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Abstract
In this article, we investigate the generalised version of the nonlinear Schrödinger equation 
namely the fractional Schrödinger–Hirota (NLFSH) equation with third order dispersion 
and Kerr law of nonlinearity, which describes the dynamics of optical solitons in a disper-
sive optical fiber. An amelioration of the approaches, namely the improved F-expansion 
approach and the unified method, are used to formulate the abundant optical solitons. After 
that, utilizing the aforementioned techniques and computational software, different opti-
cal solitons are retrieved, including dark, singular, periodic, rational, hyperbolic solitary 
wave, and trigonometric function solutions. Secondly, we discuss the stability analysis of 
our selected model which confirm that the governing model is stable. Additionally, the 
acquired results demonstrate that the suggested strategies have a significant ability to suc-
cessfully acquire numerous fresh soliton type solutions for the NLFSH equation. For cer-
tain values of the required free parameters, the dynamical behaviours of these solutions 
are visualised in 2D and 3D using Mathematica 13.0. The acquired findings demonstrate 
the power, effectiveness, and simplicity of the suggested strategies for finding novel solu-
tions to diverse classes of nonlinear partial differential equations in optical engineering and 
applied sciences.

Keywords Schrödinger–Hirota equation · Conformable fractional derivative · Optical 
solutions · Improved F-expansion method · The unified method · Stability analysis

1 Introduction

Nonlinear partial differential equations (NLPDEs) are significant families of equation 
that are extensively used in the modeling and analysis of nonlinear evolutionary dynami-
cal systems in engineering, fluid mechanics, geochemistry, hydrodynamics, solid state 
physics, water waves, plasma physics, chaos theory, solitary waves theory, cosmology 
and optical fibers, among other disciplines and some more (Yusuf et  al. 2022; Younas 
et  al. 2023; Tanwar and Wazwaz 2022). Soliton theory is very useful in many domains 
to comprehend these phenomena. Solitons are a type of wave that always has the same 
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shape and never dissipates energy. Soliton is a very important concept in the disciplines of 
electromagnetism and communications because of these characteristics. The dynamics of 
the propagation of solitons has been worked by the aid of nonlinear Schrodinger’s equa-
tion (NLSE). This equation for optical solitons has produced a wide variety of results. In 
order to describe nonlinear physical events, one of the most crucial components is to obtain 
exact solutions to nonlinear fractional partial differential equations (NLFPDEs) (Abaid Ur 
Rehman et  al. 2022). Due to their numerous uses in contemporary communication sec-
tors, optical solitons are progressively assuming centre stage in nonlinear optics. Long-haul 
optical fibers are currently being investigated for trans-oceanic and trans-continental data 
transmission using optical communications. However, some aspects of optical communica-
tion remain unresolved, such as the well-known dispersive optical solitons, which hinder 
communication when they release soliton radiation due to the presence of higher-order dis-
persion factors.

Moreover, a variety of nonlinear Schrödinger equations (NLSE) are used to describe 
how soliton propagation changes over time in optical fibres. The Schrödinger–Hirota (SH) 
equation, in particular, is a significant class of the NLSE that was generated by the use of 
Lie’s transformation and has seen intense study in recent decades, utilising a variety of 
analytical and computational techniques (Biswas et al. 2012; Bernstein et al. 2015; Bako-
dah et al. 2019). Numerous methods have been used to obtain the exact solutions of the 
fractional Schrödinger–Hirota (FSH) equation, including Rezazadeh et al. Rezazadeh et al. 
(2018) attained several travelling wave solutions of the nonlinear conformable fractional 
Schrodinger-Hirota (NLCFSH) equation by employing new extended direct algebraic tech-
nique, Eslami et al. (2017) use the first integral method and the functional variable method 
and get the the bright and singular solutions, the NLCFSHE, which governs ocean wave 
propagation and optical fibres, a novel soliton solution is obtained by Zafar et al. (2022) via 
combining the Kudryashov technique and improved 

(
G′

G

)
-expansion with a conformable 

truncated M-fractional operator, for the extraction of bright, dark, and other soliton solu-
tions, Ray (2020) uses the extended auxiliary equation approach, Kilic and Inc Kilic and 
Inc (2017) used the Bäcklund transformation to solve the SH equation with power law non-
linearity for optical solitons and solitary wave solutions, Tang (2022) applied the complete 
discriminant system method to gain the hyperbolic function solutions, rational function 
solutions, and dispersive optical solitons in optical nanofibers of the NLSH equation with 
the constraint conditions by employing the tanh − coth integration algorithm (Sardar et al. 
2016).

