasses with the addi-
tion of the yttrium content can be explained by the increase in the non-bridging oxygen, 
which was reported in previous studies (Novatski et al. 2008; Singh et al. 2015). Moreover, 
the decrease of the Eg values in these yttrium-doped glasses may be due to the increasing 
cationic field strength (CFS) of the yttrium element (Li et al. 2019). The Urbach energy 
(Eu) of the glass samples was determined using the following relationship:

The Urbach energy can be obtained from the graph of ln F (R) versus the photon energy, 
taking the reciprocal of the slope of the linear portion (Waring and Hsu 1983). The energy 

(16)�(v) = � exp(hv∕EU)

Fig. 10   Reflectance spectra of 
strontium phosphate glasses 
according to yttrium concentra-
tions

Fig. 11   Energy band gap of the 
synthesized glasses according to 
the content of yttrium
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band gap and Urbach energy values are given in Table  5. We observed that the Urbach 
energy of the synthesized samples increased when the yttrium concentration also increased 
from 0.0 to 1.5 mol.%. Yttrium is an intermediate oxide that may be employed as both a 
modifier and a former. In this case, however, it appears to function as a network modula-
tor in the glass phosphate network. In conclusion, the optical band gap and Urbach energy 
also depend on other factors than non-bridging oxygens (NBOs). The addition of Y2O3 
leads to a shift in the broad halo peak toward lower diffraction angles, which modifies the 
glass network. The XRD spectra clearly indicated that the change in the broad halo peak 
is moving toward lower diffraction angles, where Y2O3 is present in glasses. This could be 
due to the reduction in the length bond and a higher coordination number with oxygens, 
which exhibits a transformation of the structural unit of the glassy phosphate network from 
metaphosphate to pyrophosphate and leads to a higher Urbach energy value compared to 
the PSrY1.5 glass.

3.4.2 � Calculation of the refractive index (n) of the prepared glasses

The refractive index (n) for all glass samples in the current study was determined using the 
following equation (Dimitrov and Sakka 1996; El-Mallawany et al. 2008):

The refractive index (n) values obtained for the prepared glasses are given in Table 5 
and presented in Fig.  12. It is clearly observed that the refractive index increased with 
increasing yttrium content, increasing from 0.0 to 1.5 mol.% in the strontium phosphate 
glasses.

As demonstrated in Fig.  12, we observed that the value of the refractive indices was 
oppositely corresponding to the optical band gap of the synthesized samples. The refrac-
tive indices obtained are greater than unity and also higher than the index of refraction 

(17)n =

[
6

√
5

Eg

− 2

] 1

2

Table 5   Optical band gap, Urbach energy, refractive index, molar refractivity, molar polarizability, reflec-
tion loss, metallization criterion, electronegativity, electron polarizability, optical basicity and oxide ion 
polarizability of the pure and yttrium-doped strontium phosphate glasses

Samples PSrY0.0 PSrY0.5 PSrY1.0 PSrY1.5

Optical band gap (eV) 6.528 6.354 6.034 5.754
Urbach energy (eV) 1.267 2.563 2.750 3.830
Refractive index (n) 1.803 1.823 1.860 1.895
Molar refractivity Rm (cm3 mol−1) 26.140 26.850 27.984 29.042
Molar polarizability αm (Å3) 10.362 10.643 11.093 11.513
Reflection loss (RL) 0.429 0.436 0.451 0.464
Metallization criterion (M) 0.571 0.564 0.550 0.540
Electronegativity (χ) 1.755 1.708 1.622 1.547
Electron polarizability (α°) 1.921 1.963 2.040 2.108
Optical basicity (˄) 0.823 0.846 0.889 0.927
Oxide ion polarizability, αO2−(Å) 2.881 2.952 3.066 3.173
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of silicate glasses, which is approximately 1.458 (Naftaly and Miles 2007). Moreover, the 
glass samples have a high value (n), which indicates that they can be used as promising 
materials for photoelectronic and optical filter systems (Rammah et al. 2020). In addition, 
the increase in the refractive index (n) may be explained by the role of yttrium oxide in 
altering the structural properties of the strontium phosphate glass system. The addition of 
trivalent yttrium leads to the modification of the glass matrix by converting the metaphos-
phate unit to the pyrophosphate unit, which was previously confirmed by FTIR spectros-
copy. The conversion of a structural unit of a glass system leads to the creation of non-
bridging oxygen, which increases the polarizability of the phosphate glass network. The 
high polarizability of the lone pair in non-bridging oxygen causes an increase in the refrac-
tive index. The formation of non-bridging oxygen leads to the creation of ionic bonds, 
which increase the number of refractive indices.

