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Abstract

This paper considers the fractional order dual-mode nonlinear Schrodinger equation
(FDMNLSE) with cubic law nonlinearity. The FDMNLSE interprets the concurrent propa-
gation of two-mode waves instead of a single wave. Throughout this work, the fractional
derivative is given in terms of time and space conformable sense. The FDMNLSE intro-
duces three physical parameters: dispersive factor, phase speed, and nonlinearity. This
new model has many applications in nonlinear physics and fiber optics. We will use two
methods to get new optical solutions: the generalized exponential rational function method
(GERFM) and the functional variable method (FVM). Using the GERFM, we get unique
wave solutions in the forms of shock wave solutions, singular soliton solutions, singular
periodic waves, and exponential function solutions. Thanks to FVM, we reach bright opti-
cal soliton solutions, singular optical soliton solutions, and periodic singular wave solu-
tions, and the restraint conditions for solutions are reported. The analytical outcomes are
supplemented with numerical simulations of the got solutions to understand the dynamic
behavior of obtained solutions. The results of this study may have a high-importance appli-
cation while handling the other nonlinear partial differential equations (NLPDESs).

Keywords Solitons - Exact solutions - Fractional order dual-mode nonlinear Schrodinger
equation (FDMNLSE) - Generalized exponential rational function method (GERFM) -
Functional variable method (FVM)

1 Introduction
NLPDEs are of great significance to our modern world. Accordingly, the problem of build-

ing new approaches to solve these equations is an essential matter in applied mathematics
and mathematical physics. The new exact solutions of nonlinear equations supply a better
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understanding of the tools of nonlinear physical phenomena in engineering and science.
We recognize that the extraordinary concentration of investigators in this area of investiga-
tion plays a magnific role and significance.

In recent years, nonlinear evolution equations (NLEEs) have become a favorite research
topic in diverse engineering and physical sciences fields. Because these types of equations
model every natural phenomenon. Their solutions allow us to understand better and ana-
lyze our universe. Investigators are keenly interested in developing additional effectual
ways of determining solutions to nonlinear prototypes. Better awareness is being delivered
to solitary wave solutions because the NLEEs have successfully demonstrated the con-
nected physical system’s behavior in many science areas. The nonlinear Schrodinger equa-
tion (NLSE) is one of the most vital NLEEs encountered in studying nonlinear optics. The
most recent of these can be given as an example of Logarithmic transformations (Seadawy
et al. 2023), Sub-ODE method (Aziz et al. 2023), Differential transform method (DTM)
(Zahran et al. 2023), Extended simple equation method (Zahran and Bekir 2022; Ahmed
et al. 2022). The NLSE is a universal model that portrays many physical nonlinear systems.
The NLSE is one of the equations characterizing the evolution of slowly altering packets
of quasi-monochromatic waves in weakly nonlinear media with dispersion. During the past
few decades, examinations on optical solitons have become widespread among investiga-
tors in the physical sciences. Another performance of this equation is in pattern formation,
which has been used to model some nonequilibrium pattern-forming systems.

Fractional calculus has gained considerable concentration in recent times. The ori-
gin of fractional calculus dates back to the 1600 s, first seen in a letter from Leibnitz to
L’Hospital. Afterward, Abel, Fourier, Liouville, Leibnitz, Weyl, and Riemann contributed
to this theory. Abel gave the first applications of fractional calculus in 1823. Research-
ers have been working on fractional calculus and developing new operators such as Rie-
mann-Liouville derivatives (Salah et al. 2019), Caputo-Fabrizio derivatives (Baleanu et al.
2020), Atangana-Baleanu derivatives (Scott 2005), and Conformable fractional derivatives
(CFDs) (Zhao and Luo 2017).

Varied fractional-order prototypes are employed in applied sciences and engineering
because they better illustrate real-world problems. The CFD is favorably applicable for
solving complicated prototypes. It also facilitates us to achieve an opinion of how physical
phenomena act. This derivative is discovered to be extra attractive and marked than the ear-
lier mounted ones. The CFD conveys many luxuries when it is used to model many physi-
cal problems because the differential equations with CFDs are easier to solve numerically
than those connected with the Caputo fractional derivative or Riemann-Liouville.

Up to now, many effective analytical approaches for the NLPDEs and the nonlinear ordi-
nary differential equations (NODEs) have been offered as Paul-Painleve approach method
(Zahran et al. 2023), Lie group analysis technique (Adeyemo and Khalique 2023), Hirota
bilinear method (Wang 2023), Split-step method (Bourdine et al. 2022), New extended
generalized Kudryashov technique (Seadawy et al. 2021), Generalized auxiliary equation
strategy (Khater et al. 2019), Modification of variational iteration algorithm-I (Ahmad
et al. 2020), Multistage optimal homotopy asymptotic method (Wang et al. 2022; Shah
et al. 2020), Improved tanh method (Islam et al. 2022), Extended tanh method (Saha et al.
2021), Extended Jacobi elliptic expansion function scheme (Zafar 2020), Haar wavelet col-
location method (HWCM) (Liu et al. 2021; Ahsan et al. 2021), Finite difference method
(Zaher et al. 2021; Raslan and Ali 2020). Also, different powerful mathematical methods
were applied to solve the PDEs with integer or fractional order offered as Rational (G’ /G)
-expansion method (Islam et al. 2021), The analytical soliton solutions (Yépez-Martinez
et al. 2022), Extended Riccati scheme (Islam et al. 2022), First integral approach (Aderyani
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et al. 2022), Sub-equation approach (Yépez-Martinez et al. 2022), Rational-expansion
approach (Islam et al. 2022), Meshless approach (Ahmad et al. 2020a, b; Nawaz Khan
et al. 2020), Generalized Riccati equation (GRE) together with the basic simplest equa-
tion method (SEM) (Osman et al. 2020), Modified first integral scheme (Yépez-Martinez
et al. 2018), Fractional iteration algorithm-I (Ahmad et al. 2020), Variational Iteration
algorithm-I (Ahmad et al. 2020), Local meshless method (Inc et al. 2020).

