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Abstract
Despite the low power conversion efficiency of solar cells n-ZnO/p-CuO and n-ZnO/p-
Cu2O, they can contribute to the development of photovoltaic energy. To optimize their 
yields, the simulator software SCAPS-1D was used in this work to do the simulations of 
the two cells (Fig. 1) by varying certain parameters. Its parameters were thickness, band-
gap, shallow uniform donor density (ND) for the ZnO, and shallow uniform acceptor den-
sity (NA) for the CuO and Cu2O. The values optimized of these parameters gave short-
circuit currents and efficiencies of 27.7755  mA.cm−2, 31.40%, and 12.9790  mA.cm−2, 
13.34% respectively for the solar cells n-ZnO/p-CuO and n-ZnO/p-Cu2O (Fig.  2). Our 
results reveal that the n-ZnO/p-CuO solar cell is more efficient than the n-ZnO/p-Cu2O 
solar cell and can be used for converting solar energy into electricity.
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1  Introduction

The world evolves with all the technology in it. Solar energy is not on the sidelines. 
In fact, silicon has been the subject of research for several years and is gradually giv-
ing way to other semiconductors such as oxides (Li et al. 2017; Bouich 2021; Lu et al. 
2016; Shen et  al. 2015; Wisz et  al. 2018). Several works in the literature have been 
realized on the copper oxide and zinc oxide used in solar cells (Fortunato et al. 2007). 
Apart from solar cells made of several types of materials (Tsunomura et  al. 2009; 
Khan et al. 2018; Ajmal Khan and Suemasu 2017), There are heterojunction solar cells 
made only of metal oxides. The oxides being abundant and less expensive, these cells 
called all-oxide photovoltaic cells are thus produced at low cost and can be an alterna-
tive to the high price of the solar cells generally used. This has prompted the scientific 
community to take an interest in these types of photovoltaic solar cells (Morasch et al. 
2014; Wisz et al. 2018; Ruhle et al. 2012). ZnO/CuO and ZnO/Cu2O n-p junction have 
good properties for optoelectronic applications and can be competitive in the solar cell 
market (Mizuno et al. 2020).

ZnO is a cheap and abundant material in nature. Its properties such as its transpar-
ency in the visible and its direct bandgap of 3.3 eV make it a good candidate for elec-
tronic and optoelectronic applications (Mizuno et al. 2020; Mahajan et al. 2020). Due 
to its properties, cupric oxide (CuO) is used as an active layer in solar cells. In fact, it 
is a p-type semiconductor stable, cheap, and non-toxic with a bandgap of 1.2 eV (Kid-
owaki et al. 2012). It has a monoclinic crystalline structure with an absorption coeffi-
cient of 105 cm−1 and its electrical resistivity varies from 10 to 105 cmΩ (Shabu et al. 
2015; Ooi et al. 2013; Valladares et al. 2012; Liu et al. 2011).

This work is a theoretical study that uses the SCAPS-1D simulation program to sim-
ulate solar cells n-ZnO/p-CuO and n-ZnO/p-Cu2O. The influence of certain parameters 
of the different layers on the performance of solar cells is studied. The goal of this 
work is therefore to optimize the values of these parameters to have the best efficien-
cies for the solar cells as well as to compare the performance of the two cells.

2 � Simulator program SCAPS‑1D

Several simulation software is used in the literature for thin film solar cells simulation 
(Decock et  al. 2011) such as AMPS (Matin et  al. 2010), ASPIN (Vukadinoyic et  al. 
2003), AFORS-HET (Froitzheim et al. 2003), and SCAPS-1D (Doumbia  et al. 2022). 
We have used SCAPS-1D in this work. SCAPS-1D is a software simulation developed 
in Belgium at Gent University and was usable since 1998. Different characteristics of 
I-V, C-V, C-f, QE, band diagrams, electric field, carrier densities, and partial recombi-
nation currents can be used to show the results of the simulation. Before the simula-
tion, the material parameters can be set as well as other parameters in the software 
such as temperature, voltage, frequency, and illumination. A stack of layers constitutes 
the cell. Each layer has a parameter entry. The front and the back contact are provided 
by two additional layers that already exist in the device (Sawicka-Chudy et al. 2018).
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3 � Methods