The molar refractive (Rm), molar polarizability 
(
�m

)
 and reflection loss (RL) can be eval-

uated by the following relationship (Shaaban et al. 2020):

The molar polarizability 
(
�m

)
 is directly proportional to the molar refractivity 

(
Rm

)
 of 

the material by the following equation:

where NA is the number Avogadro.
The reflection loss (RL) can be determinate through the ratio between the molar volume 

(Vm) and the molar refractivity (Rm):

The molar refractivity (Rm) of a substance is determined by its molar polarizability (
αm

)
 . The values obtained for the refractive molar (Rm), molar polarizability (αm), and 

reflection loss (RL) are given in Table 5. It was discovered that (see Table 5) the values of 

(18)Rm = Vm

(
1 −

√
Eg∕20

)

(19)�m =

(
3

4�NA

)
Rm

(20)RL =

(
Rm

Vm

)

Fig. 12   The energy band gap 
(Eg) and the refractive index 
(n) of the strontium phosphate 
glasses according to the yttrium 
content
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(Rm), 
(
αm

)
 and reflection loss (RL) increase as the Y2O3 content increases. These values are 

increasing as a result of an increase in molar volume.
Electronic oxide ion polarizability, �O2− can be calculated using the obtained molar 

volume (Vm) and the refraction index (n) of the following relationship reported in (Moss 
1985):

where �O2− represents the electronic oxide ion polarizability, 
∑

�cat represents the molar 
cation polarizability, NO2− is a symbol for the quantity of oxide ions, Vm is the molar 
volume and n n is the refractive index of the glass sample. For a glass with matrix 
xAaOb–yBcOd–zCeOf–tDgOh, 

∑
�cat will be xa�A + yc�B + ze�C + tg�D and NO2− will 

bexb + yd + zf + th . From the available literature, the values of αP, αSr, and αY are 0.021, 
0.861 and 0.554 Å3, respectively (Dimitrov and Komatsu 1999). The values obtained for 
the electronic oxide ion polarizability for all glass samples are listed Table 5. As can be 
seen in Table 5, the electronic polarizability of oxide ions increases when the concentration 
of trivalent yttrium ions is added to the strontium phosphate glasses. The compositional 
dependence of the molar polarizability and oxide ion polarizability of prepared glasses 
on the concentrations of yttrium is presented in Fig. 13. As the concentration of trivalent 
yttrium increases, the increasing trend of molar polarizability of the glass samples is vis-
ible. The amount of non-bridging oxygen that is present in the phosphate glass affects the 

(21)�O2− =

[(
Vm

2.52

)(
n2 − 1

n2 + 2

)
−

�∑

cat

]
∕NO2−

Fig. 13   Molar polarizability and oxide ion polarizability as a function of the yttrium content in the prepared 
glass
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deformability of the electron cloud. Non-bridging oxygen is made up of lone pair free elec-
trons that are less strongly coupled to the nuclear charge. Therefore, free electrons are read-
ily polarized as the electrical field penetrates the material (Halimah et  al. 2019). As the 
concentration of the yttrium trivalent (Y3+) increases, so does the quantity of non-bridg-
ing oxygen ions. An increase in the amount of non-bridging oxygen in the glass system 
causes an increase in the number of free electrons. As a result, as the concentration of Y3+ 
increases, so does the molar polarizability. As can be demonstrated in Fig.  13, we have 
observed the linear trend of the polarizability of the values of the oxide ions, which are 
found in the glass samples. The undoped strontium phosphate glasses present the lowest 
value of the electronic oxide ion polarizability. We have found that the values of oxide-ion 
polarizability increase when the concentration of yttrium increases from 0.0 to 1.5 mol.% 
in glass systems. In the past, we hypothesized that a rise in the refractive index causes a 
rise in the polarizability of oxide ions. This is because there is a direct correlation between 
the polarizability of oxide ions and molar refraction (Duffy and Ingram 1971).