Conversely, analytical approximation techniques are preferred by scientists because 
they have deeper physical roots and are more deserving of parametric investigation. As 
a result, many academics promoted various tactics up until recently namely, Bilinear 
transformation (Jisha and Dubey 2022), Backland transformation (Zhao et  al. 2022), 
Painleve analysis (Wazwaz et al. 2022), Hirota bilinear method (Bilal et al. 2022; Ismael 
et  al. 2022; Kumar and Mohan 2022), Trilinear analysis (Manafian 2021), Lie point 
symmetries analysis (Adeyemo et  al. 2022), improved generlized riccati mapping 
scheme (Islam et al. 2022), F-expansion method (Li et al. 2020; Akbulut et al. 2022), 
new Kudryashov technique (Samir et al. 2022), generlized Kudryashov method (Akbar 
et al. 2022; El-Sayed and Al-Nowehy 2016), Ansatz method (Akinyemi and Morazara 
2022), G

′

G
-expansion method (Adeyemo and Khalique 2022), three integral schemes the 

generalized Kudryashov, the new extended FAN sub-equation approach (Fendzi-Don-
fack et al. 2023), generlized exponential rational function method (Rehman et al. 2022), 
extended ratioal sine-cosine/sinh-cosh method (Akbar et  al. 2021), tanh method 
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(Chukkol et al. 2017; Hu et al. 2020; Biazar and Ayati 2011), new extended direct alge-
bric method (Gao et  al. 2020; Mirhosseini-Alizamini et  al. 2022; Hubert et  al. 2018), 
extended sinh-Gordon equation expansion and 

(
G′

G2

)
-expansion function methods 

(Sulaiman et al. 2022; Bilal et al. 2022), first integral method (Aggarwal et al. 2018), 
variational iterative method (Anjum and He 2019; Nadeem and He 2021; Mungkasi 
2021; Noeiaghdam et  al. 2021), Adomian decomposition method (Cheng et  al. 2021), 
q-homotopy analysis method (Hussain et  al. 2022), residual power series method 
(Modanli et  al. 2021; Qazza et  al. 2022), improved Bernoulli sub-equation function 
method (Dusunceli et al. 2021). 

(
G′

G

)
-expansion method (Zulfiqar and Ahmad 2021).

In each of these aforementioned works, a variety of approaches mentioned in Yao 
et  al. (2021); Veeresha et  al. (2021a, 2021b) have been proposed for securing soliton 
solutions of NLPDEs. The choice of an appropriate method is of great importance when 
using these analytical methods. Among those approaches, the proposed improved 
F-expansion method and the unified method are reliable and credible mechanisms to 
construct more general soliton solutions of NLPDEs in engineering and applied sci-
ences. The foremost purpose of these methods are to express the soliton solutions of 
NLPDEs in terms of functions that satisfy the Riccati equation F�(�) = p + F2(�) and 
F�(�) = Ω + (F(�))2 for improved F-expansion function method and for the unified 
method, respectively. The main benefit of the improved F-expansion method over the 
existing other methods mentioned is that this scheme provide more abundant exact 
soliton solutions including some novel solutions with additional parameters in a simple 
and straight way. The exact soliton solutions have its great importance to know entirely 
the effect of the parameters in any circumstances. On the other hand, the advantages of 
the unified method, firstly it produces many more solutions than the other methods give. 
Namely, it gives not only the solutions of the other methods but also new exact solutions 
not obtained using other methods. Secondly, it unifies the merits of all the methods in 
one method without needing extra effort. Lastly, it has simple algorithm to apply on 
computer. Unlike the others, it reduces the process on computer as much as sometimes 
even calculated by hand. The unified method makes easier solving process at computer 
program. When using the unified method, it is not needed complex algorithm on com-
puter programs. On the other hand, it is essential to use complex algorithm for some 
members of the 

(
G′

G

)
-expansion method. To exhibit the productivity and dependability 

of these proposed methods, some higher order nonlinear dynamical models have been 
solved in which new results are found. It is vital to note that analysis of convergence and 
stability for the numerical methods is required, a distinct disadvantage when compared 
with analytical methods that do not require such an analysis. Apart from the physical 
relevance, soliton solutions of NLPDEs can assist the numerical solvers to measure up 
to the accuracy of their results and thus aid in the convergence analysis.

Over the past few decades, nonlinear fractional dynamical model research has been 
increasingly popular. Nonlinear fractional models have thus been utilized to mimic a 
variety of physical procedures. Compared to the conventionally used integer-order mod-
els, these more recent models are more suited and more flexible, because nonlinear 
models enable scientists to better define and characterise phenomena in everyday life. 
As a result, under some circumstances, these dynamical models can be used to accu-
rately model genuine physical processes.

In this manuscript, the nonlinear conformable fractional Schrödinger–Hirota 
(NLCFSH) equation is considered as
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Where v(x,  t) signify the complex wave profile, � represents the the coefficient of third 
order dispersion (3OD). (.)(�)t  is the conformable derivative operator.

This article is drafted as follows: The Sect.  3 explains the suggested methods for the 
NLCFSH equation. The applications of selected method are explained in the Sect. 4. The 
Sect. 5 discusses the stability study of the NLCFSH equation. The Sect. 6 covers conclud-
ing comments. The concluding remarks are included in the Sect. 7.