The simulator program SCAPS-1D has been used to perform the simulation of photovol-
taic characteristic J-V and QE of the thin films n-ZnO/p-CuO and n-ZnO/p-Cu2O solar 
cells. These characteristics allowed the calculation of the most important parameter such as 
open circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF), and efficiency (eta), 
which were analyzed later. Simulations have been realized under standard illumination 
(AM 1.5 G, 100 MW.cm−2, 300 K). The values of parameters of different materials have 
been taken from the literature and we have played on some of them to see their influence 
on the performance of the solar cell. The values shown in Table 1 are unchanged. We have 
inserted them into the program as such. On the other hand, the parameters whose influence 
we want to study have values that vary. For a variation of the values of one parameter, the 
other `parameters have a fixed value (the ideal value if found).Table 1 below shows the 
parameters of different materials.

The influence of the layers’ thickness of different materials was analyzed as well as the 
influence of their bandgap. Additionally, the influence of the ND of ZnO and the influence 
of the NA of CuO and Cu2O were also evaluated. Finally, we have used the best data to do 
the simulation for our cells. In Table 2 below, we have put the parameters for the front and 
back contact of the solar cell. This parameter has been taken in the simulation program.

Figure  1 below shows the structure of the two solar cells n-ZnO/p-CuO and 
n-ZnO/p-Cu2O.

Table 1   Parameters of ZnO, CuO, and Cu2O (Sawicka-Chudy et al. 2018; Lam 2020; Anwar et al. 2017; 
Gou and Murphy 2003; Wang et al. 2002; Xing et al. 2011; Scanlon et al. 2009)

Parameters n-ZnO p-CuO p-Cu2O

Thickness d (nm) Varied Varied Varied
Bandgap Eg (eV) Varied Varied Varied
Electron affinity EA (eV) 4.30 4.07 3.20
Relative dielectric permittivity ɛn-p 9.00 18.10 7.11
Conduction band effective density of states NC (cm−3) 2.2E + 18 1.0E + 19 2.0E + 17
Valence band effective density of states NV (cm−3) 1.8E + 18 5.5E + 20 1.1E + 19
Electron mobility (cm2V−1 s−1) 1.0E + 2 10.0E + 1 2.0E + 2
Hole mobility (cm2V−1 s−1) 2.5E + 1 1.0E-1 8.0E + 1
Shallow uniform donor density ND (cm−3) Varied 0 0
Shallow uniform acceptor density NA (cm−3) 0 Varied Varied

Table 2   Parameters of front and back contacts

Parameters Front contact Back contact

Surface recombination velocity of electrons (cm/s) 1.00E + 7 1.00E + 5
Surface recombination velocity of holes (cm/s) 1.00E + 5 1.00E + 7
Metalwork function (eV) 4.6039 5.8973
Majority carrier barrier height relative to Ef (eV) 0.0539 0.1527
Majority carrier barrier height relative to EV (eV) 0.0000 0.0000
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4 � Results and discussions

4.1 � Influence of layers thickness

To determine the best ZnO layer thickness as a window layer in the different ZnO/CuO and 
ZnO/Cu2O solar cells, the parameters Voc, Jsc, FF, and eta were constructed and depicted 
in Fig. 2 below. The smaller the thickness of the layer, the more the series resistance of 
the PV device is minimized (Sawicka-Chudy et  al. 2019). The thickness varied from 50 

Fig. 1   Structure of the solar cell

Fig. 2   Influence of ZnO thickness on the cell parameters
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to 300 nm in the step of 50 nm. The bandgap and the shallow uniform donor density were 
kept as constants of 3.2 eV, 1017 cm−3, respectively. Moreover, the parameters such as the 
thickness, the bandgap, and the shallow uniform acceptor of the CuO absorber layer were 
kept also as constants of 6000 nm, 1.51 eV, 1016 cm−3 respectively. The Voc depicted in a) 
was constant from 50 to 250 nm and decreases strongly. The other parameters decrease as 
increasing in the ZnO thickness. From these parameters, the optimal thickness of ZnO is 
50 nm.