Two-mode or, sometimes named, dual-mode type equations have recently attracted
noticeably more investigation in the nonlinear sciences. Because dual-mode equations in
the present design survey the extemporaneous wave interactions. Jaradat et al. (2018) got
dual-mode optical soliton solutions for their prototype by utilizing the tanh-coth expansion
technique. Employing simplified Hirota’s technique, Wazwaz reached multiple kink solu-
tions of dual-mode Sharma—Tasso—Olver (DM-STO) equation and dual-mode fourth-order
Burgers (TMBE-4th) Wazwaz (2018). Javid et al. (2021) accepted dual-wave soliton solu-
tions for dual-mode RNLSE by utilizing the exp(—¢)-expansion approach. Kopcasiz and
Yasar (2023) used the Lie symmetry procedure on the DMNLSE to discover the infinitesi-
mal generators using the invariance condition. Then, they transformed the DMNLSE into
an ODE employing accepted generators and similarity reduction concepts. Later, thanks to
the multiplier technique, they obtained the conserved quantities’ densities and fluxes.

In this study, we deal with FDMNLSE with cubic law nonlinearity. The FDMNLSE is
defined as

i(DY'W = s> DW) + (DI{F(IWIP)W} — zsD! {r(IW ) W})

n (D,Y{ %ijw} - 0sD)V({ %Dﬁyw}) =0

(D

Here W = W(x, 1) is a complex function that stands for the envelope field with temporal
variable ¢ and the propagation distance x, i is an imaginary unit and i> = —1. Also, |z| < x1
is a nonlinearity factor, |#| < +1 is a dispersive factor,s > 0 is an interaction phase speed
(Kopgasiz and Yasar 2022a).

Dual-mode kind equations have newly attracted appreciably more investigation in the
nonlinear sciences. Because dual-mode equations in the existing configuration probe the
spontaneous wave relations. There are considerably different works connected with the
dual-mode Korteweg-de Vries equation (Kopcasiz and Yasar 2022b; Kopgasiz et al. 2022;
Zayed and Shohib 2020; Alquran and Jaradat 2019).

The major goal of this study is to extract the diverse exact solutions to the FDMNLSE
with cubic law nonlinearity. The FDMNLSE interprets the concurrent propagation of two-
mode waves instead of a single wave. We will apply two analytical methods: GERFM and
the FVM.

The overall composition of this paper is organized as follows. Section 2 is dedicated to
the properties of the conformable fractional derivatives. Section 3 suggests a concise intro-
duction to the GERFM and the FVM. In Sect. 4, the proposed strategies are employed to
construct the soliton solutions. Physical interpretations and concluding remarks are offered
in Sect. 5.

2 The conformable fractional derivative (CFD)

The concept with some properties of the fractional derivative of conformal type (Zheng
et al. 2019; Khalil et al. 2014) is given as:
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Definition 1 Letu : (0, 00) — R, then the conformable fractional derivative of u of order
y is defined as

ux + ex' ") — u(x)

€

D (u(x)) = Iir%

in which x > 0 and order of derivative depicted by y also 0 < y < 1. The properties of dis-
cussed definition follow the next theorems.

If y(x) and z(x) are y—differentiable functions at any point x > 0 for all y € (0, 1].
Then

Theorem 2
(T1) Dr(x") = nx"~"
(T2) D7(2) = 0, in which A is any arbitrary constant.
(T3) D7 (1 y(x) + 5p2(x)) = 2, D7 (y(x)) + 2,07 (2(X)), V1, %, € R.
(T4) Dr(y(x).2(x)) = y(x)D7(z(x)) + z(x) D7 (y(x)).
(T5) Di(ig—)’g) = %W If u is differentiable, then

% — -7 @
Dry(x) = x —

Theorem 3 Presume y(x),z(x) : (0,00) = R be differentiable and also y-differentiable
functions, then the following rule holds:

DY (y(x).z(x)) = x' 72 (1) (h(D)).

