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Abstract
In this paper, the extended (3+1)-dimensional cubic Schrödinger equation (3D-CNLSE) 
describes the propagation of pulses in highly nonlinear optical systems solved by the gen-
eralized Jacobi elliptic function expansion method. Many novel periodic, hyperbolic, and 
trigonometric function wave solutions are obtained. The obtained solutions recover some 
other solutions obtained in the literature and add other new solutions for it. Moreover, the 
resulting solitary wave solutions can take many different shapes like periodic, kink soliton, 
and bright solitons. To illustrate the dynamics of the different solitary wave solutions we 
have chosen to plot the periodic and the kink wave solutions in a medium with self-focus-
ing Kerr-nonlinearity and the bright soliton wave in a medium with self-defocusing nonlin-
earity every wave was drowned in the 3D, Density, and 2D and it was clear that the solitary 
wave shape is affected by the choices of the parameters represented the medium.

Keywords  Extended 3D nonlinear Schrdöinger equation · Generalized Jacobi elliptic 
expansion method · Optical solitons

1  Introduction

Nowadays, the nonlinear Schrödinger equation (NLSE) becomes an important model in 
numerous fields of science like quantum mechanics, nonlinear optics, ocean dynamics, 
plasma physics, etc. (El-Shiekh 2019; El-Shiekh and Gaballah 2021a, 2020a, b, c; El-
Shiekh and Hamdy 2023; Gaballah et al. 2022).

Currently, the higher dimensional NLSE has attracted much attention since the high-
dimensional NLSE model is more realistic and plentiful due to the increase of dimension. 
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Moreover, other difficulties can be found by increasing the nonlinear terms like in the cubic 
and higher-order nonlinear Schrödinger equation which demonstrate the propagation of 
optical pulses in highly nonlinear optical systems (Alamri et al. 2019; Cheemaa et al. 2018; 
Li and Ma 2020; Wang 2021; Wazwaz 2021; Wazwaz and Mehanna 2021).

Recently, (Wang 2021) has introduced a new extended (3+1)-dimensional cubic NLSE 
built on the extended (3 + 1)-dimensional zero curvature equation as follows:

Then, (Wazwaz and Mehanna 2021) generalized the extended (3+1)-dimensional cubic 
NLSE (1) in the following form:

where �(x, y, z, t) is the complex envelope of the wave and x,  y,  z are the spatial variables, 
where t is the temporal variable, also pj, qj, where j = 1, 2, 3 are constants and r = ±1 is 
a parameter may representing self-focusing Kerr and self-defocusing nonlinearity, respec-
tively. Equation (2) can be used to describe the pulse propagation in nonlinear optical fibers 
(Wang 2021; Wazwaz 2021; Wazwaz and Mehanna 2021).

From the previous importance of the extended (3+1)-dimensional cubic NLSE espe-
cially in the optics field, we are going to drive novel wave solutions for this equation using 
the generalized Jacobi elliptic function expansion (GJEE) method. The investigated solu-
tions have different waveforms like kink, soliton, and periodic shapes and to discuss the 
novelty of the obtained solutions we will plot them in different structures and compare 
them with other obtained solutions before

2 � Methodology

Nonlinear differential equations (NLDE) have an immense number of applications in 
numerous fields, especially in physics where they find widespread use in magnetohy-
drodynamics, ferrohydrodynamics, hydrostatic gravity waves, as well as the study of the 
electromagnetic spectrum, photons, and many other fields. To obtain exact solitary wave 
solutions to advanced NLDE that cause great concern in both physicists and mathemati-
cians. These solutions are used to describe complex physical phenomena and dynamics, 
such as periodic wave solutions, solitons solutions, elliptic function solutions, dark soli-
tary waves of the solution, and kink solitary waves of a solution, several methods have 
been constructed for this purpose, like the homogenous balance method, Hirota’s bilin-
ear method, the hyperbolic function expansion method, auxiliary method, the sine cosine 
method, the Kudryashov method, the nonlinear transformation method, extended direct 
algebraic method and the trial function method (Cheemaa et al. 2019; El-Sayed et al. 2014; 
El-Shiekh et al. 2022; El-Shiekh 2021, 2018b, c, a, 2015; El-Sayed 2013; El-Shiekh et al. 
2022; El-Shiekh and Gaballah 2023b, a; El-Shiekh et  al. 2022; El-Shiekh and Gaballah 
2021b; Gaballah et al. 2023; Li and Ma 2023b, a, 2022b, a, 2018, 2017; Ma et al. 2009, 
2018; Ma and Li 2023; Moatimid et al. 2013; Seadawy 2016; Seadawy et al. 2019, 2018; 
Zkan et al. 2020). One of these powerful techniques is the generalized Jacobi elliptic func-
tion expansion technique (Gaballah et al. 2023, 2022; Zayed and Alngar 2020). In the fol-
lowing the main steps of the GJEE method:

Step1: Consider a nonlinear partial differential equation (NPDE)

(1)i�t − (�xx + �yy + �zz + 2�xy − 2�yz − 2�xz) + 2|�|2� = 0,

(2)
i�t + p1�xy + p2�yz + p3�xz + i

(
q1�x + q2�y + q3�z

)
+ r�|�|2 − �xx − �yy − �zz = 0,
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where � = �(x, y, z, t) is a complex function and x, y, z are the spatial variables and t is the 
temporal variable.

Step2: Use the following traveling wave transformation to transform Eq. (2) into a nonlin-
ear ordinary equation (NODE)

where k1, k2, k3, �, �, � , c1 and c2 are real constants and Φ is a real function on the wave 
variable �. Now, consider the new obtained NODE has a solution in the form:

where M is a positive integer determined from the balance procedure applied to the 
obtained NODE, Al,Bl (l = 0, 1, ......,M)are real constants to be determined and �(�) satis-
fies the Jacobi elliptic function equation

where a0 , a2, and a4 are parameters that have known values (Zayed and Alngar 2020). By 
inserting Eq. (6) and Eq. (7) into the obtained NODE after using the traveling wave trans-
formation in Eq. (5) and by collecting different powers of � and �′ equating it by zero, 
then an algebraic system is yielded, and by solving it the constants Al,Bl are determined. 
Finally, from the known values of the constants a0, a2, and a4 different functions like hyper-
bolic and periodic wave functions are arisen.

3 � Novel wave solutions for the extended 3D‑CNLSE

By inserting Eq. (4) and Eq. (5) into Eq. (2), considering the real and imaginary parts are 
separate, we get the real part as:

The imaginary part:

Assume that the imaginary part is finished so we have the following condition on the 
constants

(3)P(x, y, z, t,�x,�y,�z,�xy,�xz, ...) = 0,

(4)�(x, y, z, t) =Φ(�)ei� ,

(5)� =k1x + k2y + k3z + c1t, � = �x + �y + �z + c2t

(6)Φ(�) =

l=M∑
l=0

(Al�(�)
l + Bl�

�(�)�(�)l−1),

(7)��2(�) = a0 + a2�(�)
2 + a4�(�)

4,

(8)
(p1k1k2 + p2k2k3 + p3k1k3 − k2

1
− k2

2
− k2

3
)Φ��

−
(
c2 + �q1 + �q2 + �q3 + p1�� + p2�� + p3�� − �2 − �2 − �2

)
Φ + rΦ3 = 0,

(9)

(
c1 + q1k1 + q2k2 + q3k3 + p1k1� + p1k2� + �k2p2 + �k3p2 + p3k1� + p3k3�

−2
(
�k1 + �k2 + �k3

))
Φ� = 0,

(10)
c1 =2

(
�k1 + �k2 + �k3

)
− (q1k1 + q2k2 + q3k3 + p1k1�

+ p1k2� + �k2p2 + �k3p2 + p3k1� + p3k3�).
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Then, Eq. (8) becomes

where

Now, we are going to solve Eq. (11) by using the GJEE method. Make the balance between 
the linear term Φ�� and the nonlinear term Φ3 lead to M = 1 so that Φ can be put in the 
form:

where �(�) verifying Eq. (7). By substituting Eq. (13) into Eq. (11) using Eq. (7), col-
lecting the coefficients of �(�) and ��(�) and equating it with zero the following algebraic 
system is yielded:2

System (14) is solved by the Maple program, and two different cases of solutions are given:
Case I: A1 = ±

√
−2a4

�
,A0 = B0 = B1 = 0, � = −a2.