The metallization criterion of glass samples can be evaluated using the following 
relationship:

The values of the metallization criteria (M) are directly dependent on the reflection loss 
(RL); according to the data in Table 5 and plotted in Fig. 14, it can be seen that M decreases 
with the addition of yttrium content. This decrease in M shows the metallization of the 

(22)M = 1 −
Rm

Vm

Fig. 14   Optical basicity (˄) and metallization criterion (M) of the synthesized glasses with different concen-
trations of yttrium
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strontium phosphate-based glass samples, which leads to a decrease in the optical band 
gap. Therefore, the energy band gap of the phosphate glass affects the metallization crite-
ria. The decreasing value of the energy band gaps suggests that the valence and conduction 
bands have widened. The glass system will become metalized as a result of this process 
(Azlan et al. 2019).

The optical electronegativity (χ), the electron polarizability (∝ °), and optical basicity 
(⋀) can be estimated using the following equations:

The electronegativity (χ) of the glass samples can be calculated using the values of 
(Eg) (see Table  5). Therefore, the values of electronegativity (χ) decrease with increas-
ing yttrium concentration. Because electronic polarizability and optical basicity follow the 
opposite trend of electronegativity (χ), their values increase as the concentration of yttrium 
increases.

Figure  14 also shows the change in optical basicity according to the yttrium content 
in strontium phosphate glasses. The high value of the optical basicity of the glass series 
shows that the phosphate glass system is more basic. As a Lewis base in the glass system, 
oxygen ions lend electrons to the nearby cations. The high degree of donating capacity of 
oxide ions strongly influenced the property of acid–base. Moreover, the polarization state 
of the oxide ions in the glass system has been said to be connected to their optical basicity 
(Duffy 1989). The linear trend of optical basicity along with the concentration is found in 
the prepared glass. In addition to that, the values of optical basicity are shown to increase 
somewhat with increasing concentration of Y3+. This behavior can be explained by com-
paring the optical basicity value of a single element in the phosphate glass system. Former 
oxides should be less basic than modifier oxides in glass former and modifier conditions. 
When modifier oxide is added to the former oxide, the modification reaction becomes an 
acid–base reaction in which modifier oxide ions approach the acidic area of the former 
oxide in decreasing order of acidity (Sidek et al. 2004).

4 � Conclusion

In summary, we successfully prepared pure and yttrium-doped strontium phosphate 
glasses using the conventional melt-quenching method. The structural properties of the 
strontium phosphate-based glasses were examined by X- ray diffraction (XRD) and Fou-
rier transform infrared (FTIR) spectra. The X-ray diffraction (XRD) pattern revealed 
that all of the prepared glasses were amorphous. FTIR spectroscopy shows that the 
addition of the yttrium content leads to depolymerization of the structural composi-
tion of the glass system network, reducing the number of metaphosphate chains and 
increasing the number of pyrophosphate groups. When the amount of yttrium in the 
sample glass increased, it was discovered that the density increased from 2.108 to 
2.099 g/cm3 and the molar volume reduced from 60.974 to 62.641 cm3/mol. The opti-
cal measurement confirmed that the energy band gap of synthesized glasses decreases 

(23)� = 0.2688 × Eg

(24)∝◦= −0.9� + 3.5

(25)∧ = −0.5� + 1.7
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with increasing yttrium content. The index of refractive of the sample glass is found to 
increase with Y2O3 supporting the creation of non-bridging oxygen, which increases the 
polarizability of the phosphate glass network. We have obtained that the molar polariz-
ability values of strontium phosphate glasses increase with increasing concentration of 
Y3+ (1.921–2.108  Å3). The results obtained for the oxide ion polarizability of stron-
tium phosphate glasses are found to be linear in trend along with the Y3+ concentra-
tion (2.881–3.173 Å). With increasing concentrations of Y3+, the linear trend of optical 
basicity is observed in the strontium phosphate glass system (0.823–0.927). In addition, 
the value of the metallization criterion of strontium phosphate glass decreased with the 
content of yttrium (0.571 to 0.540). All of the results of all of the structural, physical, 
and optical analyzes are in good relation to each other and suggest that these prepared 
glasses are promising materials for photoelectronic and optical filters.
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