2  Conformable fractional derivative

Assume that D�
� is a differential operator of any order, such as 0 < 𝛽 ≤ 1 . Then conform-

able fractional derivative of v(�) is given by

Following are some characteristics of conformable fractional derivative:

Theorem  1 Suppose that function v(�) and w(�) are �−differentiable at 𝜂 > 0 with 
� ∈ (0, 1] , therefore

Theorem  2 Assume that v(�) is both differentiable and sigma-differentiable in the range 
� ∈ (0, 1] . Furthermore, let v(�) be a differentiable function with the same range v(�),

3   Mathematical formulation of the methods

The solution of NLPDEs is often difficult and frequently necessitates advanced mathemati-
cal techniques. NLPDEs can be solved using a variety of strategies, including analytical, 
semi-analytical, and numerical techniques. Analytical approaches, such as variable sepa-
ration and perturbation methods, are restricted to certain types of NLPDEs and idealised 
conditions. Semi-analytical methods, such as homotopy analysis and variational iteration, 
combine analytical and numerical techniques to generate approximate solutions. Numerical 

(1)iv
(𝛽)
t +

1

2
vxx + |v|2v + i𝛼vxxx = 0, t ≥ 0, 0 < 𝛽 ≤ 1.

(2)D𝛽
𝜂
(v(𝜂)) = lim

𝜖→0

v(𝜂 + 𝜖𝜂1−𝛽) − v(𝜂)

𝜖
, 𝜂 > 0.

(i) D�
�
(�n) = n�n−� ∀ n ∈ R..

(ii) D�
�
(c) = 0, where c is constant.

(iii) D�
�
(dv(�) + ew(�)) = dD�

�
(v(�)) + eD�

�
(w(�)) ∀ d, e ∈ R..

(iv) D�
�
(v(�)w(�)) = v(�)D�

�
(v(�)) + v(�)D�

�
(w(�)).

(v) D�
�
(
v(�)

w(�)
) =

w(�)D
�
� (v(�)) − v(�)D

�
� (w(�))

w2(�)
.

(vi) if v is differentiable, then D�
�
(v)(�) = �1−�

dv(�)

d�
.

D�
�
(v(�). w(�)) = �1−�v�(�) w�(v(�)).
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methods, such as finite difference, finite element, and spectral methods, are extensively 
exercised for solving NLPDEs as they can handle complex geometries and boundary con-
ditions. However, numerical approaches necessitate high computational resources and may 
suffer from numerical errors. Moreover, selecting an suitable method for solving a particu-
lar NLPDE is often dependent on the nature of the problem, the complexity of the PDE, 
and the preferred accuracy of the solution. Therefore, choosing a proficient and accurate 
method is decisive for solving NLPDEs and advancing scientific research and technologi-
cal innovation.

Take into account the nonlinear partial differential (NLPD) equation.

where the polynomial R in g(x, t) has partial derivatives that constitute its highest deriva-
tives plus a nonlinear term and g(x, t) is an undefined function. The following phases tell 
the story of the improved F-expansion and the unified methods contexts.

The wave variables with the formula g(x, t) = v(�) , where � = x −
t�

�
c (where c denotes 

the speed of the traveling wave), are presumably acceptable for transformation into nonlin-
ear form (3).

3.1   The improved F‑expansion method

The circumstances for the improved F-expansion method are described in the following 
phases.

Step-1: The solution of Eq. (4) is presumable in the form that follows the improved 
F-expansion method.

where either �i or �i may be zero, but neither may be zero simultaneously. 
�i(i = 1, 2, 3,… ,N) and n are fictitious factors that will eventually be chosen, along with 
�i(i = 0, 1, 2,… ,N) . We consider about popular Riccati equation.

where p represents the real part of the equation and the prime represents derivatives with 
respect to � . The three general solutions of the Riccati equation Eq. (6) are follows as

Case-I: Ifp < 0 , then the general solutions are

Case-II: If p > 0 , textitCasethen the general solutions are

(3)R(g, gx, gy, gt, gxx, gyy, gtt, gxt,…) = 0,

(4)G(g, g�, g��,…) = 0.

(5)�(�) =

N∑
i=0

�i(n + F(�))i +

N∑
i=1

�i(n + F(�))−i,

(6)F�(�) = p + F2(�),

(7)F1 = −
√
−p tanh(

√
−p�),

(8)F2 = −
√
−p coth(

√
−p�).

(9)F3 =
√
p tan(

√
p�),
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Case-III: If p = 0 , then the general solution is

Step-2: The balancing principal is used to gain the value of N come out the solution of Eq. 
(4).