Novel Jacobi function solutions are yielded for the extended 3D-CNLSE equation as 
follows:

Group I:

(11)Φ�� + �Φ + �Φ3 = 0,

(12)
� =

−
(
c2 + �q1 + �q2 + �q3 + p1�� + p2�� + p3�� − �2 − �2 − �2

)

p1k1k2 + p2k2k3 + p3k1k3 − k2
1
− k2

2
− k2

3

,

� =
r

p1k1k2 + p2k2k3 + p3k1k3 − k2
1
− k2

2
− k2

3

.

(13)Φ(�) = A0 + A1�(�) +
��(�)

�(�)
B0 + B1�

�(�),

(14)

6�A0B0B1a2 + 3�A1B
2

0
a2 + 3�A1B

2

1
a0 + 3�B2

0
B1a2 + �a0B

3

1
+ 3�A2

0
A1 + �A1 + A1a2 = 0,

3�A0B
2

0
a2 + 3�A0B

2

1
a0 + 6�A1B0B1a0 + �a2B

3

0
+ 3�B0B

2

1
a0 + �A3

0
+ �A0 + 2B0a2 = 0,

3�A0B
2

0
a4 + 3�A0B

2

1
a2 + 6�A1B0B1a2 + �B3

0
a4 + 3�B0B

2

1
a2 + 3�A0A

2

1
+ 2B0a4 = 0,

6�A0B0B1a4 + 3�A1B
2

0
a4 + 3�A1B

2

1
a2 + 3�B2

0
B1a4 + �B3

1
a2 + �A3

1
+ 2A1a4 = 0,

6�A0B0B1a0 + 3�A1B
2

0
a0 + 3�B2

0
B1a0 = 0,

3�A0B
2

1
a4 + 6�A1B0B1a4 + 3�B0B

2

1
a4 = 0,

3�A2

0
B1 + 6�A0A1B0 + �B1 + B1a2 = 0,

3�A0B
2

0
a0 + �B3

0
a0 + 2B0a0 = 0,

3�A1B
2

1
a4 + �a4B

3

1
= 0,

6�A0A1B1 + 3�A2

1
B0 = 0,

3�A2

0
B0 + �B0 − 2B0a2 = 0,

3�A2

1
B1 + 6a4B1 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)�1 = ±

�
2(1 − �)

�
sn

�
�,
√
� − 1

�
ei� ,
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(16)�2 = ±

�
2(1 − �)

�
cd

�
�,
√
� − 1

�
ei� ,

(17)�3 = ±

√
1 − �

�
cn

(
�,

√
1

2
(� − 1)

)
ei� ,

(18)�4 = ±

�
2

�
dn

�
�,
√
� + 2

�
ei� ,

(19)𝜑5 = ±

�
−2

𝜇
ns

�
𝜉,
√
𝜆 − 1

�
ei𝜂 ,𝜇 < 0

(20)𝜑6 = ±

�
−2

𝜇
dc

�
𝜉,
√
𝜆 − 1

�
ei𝜂 ,𝜇 < 0,

(21)𝜑7 = ±

√
−(1 + 𝜆)

𝜇
nc

(
𝜉,

√
1

2
(1 − 𝜆)

)
ei𝜂 ,𝜇 < 0,

(22)𝜑8 = ±

�
−2(1 + 𝜆)

𝜇
nd

�
𝜉,
√
𝜆 + 2

�
ei𝜂 ,𝜇 < 0,

(23)�9 = ±

�
2(1 + �)

�
sc

�
�,
√
� + 2

�
ei� ,

(24)�10 = ±

√
1 − �2

2�
sd

(
�,

√
1

2
(1 − �)