3 Methodologies
3.1 The outline of technique I: GERFM

This procedure was first proposed by Ghanbari and his colleague in the article (Ghan-
bari and Inc 2018). So far, many partial differential equations (PDEs) have been studied
by using this technique (Ghanbari et al. 2021; Younas et al. 2021; Kumar and Niwas
2022; Ghanbari 2021). We will review how to use the method below.
Phase 1. Suppose we have a fractional order NLEE in the form:
QW(x, 1), DV {W(x, D}, DI{W(x, t)},Di’{W(x, n},..)=0. )

Phase 2. Using the transformations W(x, ) = V(§) and & = @ Eq. (2) becomes a
NODE given by:
QV, vV, v", .)=0. 3)

Phase 3. We assume that Eq. (3) admits the exact solution giving by
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N N
V(E) = A+ Y ANE + D BAE T, )
k=1 k=1

in which

hyehé + hyehs

A() = : .
(5) h3@f3§ + h4@f4§

®)
Unknown coefficients A, A;, B,(1 <i < N)and h;,f,(1 <i < 4) are real (or complex) con-
stants to be evaluated, such that Eq. (4) satisfies the NODE Eq. (3).

Phase 4. Besides, the positive integer N is calculated by the principles of balancing.

Substituting Eq. (4) together with Eq. (5) into Eq. (3) and gathering all terms,
the left-hand side of the resultant equation is converted into polynomial equation
K(G1,62:63.64) =0 as to ¢; = ¢ for i = 1,..,4. Taking each coefficient of K to zero, we
reach a set of algebraic equations.

Phase 5. Solving the algebraic equations in Phase 4 with the aid of a symbolic compu-
tation package and then inserting non-trivial solutions in Eq. (4), the explicit shape of the
solutions of Eq. (2) will be extracted.

3.2 The outline of technique Il: FVM

The FVM was first presented by Zerarka et al. (2010). This procedure has been further
developed by many authors (Mirzazadeh et al. 2016; Liu and Chen 2013; Neirameh 2023).
Suppose we have a fractional order NLEE in the form:

Q,(W(x, 1), DI {W(x, 1)}, D} (W(x,1)}, D {W(x,1)},...) = 0. 6)

Here Q) is a polynomial in W(x, ¢) and its partial derivatives. The main phases of this
approach can be explained as follows:
Phase 1. We use the wave transformation

(x" —at”)

WD =V, &=-—=, ™)

to reduce Eq. (6) to the next NODE:
Q(V, Ve, Vi, ) = 0, (8)
where €, is a polynomial in V(&) and its total derivatives, while V; = %’ Vee = ‘5?‘2/ and so

on.
Phase 2. We transform in which the unknown function V(§) is regarded as a functional
variable in the form:

V‘f =I'(V) 9)

and some successively derivatives of V(&) are as follows:
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1
Vgg = E (Fz)/,
1
Veee =5 (0)'VI2, (10)

Vé:égé: =%[(F2)/HF2 + (I—Q)/I(FZ)I]’

and so on, in which “’” stands for %.
Phase 3. We put Eq. (9) and Eq. (10) into Eq. (8) to reduce it to the subsequent NODE:

QV,I, T, 1", 1",..)=0. (11)

After integration, Eq. (11) provides the expression of I, and this in turn together with Eq.
(9) gives the appropriate solutions of Eq. (6).

4 Mathematical discussion for the fractional order nonlinear model
Under the cubic law, f(W) = W, thus Eq. (1) become next

(DY W = 2DF W)+ (DI {IWPW} = 25D { WP W} )

1 1 (12)
+ (D,V{ —szw} - GSDV{ —DZVW}) =0.
2 X X 2 X
By making the fractional-order complex wave transformation
i o +qt?)
Wx,t)=e 1 V(&),
&’ —at”) (13)

s, 1) =——,
14

on Eq. (12) and split up real and imaginary parts, we reach the next NODEs:

(=217 = 25% + Osa — an)a®V + (=2zs + 2n)aV? + 2a* — 25 + an — 2aa — 3a0s)V" =0,

14
(4na + 4s* + 3abs — 2an + aa)aV — 2(zs + a)V> — (a + 0s)V" = 0. (15)
From the Eq. (15), we have 7 = 0 = —%, n= O’;’;—_Z:Z and plugging them into Eq. (14), then
Eq. (12) is reached to a NODE
a(s + a)(a — $)(2a — a)V"'
+ (=5aas’® + 25 + 25%a® + 52 + aa®)a*V + (s + a)(a — §)(2a — a)aV? = 0.
16)

4.1 Main outcomes of solving model Eq. (12) using technique |

According to Phase 4, Eq. (16) presents N = 1. Therefore, Phase 3 gives us
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B,
V(&) =Ag+A AN+ —. 17
ot+tA; AG) a7
Category 1
When we take i : [-1,0,1,1]and f: [0, O, 1, O], then Eq. (5) changes into
1
AN=———.
1+ef (18)

For getting the values of parameters, we need to solve algebraic equations with the aid of
Maple and the pursuing set of solutions can be delivered as

A== LA A== a_ B, =0,
2 a 2a
av/ =2
a
1
\/E —4a%a? + 10aa® — 2a* — 24* + aa 2
1
s=+ ol + 16a*a* — 112a%a° + 116a2a® — 40aa’ + 4a® + 48a*a? \ ?
—64aPa® + 28a%a? — daa® + 4a* — 4dPa + a*a?