Step-3: With the help of equation Eq. (5) togather with Eq. (6) in Eq. (4), it is possible 
to calculate the polynomial in F(�) . An algebraic system of equations is therefore produced 
when the same index of F(�) is equal to zero. By using Mathematica to solve these equa-
tions, we can get the values of the unknowns �i, �i , p, and n, which will be utilized to 
obtain the answer to equation Eq. (3).

3.2   The unified method

Step-1: The nonlinear equation (3) is considered to have a solution in the following form, 
in accordance with the unified framework.

Here, the variables a0 , ai , and bi are unknowns that will be known later, but they cannot 
both zero simultaneously. Riccati equation is satisfied by F and its derivative.

where Ω refers to a real component and prime stands for derivatives with regard to �. Case-
I: If Ω < 0 , then the general solutions are

Case-II: If Ω > 0 , then the general solutions are

(10)F4 = −
√
p cot(

√
p�).

(11)F5 = −
1

�
.

(12)v(�) = a0 +

N∑
i=0

[aiF(�)
i + biF(�)

−i].

(13)F�(�) = Ω + (F(�))2,

(14)F1,2 =
±

�
Ω
�
−
�
d2 + e2

��
− d

√
−Ω cosh

�
2
√
−Ω(f + �)

�

d sinh
�
2
√
−Ω(f + �)

�
+ e

.

(15)F3,4 = ±
√
−Ω ±

2d
√
−Ω

d − sinh
�
2
√
−Ω(f + �)

�
+ cosh

�
2
√
−Ω(f + �)

� .

(16)F5,6 = ±

�
Ω
�
d2 − e2

�
− d

√
−Ω cos

�
2
√
Ω(f + �)

�

d sin
�
2
√
Ω(f + �)

�
+ e

.

(17)F7,8 = ± i
√
−Ω ±

2id
√
−Ω

d − i sin
�
2
√
Ω(f + �)

�
+ cos

�
2
√
Ω(f + �)

� .
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Case-III: If Ω = 0 , then the general solution is

Where f is an arbitrary constant and d and e are real arbitrary constants.
Step-2 The balancing principal is used to gain the value of N come out the solution of Eq. 

(4).
Step-3 With the help of Eq. (13) and the solution Eq. (12), it is possible to calculate the 

polynomial in F(�) . The same index of F(�) then equals zero, yielding an algebraic system 
of equations. By using Mathematica 13.0 to solve these equations, to get the values of the 
unknowns ai, bi, p, and c , which will be used to get the solution of Eq. (3).

4  Extraction of solutions

This section demonstrates how well the improved F-expansion method and unified method to 
get the solitary wave solutions of Eq. (1). The wave transformation is defines as:

Inserting Eqs. (19) and (6) into Eq. (1), then the real and imaginary components are Re : 

Im : 

The imaginary part yielding the following result

Inserting Eq. (22) into Eq. (21), one can get the following form of ODE:

4.1  Application of improved F‑expansion method

For the requirement of the improved F-expansion method, follow the balancing principal of 
terms V ′′ and V3 in Eq. (23), we gain N = 1 . Then from Eq. (5) we get,

where �, � and n are constants. When Eq. (24) is plugged into Eq. (23), we get a system 
of algebraic equations correspond to coefficients of V(�) equating to zero. By simplifying 
these algebraic equations, novel clusters of solutions for Eq. (1) are gained.

Set-1

(18)F9,10 = −
1

f + �
.

(19)v(x, t) = V(�) exp (i(�)), � = x −
2�t�

�
, � = �x +

mt�

�
.

(20)−2mV(�) − 6��V ��(�) + V ��(�) + 2��3V(�) − �2V(�) + 2V(�)3 = 0.

(21)
(
6��2 + 2�

)
V �(�) − 2�V (3)(�) = 0.

(22)� =
−1

3�
.

(23)V3 +
3V ��

2
− V

(
5

54�2
+ m

)
= 0.

(24)V(�) = �0 + �1(F(�) + n) +
�1

F(�) + n
,
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When p < 0 , the solutions are
Family 1:

Family 2:

When p > 0 , the solutions are
Family 3:

Family 4:

When p = 0 , the solutions are
Family 5:

Set-2

When p < 0 , the solutions are
Family 1:

(25)�0 = −i
√
3n, �1 = 0, �1 = i

�√
3n2 +

√
3p

�
, m =

162�2p − 5

54�2
.

(26)v1,2(x, t) =
i
√
3e

i
�

3pt�

�
−

5t�

54�2�
+�x

��
n
√
−p tanh

�√
−p

�
x −

2�t�

�

��
+ p

�

n −
√
−p tanh

�√
−p

�
x −

2�t�

�

�� .

(27)v3,4(x, t) =
i
√
3e

i
�

3pt�

�
−

5t�

54�2�
+�x

��
n
√
−p coth

�√
−p

�
x −

2�t�

�

��
+ p

�

n −
√
−p coth

�√
−p

�
x −

2�t�

�

�� .