The influence of CuO thickness on the cell parameters is depicted in Fig. 3 below. The 
thickness varied from 3000 to 8000 nm in steps of 1000 nm. The bandgap and the shallow 
uniform acceptor density were kept as constants of 1.51 eV, 1016 cm−3, respectively. The 
thickness, the bandgap, and the ND of the ZnO window layer were kept also as constants 
of 50 nm, 3.2 eV, 1017 cm−3 respectively. The figure shows that all parameters (Voc, Jsc, 
FF, eta) increase as the CuO thickness increases. The curves increase slightly after 600 nm. 
Thus, the best-chosen thickness is 600 nm.

The influence of Cu2O thickness on the cell parameters is depicted in Fig. 4 below. The 
thickness varied from 500 to 4000 nm in steps of 500 nm. Here the bandgap and the shal-
low uniform acceptor density were kept as constants of 2.2  eV, 1018  cm−3, respectively. 
The same ZnO parameters previously used were used. Among the curves below, only fill 
factor in c) decreases with the thickness increasing. Other curves increase as increasing 
in the Cu2O thickness. The Jsc (Fig. 4b) and eta (Fig. 4d) increase strongly until 2000 nm 

Fig. 3   Influence of CuO thickness on the cell parameters
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and increase slightly after this. The Voc (Fig. 4a) shows that a big thickness can be used 
to have good results, but the fill factor (Fig. 4c) will be small. From these different curves, 
2000 nm was used as the Cu2O thickness in this simulation.

4.2 � Influence of bandgap

To determine the best bandgap of the ZnO layer, the bandgap varied from 2.2
 to 3.3  eV and the different curves below were constructed in Fig.  5. The different 

parameters like the thickness of ZnO and CuO found previously were used as well as 
the other parameters of ZnO and CuO used previously. All curves below increase as the 
increase in ZnO bandgap. This increase is weak after 3.2 eV. Thus, 3.2 eV was used as the 
best bandgap of ZnO. It is possible to use 3.3 eV, but there won’t be a big influence.

The influence of CuO bandgap on cell parameters is illustrated in Fig.  6 below.The 
bandgap was varied, and the other parameters used previously or found were kept constant. 
Unlike the values of Voc (Fig. 6a) and fill factor (Fig. 6c), the values of the Jsc (Fig. 6b) 
and the ete (Fig. 6d) decrease with the CuO bandgap increasing. As 1.5 eV has good results 
in each case, it was used as the CuO bandgap.

The influence of Cu2O bandgap on the cell parameter is depicted in Fig. 7 below. ZnO 
and Cu2O parameters used previously or found were kept constant, and the bandgap of 

Fig. 4   Influence of Cu2O thickness on the solar cell parameters
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Cu2O varied from 2 to 2.2 eV. Results show that only the Voc increased with the band-
gap from 2.1 eV. According to the results, the best bandgap is 2 eV with an efficiency of 
11.8 eV.

4.3 � Influence of ND and NA

Here, the influence of the ND and NA on cell parameters is studied. The parameters of dif-
ferent oxides used previously or found were kept constant and ND or NA varied. Results of 
the influence of ZnO’s ND on cell parameters are in Table 3 below. The Voc rest constant 
with the ND variation. The Jsc decreases slightly with the ND increasing whereas the FF 
increase. The efficiency (eta) increases as the increase of ZnO ND. But the efficiency is 
constant after 1017  cm−3. In this case, 1017  cm−3 was used as the best shallow uniform 
donor density of ZnO.