Inserting these above values of A, A;, B, into Eq. (17), we have

1 2a 2a 1
V(§)=§V—;+a _z_ax<_1+e:>' (19)

o

By using the Eq. (19) together with Eq. (13), then, the exponential function can be
expressed as

1 [ 2 2 1 a0
Win) =31/~ + — = x (— — ) x e (20)
14+e

provided that aa < 0.
Category 2
When we choose 4 = [1,1,1,—1]and f = [1, -1, 1, —1], then Eq. (§) modify into

e +e
A= et (21)
The next Sub-category are scheduled:
Sub-category 2.1
Ay=0, A =B ==+ _2_a’
a
—2a%a? + 5a0® — a* — 16a* + 8aa 2

1
§=£ — + 4ata® = 28aP a8 + 29a2ab — 10aa’ + a® + 192a*a? — 2564 x> \ 2
- +112a%a? — 16aa® + 256a* — 2564 a + 644

Inserting these above values of A, A, B, into Eq. (17), we have
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-1
2 4 = 2 & =<
VE = /- x (S ) /- x (£ 22)
a e —e* a e —et
By using the Eq. (22) together with Eq. (13), we attain the singular soliton solution as
W—att) @Y=t
2a e 7V +e v
-2 % ( T T > )
W2,l ()C, t) = g(xV —at’) g_ & —at?) -1 Xe ! (23)
2a e 7 +e v
-7 X (m)
e 7 7

—e

provided that aa < 0.
Sub-category 2.2

[SIE

—2a%a? + Saa’® — a* — 4a* + 2aa

1 1
§=x— 4ota* — 28a3a® + 29a%a® — 10aa’ + a® + 48a%*a? \?
—\ —64aPa® + 28a%a? — 4ad’ + 16a* — 16a3a + 4a*a?
Substituting the values of A, A;, B, into Eq. (17), we have
£\ !
V(§)=i\/—@x cte ) (24)
a et —e¢

Using the Eq. (24) together with Eq. (13), we discover the singular soliton solution as

o —ait) _@=aty \ !
| 2a e v +e v o W)
W2,2('x’ N=4% _; X o —at) ) Xe ! (25)
e v —e 4

provided that aa < 0.

Category 3
Forh =[-3,-1,1,1]and f = [1,—-1, 1, —1], then Eq. (5) transform into

3¢t — ¢
AN=———. 26
el + et (26)
The next Sub-category are planned:
Sub-category 3.1
Ag=+t—2 4 =+,/-22 B =0
ay/—2 @

—2d%0? + 5aa® — a* — 4d? + 2aa

1 1
. N 4ata* — 28a%a° +29a%a® — 10aa’ + a® + 48a*a? — 64aa® \ ?
- +28a*a? — 4aa’® + 16a* — 16a°a + 4a*a>
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Substituting the values of A, A,, B, into Eq. (17), we have

4a 2a -3¢t — et
s () @

Using the Eq. (27) together with Eq. (13), then, we obtain the shock wave solution as

o —at?) _ W —att)

—_ —_ s 4nth)
da + —%X 3e v e 7 xem% 28)

a Y —arr _ @ -ar)
a\/—z—“ e T
a 14

W3 (1) =

provided that aa < 0.
Sub-category 3.2

Ay =+21/-24 4 B, = +31/-24,
o (Z

I
L

[SIE

—24d%a? + 5aa® — a* — 4d® + 2aa

1
§=+x— + 4ata* — 28a3a’ + 29a2ab — 10aa’ + a® + 48a*a? — 64a3a® \ 2
- +28a*a? — 4aa’ + 16a* — 16d°a + 4a*a?

Substituting the values of A, A;, B, into Eq. (17), we have
2a 2a —3¢f —e™¢
Vv ——+31/-—x . 29
& =21/-=+31/-= ( o ) (29)
Using the Eq. (29) together with Eq. (13), we get the shock wave solution as

2 2 (Ay—my) _ @ —ath) -1 oy

/ a [ 2a v o—e ¢ i L7)

W3 2()6 1= ——+3/-—X f —ar?) W —ar’) xe ! (30)
14 + e 14

e

provided that aa < 0.
Category 4
On selecting h = [2,0,1,—1]and f = [1,0, 1, —1], then Eq. (5) turns into

2¢¢

Proceeding as the outline of technique I, we reach

1]

—2ad%a? + 5aa® — a* — 4d? + 2aa

1
+ 4ata* — 28a3 o’ + 29a2a® — 10aa’ + a® + 48a*a? — 64a3a® \ 2
- +28a*a? — 4aa’ + 16a* — 16a°a + 4a*a?
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Substituting the values of A, A,, B, into Eq. (17), we have
2a 2a 2e¢
V() = - — .
© 2 * a (ef - e—‘f) (32)
ar/ =%
a
Using the Eq. (32) together with Eq. (13), we attain the singular soliton solution as
2 2 2 o —at?) } ,
a a e o &0
W4(x’ t) = o + _; X ( o —ar?) — W—att) > Xe ! (33)
ay /—; e v —e 7
provided that aa < 0.
Category 5
On selecting h = [1,2,1,1]and f = [-1, 1, —1, 1], then Eq. (5) convert into
2¢° + et
= . 34
el +e ¢ (34
The subsequent Sub-category are planned:
Sub-category 5.1
A=+ —9 4 =+2,/-2 B =0,
2a a
R YA
1
—2d%a? + Saa® — a* — 4d® + 2aa 2
1
> 2

4ota* — 28a%a® + 29a2a® — 10aa’ + a® + 48a*a? — 64aa’
+28a*a? — 4aa® + 16a* — 16a°a + 4a*a>