(28)v5,6(x, t) =
i
√
3
√
pe

i
�

3pt�

�
−

5t�

54�2�
+�x

��√
p − n tan

�√
p
�
x −

2�t�

�

���

n +
√
p tan

�√
p
�
x −

2�t�

�

�� .

(29)v7,8(x, t) = −i
√
3e

i
�

3pt�

�
−

5t�

54�2�
+�x

�⎛⎜⎜⎜⎝
n −

n2 + p

n −
√
p cot

�√
p
�
x −

2�t�

�

��
⎞⎟⎟⎟⎠
.

(30)v9,10(x, t) =
i
√
3
�
�n − 2�pt� + �px

�
e
i
�

3pt�

�
−

5t�

54�2�
+�x

�

�(nx − 1) − 2�nt�
.

(31)�0 = 0, �1 = −i
√
3p, n = 0, � = −

1

3

�
5

6

�
−

1

� + 3i
√
3�1p − 3p

.
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Family 2:

When p > 0 , the solutions are
Family 3:

Family 4:

When p = 0 , the solutions are
Family 5:

Set-3

When p < 0 , the solutions are
Family 1:

Family 2:

(32)

v11,12(x, t) =
e
i
�

mt�

�
+�x

��
�1p tanh

�√
−p

�
x −

2�t�

�

��
+ i

√
3p coth

�√
−p

�
x −

2�t�

�

���
√
−p

.

(33)

v13,14(x, t) =
e
i
�

mt�

�
+�x

��
�1p coth

�√
−p

�
x −

2�t�

�

��
+ i

√
3p tanh

�√
−p

�
x −

2�t�

�

���
√
−p

.

(34)

v15,16(x, t) =

√
pe

i
�

mt�

�
+�x

�
tan

�√
p

�
x −

2�t�

�

���
�1 − i

√
3 cot2

�√
p

�
x −

2�t�

�

���
.

(35)

v17,18(x, t)

=
√
pe

i
�

mt�

�
+�x

�
tan

�√
p

�
x −

2�t�

�

���
−�1 cot

2

�√
p

�
x −

2�t�

�

��
+ i

√
3

�
.

(36)v19,20(x, t) = e
i
�

mt�

�
+�x

��
−

��1

�x − 2�t�
+ i

√
3p

�
x −

2�t�

�

��
.

(37)�0 = −i
√
3n, �1 = 0, �1 = i

√
3
�
n2 + p

�
, � = −

�
5

6

3
√
3p − �

.

(38)v21,22(x, t) = −i
√
3e

i
�

mt�

�
+�x

�⎛⎜⎜⎜⎝
n −

n2 + p

n −
√
−p tanh

�√
−p

�
x −

2�t�

�

��
⎞⎟⎟⎟⎠
.
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When p > 0 , the solutions are
Family 3:

Family 4:

When p = 0 , the solutions are
Family 5:

4.2  Application of the unified method

For the requirement of the unified method, follow the balancing principal of terms V ′′ and 
V3 in Eq. (23), we gain N = 1 . Then from Eq. (12) we get,

where a0, a1 and b1 are constants. When Eq. (43) is plugged into Eq. (23), we obtain a sys-
tem of algebraic equations correspond to coefficients of V(�) equating to zero. By simplify-
ing these algebraic equations, novel clusters of solutions for Eq. (1) are gained.

Set-1

When Ω < 0 , the solutions are

(39)v23,24(x, t) = i
√
3e

i
�

mt�

�
+�x

�⎛⎜⎜⎜⎝
n −

n2 + p

n −
√
−p coth

�√
−p

�
x −

2�t�

�

��
⎞
⎟⎟⎟⎠
.

(40)v25,26(x, t) = −i
√
3e

i
�

mt�

�
+�x

�⎛⎜⎜⎜⎝
n −

n2 + p

n +
√
p tan

�√
p
�
x −

2�t�

�

��
⎞⎟⎟⎟⎠
.

(41)v27,28(x, t) = −i
√
3e

i
�

mt�

�
+�x

�⎛⎜⎜⎜⎝
n −

n2 + p

n −
√
p cot

�√
p
�
x −

2�t�

�

��
⎞⎟⎟⎟⎠
.

(42)v29,30(x, t) =
i
√
3e

i
�

mt�

�
+�x

��
n + p

�
x −

2�t�

�

��

n
�
x −

2�t�

�

�
− 1

.

(43)V(�) = a0 + a1F(�) +
b1

F(�)
,

(44)a0 = 0, a1 = i
√
3, b1 = −i

√
3Ω, m = 12Ω −

5

54�2
.
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Family 1:

Family 2:

When Ω > 0 , the solutions are
Family 3:

Family 4:

When Ω = 0 , the solutions are
Family 5:

For set-1: � = x −
2�t�

�
, � =

(
12Ω−

5

54�2

)
t�

�
+ �x.