Table 4 below shows the results of the influence of CuO shallow uniform acceptor den-
sity on cell parameters. Results are good until the value 1022 cm−3. After this value, the fill 
factor is bad (28.33%). Thus, the value 1022 cm−3 has been chosen as the best value of CuO 
shallow uniform acceptor density with an efficiency of 31.40%.

Results of the influence of Cu2O shallow uniform acceptor density on cell parameters 
are in Table 5 below. The Voc and eta increase with the NA increasing which is opposite 
for the Jsc and FF. Contrary to previous results, the Jsc is weak at about 15 mA/cm2 of 

Fig. 5   Influence of ZnO bandgap on the cell parameters
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difference. Moreover, the efficiencies are weak compared to the efficiencies of the previous 
cell. According to the results, the fill factor is bad (FF = 39.93%) when NA is 1020 cm−3. 
However, the different parameters have good results with a NA equal to 1019 cm−3. Con-
sequently, the value 1019 cm−3 has been chosen as the shallow uniform acceptor density of 
Cu2O with an efficiency of 13.34% (Bouich et al. 2023; Bouazizi et al. 2023; Koné et al. 
2023).

Figure 8 below summarizes the results of the two solar cells and allows to compare the 
different values. By comparison, the results of the solar cell-based-CuO are vastly superior 
to those of the solar cell-based-Cu2O. For example, the efficiencies of solar cells n-ZnO/p-
CuO and n-ZnO/p-Cu2O were 31.40% and 13.34% respectively.

5 � Conclusion

This work investigated the solar cell n-ZnO/p-CuO and n-ZnO/p-Cu2O by using the solar 
cell simulator, SCAPS. The thickness, the bandgap, and the ND or NA of different layers 
were optimized by analyzing the results of Voc, Jsc, FF, and eta. After analyzing the ZnO 
film window layer, the optimized values of the thickness, the bandgap, and of the shallow 
uniform donor density are 50 nm, 3.2 eV, and 1017 cm−3 respectively. The values optimized 

Fig. 6   Influence of CuO bandgap on the cell parameters
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Fig. 7   Influence of Cu2O bandgap on the cell parameters

Table 3   Influence of ZnO 
shallow uniform donor density 
on cell parameters

ND of ZnO (cm−3) 1015 1016 1017 1018

Voc (V) 0.8729 0.8729 0.8729 0.8729
Jsc (mA/cm2) 28.3527 28.3542 28.3327 28.3017
FF (%) 86.49 86.63 86.73 86.82
Eta (%) 21.41 21.44 21.45 21.45

Table 4   Influence of CuO 
shallow uniform acceptor density 
on cell parameters

NA of CuO (cm−3) 1020 1021 1022 1023

Voc (V) 1.1347 1.1943 1.4666 4.1819
Jsc (mA/cm2) 27.7954 27.7752 27.7755 27.7780
FF (%) 89.29 89.74 77.07 28.33
Eta (%) 28.16 29.77 31.40 32.92
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for the thickness, the bandgap, and the NA of the CuO absorber layer are 6000 nm, 1.5 eV, 
and 1022 cm−3 respectively. The values optimized of these parameters and in this order of 
Cu2O are 2000 nm, 2.2 eV, and 1019 cm−3. With these different values optimized, the solar 
cell n-ZnO/p-CuO and n-ZnO/p-Cu2O were 31.40% and 13.34% respectively. Results of 
the solar cell based-CuO are vastly superior to those of the solar cell based-Cu2O. It is 
therefore the best solar cell for converting solar energy into electricity.
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Table 5   Influence of Cu2O 
shallow uniform acceptor density 
on cell parameters
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Fig. 8   Summary and comparison of the results of the two solar cells
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