=+
SEE 20| + <
Substituting the values of A, A,, B, into Eq. (17), we have
6a 2a 2¢5 + e~
2/ -=x|—/———).
* a ( e+ et > (35)

V() =
2a

[04
a

Using the Eq. (35) together with Eq. (13), in this way, the next shape is derived as the

shock wave solution
o —a) =)
6a 2a 2e v +e” i &)
W5,1 (1) = +24/—— T —ar? o —ar’) Xe Y (36)
2a a o'—ath) —
ay/—= e v +e
a

provided that aa < 0.
Sub-category 5.2
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Ay=+3y/-22, A, =0, B =44/-2
o a

—2d%a? + 5aa® — a* — 4d® + 2aa

[SIE

1
s=+— N < 4ata* — 28a%a® + 29a%a® — 10aa’ + a® + 48a*a? — 64d° o >

o1—

2a
+28a%a? — 4aa® + 16a* — 16a%a + 4a2a?

Inserting these values in Eq. (17), yields

2a 2a 2e5 + e
V(é)—3\/——+4\/—— <e5+e5> . (37)

Accordingly, we get the shock wave solution as

Weaty _@raty \ T
| 2a 2a 2e v +e v i &7
Ws,(x, 1) = — = 444/-= o xe' 7 (38)

€V+€ L4

provided that aa < 0.
Category 6
Considering h = [i, —i, 1, 1] and f = [i, —i, i, —i], from Eq. (5) we accomplished
ie’t —ie
e + e—i¢ ( )

Sub-category 6.1

Ay =0, A, =B =+1/-2%
(14

91—

—24d%a? + 5aa® — a* — 842 + 4aa

1
22 + 4ata* — 28a3a’ + 29a2ab — 10aa’ + a® + 96a*a? — 1284 >
- +56a*a* — 8aa® + 64a* — 64a’a + 164%a?

o1—

§==4

Substituting the values of A, A;, B, into Eq. (17), we have

2a je’s — jei¢ 2a it — e\
V) =1/~ p —X <m) + —;X<m) . (40)

Using the Eq. (40) together with Eq. (13), then, we discover the singular periodic wave
solution as

3 . ’,(ﬂfar}’) L o —at?)
a e 4 —le 4
= x| ——-

7 —ar?) 7 —ar?) vy
—_— . (X7 4t
1 2 1 i [€3 i )

+e 4
Wé,](x’ H= (o aty W aty N Tl Xe ! (41)
2a ie v —ie v
+ \/ e X G —al)  _ GT=all)
e 7 +e [

provided that aa < 0.
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Sub-category 6.2

2a

o1—

—2d%a? + 5aa® — a* + 4d® — 2aa

1
s== e N ( 4ata* — 28a3a® +29a%a® — 10aa’ + a® — 48a*a? + 64d° a3 >

oI—

—28a%a® + 4aa® + 16a* — 16a°a + 4a*a>

Inserting the values of A, A;, B, into Eq. (17), we have

. 15_ . 715 _1
V(:):ﬂ—%x(%) . (42)

Using the Eq. (40) together with Eq. (13), we attain the singular periodic wave solution as

;o7 —atl) _jor=ary \ 1
[ 2a ie v+ —ie i & H1")
W6,2('x’ H= _; X ;o7 =art) =) xXe ! (43)

e 7 +e' v

provided that aa < 0.
Sub-category 6.3

[SIE

—24d%a? + 5aa® — a* + 4d? - 2aa
1
§=x - N data* — 28a3 @’ +29a%a® — 10aa’ + o® — 48a*a® + 64a3a® \ 2
- —28a*ad? + 4aa® + 16a* — 1643 a + 4a%a?

Substituting the values of A, A;, B, into Eq. (17), we have
[ 2a ie® —je i
V(é) = - X <—ei§ o > (44)
By use of Eq. (44) together with Eq. (13), we reach the singular periodic wave solution as

[ —at') _j =)
[ 2a ie + —ie 7 i L1
W6,3(x’ t) = { _; x i(ty*uﬁ’) _i(ﬂ’ﬂzﬂ) xXe ! (45)
+e

e 7 v

provided that aa < 0.

Category 7

As long as, if it is allocated h = [-1 —i,1 —i,—1, 1]and f = [i, —i, i, —i], from Eq. (5)
we establish

_ =L+ Def + (1= e

A
_eitf + e—if

(46)

The subsequent Sub-category are planned:
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Sub-category 7.1

2a 2a
Ay==+ , Aj=+4/—-—, B; =0,
2a a
a+/ =%
o
1
) —24d%a? + 5aa® — a* + 44 — 2aa 2
1
S=4+ — 2
2a| +

4ata* — 28a3a® + 29a%a® — 10aa’ + a® — 48a*a? + 64d° a3
—28a%a? + 4aa® + 16a* — 164’ a + 4a*a>

Plugging the values of A, A,, B, into Eq. (17), we have
2a 2a —(1 +i)e’ + (1 — e ™
V(E) = -= .
©-— g2 x< Lkt )

By use of Eq. (47) together with Eq. (13), we get the singular periodic wave solution as

(xV —at’) i & —at?)
| —(1+ie" 7 +(1=de " 7 o W07
W7 1(x nH= \/> ( (ﬂ att) o7 =a) xe ’

— e v
(48)
provided that aa < 0.
Sub-category 7.2
Ap=+1/-24, A =0, B =+2/-22
@ a
1
X —2a%a® + Saa® — a* + 4a® — 2aa 2
1
S=E . < da*a* — 284’ +294%a® — 10aa’ + a® — 48a*a® + 64a’a® > 2

—28a*ad? + 4aa® + 16a* — 16a°a + 4aa?