Set-2

When Ω < 0 , the solutions are

(45)

v1,2(x, t)

=

i
√

3ei�
(

(

√

−
(

Ω
(

d2 + e2
))

− d
√

−Ω cosh
(

2
√

−Ω(f + �)
)

)2

− Ω
(

d sinh
(

2
√

−Ω(f + �)
)

+ e
)2

)

(

d sinh
(

2
√

−Ω(f + �)
)

+ e
)

(

√

−
(

Ω
(

d2 + e2
))

− d
√

−Ω cosh
(

2
√

−Ω(f + �)
)

) .

(46)v3,4(x, t) = −

i
√
3ei�

⎛
⎜⎜⎝
Ω

�
1 −

2d

d−sinh
�
2
√
−Ω(f+�)

�
+cosh

�
2
√
−Ω(f+�)

�
�2

+ Ω

⎞
⎟⎟⎠

√
−Ω

�
1 −

2d

d−sinh
�
2
√
−Ω(f+�)

�
+cosh

�
2
√
−Ω(f+�)

�
� .

(47)

v5,6(x, t)

=

i
√

3ei�
(

(

√

Ω
(

d2 − e2
)

− d
√

Ω cos
(

2
√

Ω(f + �)
)

)2

− Ω
(

d sin
(

2
√

Ω(f + �)
)

+ e
)2

)

(

d sin
(

2
√

Ω(f + �)
)

+ e
)

(

√

Ω
(

d2 − e2
)

− d
√

Ω cos
(

2
√

Ω(f + �)
)

) .

(48)

v7,8(x, t) =
√

3ei�

⎛

⎜

⎜

⎜

⎜

⎝

− Ω
√

Ω − 2d
√

−Ω
d−i sin

(

2
√

Ω(f+�)
)

+cos
(

2
√

Ω(f+�)
)

+
2d

√

−Ω

d − i sin
(

2
√

Ω(f + �)
)

+ cos
(

2
√

Ω(f + �)
) −

√

Ω

⎞

⎟

⎟

⎟

⎠

.

(49)v9,10(x, t) =
i
√
3ei�

�
f 2Ω + 2f �Ω + �2Ω − 1

�
f + �

.

(50)a1 =
i
�
3a0Ω + 2a3

0
− 3

�

3
√
3a0Ω

, b1 = −i
√
3Ω, m = −

5

54�2
+ 5a2

0
−

3

a0
+ 6Ω.
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Family 1:

Family 2:

When Ω > 0 , the solutions are
Family 3:

Family 4:

When Ω = 0 , the solutions are

(51)

v11,12(x, t)

=

iei�
�
3a0Ω + 2a3

0
− 3

���
−
�
Ω
�
d2 + e2

��
− d

√
−Ω cosh

�
2
√
−Ω(f + �)

��

3
√
3a0Ω

�
d sinh

�
2
√
−Ω(f + �)

�
+ e

� + a0

−
i
√
3Ω

�
d sinh

�
2
√
−Ω(f + �)

�
+ e

�
�

−
�
Ω
�
d2 + e2

��
− d

√
−Ω cosh

�
2
√
−Ω(f + �)

� .

(52)
v13,14(x, t) = −

iei�
�
3a0Ω + 2a3

0
− 3

��
1 −

2d

d−sinh
�
2
√
−Ω(f+�)

�
+cosh

�
2
√
−Ω(f+�)

�
�

3
√
3a0

√
−Ω

+ a0 +
i
√
3
√
−Ω

1 −
2d

d−sinh
�
2
√
−Ω(f+�)

�
+cosh

�
2
√
−Ω(f+�)

�
.

(53)

v15,16(x, t) =

iei�
�
3a0Ω + 2a3

0
− 3

���
Ω
�
d2 − e2

�
− d

√
Ω cos

�
2
√
Ω(f + �)

��

3
√
3a0Ω

�
d sin

�
2
√
Ω(f + �)

�
+ e

� + a0

+
i
√
3Ω

�
d sin

�
2
√
Ω(f + �)

�
+ e

�

d
√
Ω cos

�
2
√
Ω(f + �)

�
−

�
Ω
�
d2 − e2

� .

(54)
v17,18(x, t) =

ei�
�
3a0Ω + 2a3

0
− 3

��√
Ω −

2d
√
−Ω

d+i sin
�
2
√
Ω(f+�)

�
+cos

�
2
√
Ω(f+�)

�
�

3
√
3a0Ω

+ a0 +

√
3Ω

√
Ω −

2d
√
−Ω

d+i sin
�
2
√
Ω(f+�)

�
+cos

�
2
√
Ω(f+�)

�
.
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Family 5:

For set-2: � = x −
2�t�

�
, � =

t�
(
−

5

54�2
+5a2

0
−

3

a0
+6Ω

)

�
+ �x.