)
ei� ,

(25)�11 = ±

�
−2

�
cs

�
�,
√
� + 2

�
ei� ,

(26)�12 = ±

√
−2

�
ds

(
�,

√
1

2
(1 − �)

)
ei� ,

(27)�13 = ±

√
−1

2�

(
ns

(
�,

√
1

2
(1 + 2�)

)
± cs

(
�,

√
1

2
(1 + 2�)

))
ei� ,
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where 𝜆 < 1 in most of the above Jacobi solutions.
If the modulus of the Jacobi elliptic function approches to 1,  the hyperbolic functions arise 

as:
Group II:

If the modulus of the Jacobi elliptic function approches to 0,  the triagnometric functions 
arise as:

Group III:

(28)�14 = ±

�
−(1 + �)

�

�
nc

�
�,
√
−(1 + 2�)

�
± sc

�
�,
√
−(1 + 2�)

��
ei� ,

(29)�15 = ±

�
−1

2�

�
ns

�
�,
√
2(1 − �)

�
± ds

�
�,
√
2(1 − �)

��
ei� ,

(30)�16 = ±

√
−2

�
tanh (�)ei� , if � = 2,

(31)�17 = ±

√
2

�
sech(�)ei� , if � = −1,

(32)�18 = ±

√
−2

�
coth (�)ei� , with � = 2,

(33)�19 = ±

√
−2

�
csch(�)ei� , with � = −1,

(34)�20 = ±

√
−1

2�
(coth (�) ± csch(�))ei� , if � =

1

2
,

(35)�21 = ±

√
−2

�
tan (�)ei� , with � = −2,

(36)�22 = ±

√
−2

�
sec(�)ei� , if � = 1,

(37)�23 = ±

√
−2

�
cot (�)ei� , if � = −2,

(38)�24 = ±

√
−2

�
csc(�)ei� , with � = 1,
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Case II: � = 2a2,B0 = ±

√
−2

�
,A0 = A1 = B1 = 0.

By using the second case of solutions obtained for the algebric system (14), the follwoing 
novel Jacobi function solutions are created:

Group IV:

(39)�25 = ±

√
−1

2�
(cot (�) ± csc(�)ei� , if � =

−1

2
,

(40)�26 = ±

√
−1

2�
(sec (�) ± tan (�))ei� , if � =

−1

2
.

(41)�27 = ±

�
−2

�

⎛
⎜⎜⎜⎜⎝

cn

�
�,

�
−(1 +

�

2
)

�
dn

�
�,

�
−(1 +

�

2
)

�

sn

�
�,

�
−(1 +

�

2
)

�
⎞
⎟⎟⎟⎟⎠
ei� ,

(42)�28 = ∓

�
−2

�

⎛
⎜⎜⎜⎜⎝

(2 +
�

2
) sn

�
�,

�
−(1 +

�

2
)

�

cn

�
�,

�
−(1 +

�

2
)

�
dn

�
�,

�
−(1 +

�

2
)

�
⎞
⎟⎟⎟⎟⎠
ei� ,

(43)�29 = ±

�
−2

�

⎛⎜⎜⎜⎝

dn

�
�,

1

2

√
(2 + �)

�
sn

�
�,

1

2

√
2 + �

�

cn

�
�,

1

2

√
2 + �

�
⎞⎟⎟⎟⎠
ei� ,

(44)�30 = ±

�
−2

�

�
�

2
∓ 2

�
⎛⎜⎜⎜⎜⎜⎝

cn

�
�,

��
2 −

�

2

��
sn

�
�,

��
2 −

�

2

��

dn

�
�,

��
2 −

�

2

��

⎞⎟⎟⎟⎟⎟⎠

ei� ,

(45)�31 = ±

�
−2

�

⎛⎜⎜⎜⎜⎜⎝

dn

�
�,

��
2 −

�

2

��

cn

�
�,

��
2 −

�

2

��
sn

�
�,

��
2 −

�

2

��

⎞⎟⎟⎟⎟⎟⎠

ei� ,

(46)�32 = ±

�
−2

�

⎛⎜⎜⎜⎝

cn

�
�,

1

2

√
1 + �

�

dn

�
�,

1

2

√
(1 + �)

�
sn

�
�,

1

2

√
1 + �

�
⎞⎟⎟⎟⎠
ei� ,
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where 𝜇 < 0 for Eqs. (16-46).