Plugging the values of A,, A,, B, into Eq. (17), we have

N -l
V(§) ==+ _2a, 5./ 28 -0+ t)e"== +( - iei¢ | w
* @ —eié 4 i€

By using Eq. (49) together with Eq. (13), then, we reach the singular periodic wave solu-
tion as

-1

w_m) (xY—mV)
1+ v+ (1= v
W7 2()( H =4z _% . l)e M it ( (Xrgf)
V Voo g (50)

v + e 14

ia o i)

Xe 4

provided that aa < 0.
Category 8
Forh=[2-1i2+1i,1,1]and f = [i, —i, 1, —i], then Eq. (5) converts into

@ Springer



629 Page 14 0f 30 B. Kopgasiz, E. Yasar

_Q-DeF+ Q2+ e

A . - 51
et + 716 G
The next Sub-category are planned:
Sub-category 8.1
Ay == A . A=z _2_a’ B, =0,
_2a a

—2d%0? + 5aa® — a* + 4d? - 2aa
1
s== data* —28a3 @’ +29a%a® — 10aa’ + a® — 48a*a® + 64a’a> \ 2
20| + 4.2 5 4 3 242
—28a*a” + 4aa’ + 16a” — 16a°a + 4a“«

Inserting the values of A, A,, B, into Eq. (17), we have
da [ 2a  (@2-ie+Q2+i)e ™
V()= —— -—X .
© wi/—2 * a < e + e (52)
o4

Using Eq. (52) together with Eq. (13), we attain the singular periodic wave solution as

2 ;67 =atl) 40 _j o =a)

4q 2a —De + +2+ie v jq )

W8,1 (0= + -——X - —ar?) - —arl) xXe 4
2a a jema) —jrmar)

e v +e 7

(53)

provided that aa < 0.
Sub-category 8.2

Ag=221/-24 A =0, B ==x5/-2
a a

—24d%a? + 5aa® — a* + 4d® - 2aa 2

1
§s==x 2a| + < 4ata* — 28a3a® + 29a%a® — 10aa’ + a® — 48a*a? + 64d°a’ > 2

—28a*a? + 4aa® + 16a* — 163 a + 4a*a?

Substituting the values of A, A;, B; into Eq. (17), we have

_ N\ i N —iE -1
V() =2 _2a +5 _2a v 2 l)eA +2 .+ e . 1)
a a eié + e~

By use of Eq. (54) together with Eq. (13), then, we obtain the singular periodic wave solu-
tion as

i [ —att) @ 4i) _jar=ary \ 71 e
[ 2a 2a —e v +Q2+ide 7 i &)
W&Z(X, t) =42 —; +5 —; X ) ) Xe 14

v +e

e v y

(55)
provided that aa < 0.
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Category 9
Ifwetake h=1[2—-1i,-2—i,1,—1]and f = [—i,i,—i,i], from Eq. (5), we attain

Q2-De -2+ l)e"f

A= g (56)
We get
Sub-category 9.1
Ag=x 2 A =xy[-22 B =0
2a a
a+/ =%
o
1
: —2ad%a? + 5aa® — a* + 4d® — 2aa 2
1
§==x 2a + < 4ata* — 28a3a® + 29a%a® — 10aa’ + a® — 48a*a? + 64d°a’ > 2

—28a*a? + 4aa’ + 16a* — 16a3a + 4a*a?

Substituting the values of A, A;, B, into Eq. (17), we have

Q2 —ie ™ — (2 +1i)e
i — it ’ (57)

Using Eq. (57) together with Eq. (13), we get the singular periodic wave solution as

—i o —ar?) (vV —at’)
4a 2a Q-ide" T -2+ ¥ i &7 00)
W9l(x7t)= + -——X Y —ar? 7 —at? Xem !
X " o a _j Gl =art) ;& =atl)

e 4 - e v

V() =

a
(58)
provided that aa < 0.
Sub-category 9.2

Ag=+21/-2% A =0, B =+5/-2,
[ Cl

—2a2a* + 5aa® — a* + 4a® — 2aa 2
1
4ata* — 28a2a® 4+ 29a2a® — 10aa’ + o® — 48a*a? + 64a’a® \ ?
—28a%ad? + 4aa® + 16a* — 16a°a + 4a2a?

Substituting the values of A, A,, B, into Eq. (17), we have

— e ¥ — i
Ve =21[-2 4 54/-2 <(2 s > (59)

By use of Eq. (59) together with Eq. (13), then, we obtain the singular periodic wave solu-
tion as
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-1

(AV—ary) (tV—mV)
W 2a Q=i T —Q+ie 7 o 7407
gz(x = - ) mV) §G7 art) xe !