5  Stability analysis

Numerous nonlinear processes exhibit an instability in the modulation of the steady-state 
as a result of the interaction of the nonlinear and dispersive effects. Examining the equa-
tion’s modulation instability (MI) (Shehata 2010; Rehman and Ahmad 2023; Houwe et al. 
2021; Ismael et  al. 2021; Yépez-Martínez et  al. 2022; Ismael et  al. 2023; Sylvere et  al. 
2023) through linear stability technique is the main goal of the study in this part.

Assuming the FSH equation has following steady-state solutions

where � signifies for normalized optical power.
Plugging Eq. (56) into Eqs. (1). We earn

where ∗ stands for the conjugate.
Let Eq. (57) has solution of the form as

where p1 and p2 stands for the normalized wave number, while frequency of perturbation 
represented by �.

Embedding Eq. (58) into Eq. (57), separating the coefficients of ei(�x+�
t�

�
) and 

e
−i(�x+�

t�

�
) , and solving the determinant of the coefficient matrix, we get the following dis-

persion relation:

Evaluating the dispersion relation (59) for � , imparts

The stability of the steady state is shown by the dispersion relation that was attained. The 
steady state appears to be stable against tiny dispersion when the wave number � has a real 
component. When the wave number is imaginary, the steady state becomes unstable and 
the perturbation increases exponentially. Under this condition, the growth rate is:

(55)v19,20(x, t) = −
iei�

�
3a0Ω + 2a3

0
− 3

�

3
√
3a0Ω(f + �)

+ a0 + i
√
3Ω(f + �).

(56)v = e
i�

t�

�

�
P(x, t) +

√
�

�
,

(57)4�(P∗ + P) + 2i
��P

�t�
+

�2P

�x2
+ 2i�

�3P

�x3
= 0,

(58)

⎧⎪⎨⎪⎩

P(x, t) = p1e
i(�x−

t�

�
�)

+ p2e
−i(�x−

t�

�
�)
,

P∗(x, t) = p1e
−i(�x−

t�

�
�)

+ p2e
i(�x−

t�

�
�)
,

(59)4�2�6 + 4��5 − 16��3� − 4�2 + �4 − 8�2� = 0.

(60)� = 2−1∕�
√(

�2(2�� + 1)
(
2��3 + �2 − 8�

))1∕�
.
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Lastly, the gain spectrum G(�) is calculated as

6  Results and discussion

In this section, the originality and novelty of present work is demonstrated by a 
detailed comparison of the obtained solutions with the previous ones. Odabasi Koprulu 
constructed multi-solitons in the form of singular, dark, and bright by applying direct 
method and trial equation method (Odabasi Koprulu 2022). But in this study we have 
computed various solutions in the forms of dark, rational, singular, hyperbolic, trig-
nometric and periodic wave solutions by manipulating two mathematical methods 
improved F-expansion method and the unified method. Several of our outcomes diverge 
from those mentioned in Odabasi Koprulu (2022) if we compare our achievements with 
their results. Even so, if we give various values to the components involved, we can 
obtain some similar outcomes. This present study differs from others in that it assessed 
the impact that parameters of the model have on the actions of solitons, despite the fact 
that the proposed techniques were applied for the first time on the model under inves-
tigation and several soliton were created. This study focuses on the influence of model 
parameters on solitons behavior. This study offers numerous innovative optical soliton 
solutions for the NLCFSH dynamical model. The soliton solutions are constructed via 
powerful analytical methods, which are the improved F-expansion method, the unified 
method and the effectiveness of the employed schemes demonstrates their strength and 
superiority over other applied analytical procedures. The physical implications of the 
extracted wave solutions for the specific values of the resultant parameters are illus-
trated graphically and the internal structure of the connected physical phenomena is 
analyzed in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. These kinds of solutions may 
be useful to explain some physical phenomena related to wave propagation in a nonlin-
ear Schrödinger system supporting high-order nonlinear and dispersive effects. Here, 
we provide some 3-dimensional and 2-dimensional plots of the obtained solutions in 
Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Figure 1 simulates the dark behavior Eq. (26) 
with arbitrary parameter values for p = −0.7, n = 2.1, m = 1.3, � = 0.2 . The Fig.  2 
represents the periodic behavior Eq. (29) by choosing the arbitrary parameter values for 
p = 0.8, n = 0.5, m = 1.3, � = 0.2, � = 0.1 . The Fig. 3 demonstrates the dark behavior 
of Eq. (33) with arbitrary parameter values for p = −0.6, �1 = 1.8, � = 0.9, m = −0.7 . 
The Fig.  4 represents the dark behavior of Eq. (38) with arbitrary parameter val-
ues for p = −0.34, � = 0.84, m = 2, n = 1 . The Fig.  6 shows the periodic behavior 
Eq. (41) with arbitrary parameter values for p = 2.5, m = 0.34, n = 0.2, � = 2.34 . 
The Fig.  5 illustrates the hyperbolic behavior Eq.  46 with arbitrary parameter val-
ues for Ω = −0.01, d = 0.19, e = 1.4, f = 0.4, c = 1.07, � = 0.2, m = 1.21 . The 
Fig.  11 shows the periodic behavior Eq. (53) with arbitrary parameter values for 
Ω = 0.6, d = 0.19, e = 0.4, f = 0.7, c = 1.07, � = −1.2, m = 1.1, a0 = 0.3 . The 
Fig. 12 represents the trigonometric behavior Eq. (54) with arbitrary parameter values 
for Ω = 0.5, d = 0.019, e = −0.4, f = 0.07, c = 1.09, � = 1.2, m = −1.01, a0 = 0.6 . 
The wave profiles of the obtained solutions have been sketched for various values of 