4 � Results and discussion

Many natural phenomena can be described by nonlinear waves, so they exist in different 
fields of science as optics, hydrodynamics, plasma physics, etc. Nonlinear waves have two 
different types: solitary waves in a dispersion medium and waves in a dissipative dispersion 
medium. Solitons are nonlinear solitary waves that keep their shape according to propa-
gation without change so it is very important and has many applications in physical sci-
ence especially in optics. In this study many types of solitary waves are obtained there-
fore, in this section, we are going to plot three different solitary shapes, as an example of 
the change in the nonlinear wave behavior from one solitary wave solution to another as 
follows:

In Figs. 1 and 2, the periodic and kink soliton wave solutions were derived in a medium 
with self-focusing Kerr-nonlinearity as r = 1 , but the bright soliton wave solution repre-
sented in Fig. 3 is driven in a medium with self-defocusing nonlinearity and it is clear that 
by changing the values of the parameters the soliton shape is changing and the dynamic 
behavior of the wave is affected.

5 � Conclusion

In this paper, the extended 3D CNLSE was investigated by the GJEE method and accord-
ing to that many distinct solitary wave solutions were obtained in the form of Jacobi ellip-
tic functions, hyperbolic functions, and trigonometric functions. The obtained solutions 
covered some obtained solutions in the literature and there are many other novel solu-
tions (Wang 2021; Wazwaz 2021; Wazwaz and Mehanna 2021). From the results, we can 

(47)�33 = ±

�
−2

�

⎛
⎜⎜⎜⎜⎝

dn

�
�,

�
1

2
(1 − �)

�

sn

�
�,

�
1

2
(1 − �)

�
⎞
⎟⎟⎟⎟⎠
ei� ,

(48)�34 = ±

�
−2

�

⎛
⎜⎜⎜⎝

dn

�
�,
√
� − 1

�

cn

�
�,
√
� − 1

�
⎞
⎟⎟⎟⎠
ei� ,

(49)�35 = ∓

�
−2

�

cn

�
�,
√
� + 2

�

sn

�
�,
√
� + 2

� ei� ,
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conclude that the GJEE is an effective, simple method and can be valid for other compli-
cated complex systems. Moreover, the propagation of periodic, kink, and bright solitons 
was discussed in two different mediums self-focusing Kerr-nonlinearity and self-defocus-
ing nonlinearity which have important applications in nonlinear optics.

Fig. 1   The different plots for the periodic solitary wave ||�1
||2 through optical fiber, when 

p1 = 0.5, p2 = p3 = k1 = k2 = k3 = q1 = q2 = q3 = � = � = � = r = 1, c2 = −1 and the values of 
c1 = −2 , � = 3, and � = −2 according to equations (10) and (12). Moreover, the dimensions y = z = 0 but 
x ∈ [−10, 10] and t ∈ [0, 10] in figures (1-a) and (2-b), where t = 1, 2, 3 correspond to the blue, orange, and 
green lines respectively

Fig. 2   The different graphs of the optical kink soliton ||�16
||2 in 3D, den-

sity, 2D respectively, where y=z=0 and the parameters are taken as: 
p1 = 0.5, p2 = p3 = k1 = k2 = k3 = q1 = q2 = q3 = � = � = � = r = 1, c2 = −1.5. Therefore, from Eqs. 
(10) and (12), c1 = −2 , � = 2, and � = −2, and hence, the periodic wave solution given by Eq. (15) trans-
formed to the kink soliton solution �16 given by Eq. (30). The graphs are in x range 0 ≤ x ≤ 10 for all 
Fig. 2, and t range 0 ≤ t ≤ 5 while the 2D lines are for the t values 1, 2, 3 respectively
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