—é
(60)
provided that aa < 0.
Category 10
When we take h = [-2,—1,1,1]and f = [0, 1,0, 1], then Eq. (5) changes into
D _ et
A= ——. 61
1 +ef 61
We obtain
Sub-category 10.1
3 2a 2a
Ay=+=1/—-=—, A, =++/-=—, B, =0,
0=*3 \/ o 1 \/ . 1
\/5 —4a%a? + 10aa® — 2a* — 2a* + aa 2
1

s =4+ — 16a%a* — 11243 + 116a2a® — 40aa’ + 4a® )2

a
+< +48a*a? — 64a’a® + 28a*a? — 4aa® + 4a* — 4dPa + d2a?

Substituting the values of A, A;, B, into Eq. (17), we have

—2 — ¢
V() = \/—2—“+\/—2—“ (H; > (62)

Using Eq. (62) together with Eq. (13), then, the exponential function solution can be
expressed as

(,(/,u,r)
/ 2 / 2 )
Wlo l(x t) - { __a __a ( & ) ) } X em 4 (63)

1+e

provided that aa < 0.
Sub-category 10.2

3 2a Za
Ay=+=4/——, A, =0, B, =+2
0=%3 p 1 1 o
1
\/5 —4a%a? + 10aa’® — 2a* — 2a* + aa 2
1

|+ 16a%a* — 11243 + 116a2a® — 40aa’ + 4a® 2
+48a*a? — 64a’a® + 28a*a? — 4aa® + 4a* — 4dPa + d2a?

Plugging the values of A, A,, B, into Eq. (17), we have

2a 2a 02—\ 7!
V(é) = _2\/—— \/—— <1+e'f> . (64)

By using Eq. (62) together with Eq. (13), the exponential function solution is obtained as
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@« —ar?) -1
3 2a 2a —2—e 7 jo &)
L e e e o S

l+e ~

provided that aa < 0.

4.2 Main outcomes of solving model Eq. (12) using technique Il

Equation(16) can be written as
a(a — s)a+5)(2a — a)Vy,

+ (=5aas’® + 25* 4+ 25%a% + s2a* + aa®)a*V + (a — 5)(s + a)2a — a)aV? = 0.
(66)

Following Eq. (10), it is effortless to deduce from Eq. (66) an expression for the function
rwy

ala = s)(s + a)2a — a)%(rz)’

+ (=5aas’® + 25* 4+ 25%a® + 52 + ad®)a*V + (s + a)(a — §)(2a — a)aV? = 0.

(67)
After integrating Eq. (67) concerning the constant of integration to zero, products
3 2a2s2 — 2 4 o252 + 254)a2
(V) = _(aa+ a’s? — Saas? + a’s? + 2s%)a
a(s +a)a—s)2a— a)
(68)
vills (s +a)a—s)(2a— a)V?
2a(ada + 2a2s? — Saas? + a2s? + 2s4)
Then, making the change of variables
Y(&) = (s+a)a—s)2a—a) 5
T 2a(dPa + 2a2s? — Saas? + a2s +2s%)
and using the transformation V, = I'(V), we have
(aPa + 2a2s* — 5aas? + a?s? + 25s*)a?
V.e=1/- VAT +Y(E). 69
¢ \/ a(a—s)a+s)2a—a) © ©9)
Integration of Eq. (69) leads to
V) = 2a(aa + 2a%s? — Saas? + as? + 2s%)
B (a —2a)(a? — s?)
2 (70)

G+,

 sech (@Ba+2a%s? — Saas? + a?s? + 2s%)a?
ala — 2a)(a? — s2)

and
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V() = _2a(ada +2a’s? — Saas® + a’s? + 2s*)
- (a — 2a)(a® — 5?)

2 (71)
(“RIIIE

 csch (@Ba+2a%s? — Saas? + a?s? + 2s%)a?
ala — 2a)(a? — s2)

where &, is a constant of integration.
Thus, we get bright soliton solutions and singular soliton solutions for the FDMNLSE,
respectively, as follows

W* (n.1) = 2a(ada + 2a%s% — 5aas? + a?s? + 25*)
L (a = 2a)(a® — s2)
2

 sech (Ba +2a%s% — 5aas? + a?s? + 2sY)a? £+ X" —at")
ala — 2a)(a? — s?2) 0

L )
% etaiy" )
(72)
and
2a(aa + 2a%s? — Saas? + a?s? + 25%)
Wi, 1) =4/ - —
(a —2a)(a?* — s%)
2
% csch (aPa + 2a2s* — S5aas? + a?s? + 25s*)a? £+ " —ar”)
ala —2a)(a? — s2) 0
ia o +nt?)
Xe v,
(73)

where the constraint relation between the soliton parameters is given by
a2(@Pa + 2a2s* — Saas* + as* + 25*) X a(a — 2a)(a® — s%) > 0.

It is easy to see that solutions Eqgs.(72) and (73) can reduce to the following periodic singu-
lar waves:

W= (1) = 2a(ada + 2a%s% — S5aas? + a’s? + 2s*)
3 (a — 2a)(a? — s?)
2

(a3a + 2a?s? — S5aas? + a?s? + 25*)a? 7 —ar’)
X sec &+
aa — a)(a? — s2)

i o +nqt?)
Xe 14
(74)

and
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w= (x t) — 2(1(03(1 + 2a2s2 — 5aas? + a2s?2 + 254)
4\ ((X _ 261)(612 _ 52)

2

(Ba + 2a%s% — 5aas? + a2s? + 2s*)a? & —at’)
X csc¢ &+
aCa — a)(a? — 52)

L )
x &
(75)
where the constraint relation between the soliton parameters is given by
ala — 2a)(a® — $*) X (APa + 2a%s* — Saas® + a®s> + 2 sM)a? < 0.