𝜂2(2𝛼𝜂 + 1)
(
2𝛼𝜂3 + 𝜂2 − 8𝜆

)
< 0.

(61)G(�) = 2Im

(
�

)
= 2Im

(
2−1∕�

√(
�2(2�� + 1)

(
2��3 + �2 − 8�

))1∕�)
.
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� to demonstrate the effect of the fractional derivative on the dynamic behavior of 
the waves. From the figures, it is observed that the fractional order has a significant 
impact on the characteristics of the wave profiles via the memory effect phenomenon, 
which means that the signal takes into account its past evolution at any point; acting 
on this parameter allows having better and more complete information about the shape 

Fig. 1  3D, 2D graphs of Eq. (26)

Fig. 2  3D, 2D graphs of Eq. (29)
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of a signal or a pulse. The soliton has the ability to keep its amplitude, velocity, and 
form constant throughout its propagation. These reported solutions have some physi-
cal meaning for instance dark soliton is a soliton whose intensity is lower than the 
background and which isn’t produced by a typical pulse but rather is basically devoid 
of energy in a continuous time beam. There are further types of solitary waves called 

Fig. 3  3D, 2D graphs of Eq. (33)

Fig. 4  3D, 2D graphs of Eq. (38)



Stability analysis and dispersive optical solitons of fractional…

1 3

Page 17 of 23 664

singular solitons that have singularities, typically infinite discontinuities. Singular soli-
tons might be linked to solitary waves when the location of the center of the solitary 
wave is imaginary. Therefore, discussing the topic of singular solitons is relevant. This 
type of solution contains spikes and therefore may recommend a description for the 
development of rogue waves. Periodic wave solution describes a wave with repeating 

Fig. 5  3D, 2D graphs of Eq. (46)

Fig. 6  3D, 2D graphs of Eq. (41)
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continuous pattern, which determines its wavelength and frequency, while period 
defines as time required to complete cycle of waveform and frequency is a number of 
cycles per second of time. The regions of gain curves versus the angular frequency 

Fig. 7  Modulation Instability regions for distinct values of � = {0.2, 0.4, 0.6}, � = {0.15, 0.2, 0.25} from 
left to right, respectively

Fig. 8  Modulation Instability regions for distinct values of � = {0.1, 0.2, 0.3}, � = {0.11, 0.21, 0.31} from 
left to right, respectively

Fig. 9  Modulation Instability regions for distinct values of � = {0.2, 0.4, 0.6}, � = {0.5, 0.6, 0.7} from left 
to right, respectively
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with the effect of the dispersion and fractional derivative order have been exempli-
fied in figures  7, 8, 9 and 10. We observe that, when the fractional derivative order 
decreases, the MI band increases and the instability zones also increase.

7  Conclusion

In this article, we provided several new solutions for the fractional Schrödinger–Hirota 
(FSH) equation with conformable fractional derivative, which is well known for play-
ing a crucial role in optical fiber communication between continents as well as the tel-
ecommunication industry. By using the improved F-expansion and unified method, we 
have successfully secured several new solitons of the Eq. (1). Several notable oceanic 

Fig. 10  Modulation Instability regions for distinct values of � = {0.2, 0.4, 0.6}, � = {0.55, 0.65, 0.75} from 
left to right, respectively

Fig. 11  3D, 2D graphs of Eq. (53)
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phenomena related to nonlinear shallow or deep water wave propagation have been 
elucidated in terms of soliton propagation. A number of significant optical solitons, 
including dark optical, singular optical, mixed singular optical, and periodic function 
solutions, have been recovered. It has been demonstrated that these techniques are quite 
successful in exposing the different soliton solutions of our selected model. To observe 
the internal structure of the solutions to nonlinear phenomena, researchers may use and 
develop many new approaches. In this way, you can find novel solutions to the dynami-
cal models under consideration. Studying these innovative solution characteristics sig-
nificantly enhances the physical realisation of wave phenomena in higher-dimensional 
fractional dynamical models in nonlinear optics and oceanography. The responses of 
the soliton solutions of the govering models can be evaluated in the future by adding 
the bifurcation and chaotic behaviors of FSH equation, and a new debate ground can be 
formed.
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