5 Physical interpretations and concluding remarks

In this examination, we studied the FDMNLSE with cubic law nonlinearity, which inter-
prets the propagation of two distinct waves moving simultaneously with the interaction of
embedded phase speed. The significant achievements of the paper were determined via two
efficient procedures based on the GERFM and FVM.

Up till now, many different effective methods have been used by investigators to dis-
cover analytical solutions for this prototype. The authors of Lu et al. (2019), and Raza
et al. (2020), which are related to our model, obtained the soliton solution by using the
exp(—®(&))-expansion method. Suppose one pays attention to our study. In that case, many
new solutions with physical properties, such as shock wave solutions, singular soliton solu-
tions, singular periodic wave solutions, exponential function solutions, and bright optical
soliton solutions are revealed. In this context, exponential function solution Egs. (20), (63),
and (65), singular soliton solution Eqgs.(23), (25), (33), and (73), shock wave solution Eqs.
(28), ( 30), (36), and (38), singular periodic wave solution Egs.(40), (43), (45), (48), (50),
(52), (55), (58), (60), (74), and (75), bright soliton solutions Eq. (72) were obtained. Also,
we offered the dynamic behavior of analytical solitons in the shape of graphic miniatures
for the accepted solutions by selecting an appropriate choice of variables. These graphs
enable researchers in this field to have a better physical interpretation of this fractional-
order complex model. Furthermore, the strategies used in this article are specific, effica-
cious, and productive approaches in seeking the exact solitary wave solutions for many
fractional-order NLPDEs. Moreover, these accepted solutions will be applicable to study
analytically other fractional order NLPDEs in mathematical physics, plasma physics,
applied sciences, nonlinear dynamics, and engineering. Also, the acquired outcomes are
beneficial in ocean engineering to understand the investigation of wave propagation and
are paramount for the reality of numerical and practical results. The obtained solutions are
entirely novel for the FDMNLSE that are not reported by the other studies. We confirmed
obtained outcomes with the help of Maple by putting them back into the original equation.
In the future, we will probe the more exotic exact solution form for the FDMNLSE con-
taining perturbation terms.

Figure 1. The 3d plots for the solution |W,(x,#)| in Eq. (20) when y = 0.5, y = 0.75,
y = 0.99, respectively, and a = —1l,a = 1,5 = 1,& = 224

Figure 2. The contour plots for the solution | W, (x, )| in Eq. (20) when y = 0.5,y = 0.75,
y = 0.99, respectively,anda = —-l,a = 1,n =1, = Yiar

Y
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Fig.3 The density plots for the solution | W, (x,1)|in Eq. (20)

Figure 3. The density plots for the solution |W1 (x, t)| in Eq. (20) when y = 0.5,y = 0.75,
X! +at”

y = 0.99, respectively, anda = —1l,a =1,y =1, = -
Figure 4. The 2d plots for the solution |W,(x,7)| in Eq. (20) when y = 0.5, y = 0.75,

x' +at’

y = 0.99, respectively,anda=—-l,a =1, =1,& = >
Figure 5. The 3d, contour, density, and 2d plots for the solution |W2,1(x, t)| in Eq. (23)
wheny =05,a=-l,a=1l,p=1,¢&= 2
Figure 6. The 3d, contour, density, and 2d plots for the solution |W3,1(x, t)| in Eq. (28)
wheny =05,a=-lLa=1,n=1¢="",
Figure 7. The 3d, contour, density, and 2d plots for the solution |W4(x, t)| in Eq. (33)

wheny =05,a=-l,a=1n=1¢="2"
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Fig.5 The 3d, contour, density, and 2d plots for the solution |W2_l (x, t)| in Eq. (23)

Figure 8. The 3d, contour, density, and 2d plots for the solution |W5Y1(x, t)| in Eq. (36)

x7 +at’

wheny =05,a=-l,a=1,p=1,( = -
Figure 9. The 3d, contour, density, and 2d plots for the solution |W6, 1, t)| in Eq. (41)

x7+at’
y

wheny =05,a=-l,a=1,p=1,( =
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x &

Fig.7 The 3d, contour, density, and 2d plots for the solution | W, (x, t)| in Eq. (33)
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01 02 03 04 05 06 07 08 09
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{ e S Rl o TN |
0 10 20 30 40 50 60
i

Fig.9 The 3d, contour, density, and 2d plots for the solution | We.1 (x, l)| in Eq. (41)
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Fig. 11 The 3d, contour, density, and 2d plots for the solution |W8,1(x, t)| in Eq. (53)
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x x

Fig. 13 The 3d, contour, density, and 2d plots for the solution |W¥ (x, )| in Eq. (72)
11 q
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Fig. 14 The 3d, contour, density, and 2d plots for the solution |W;—'2(x, t)‘ in Eq. (73)

LU

Fig. 15 The 3d, contour, density, and 2d plots for the solution |Wﬁ(x, t)‘ in Eq. (75)
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Figure 10. The 3d, contour, density, and 2d plots for the solution |W7,1(x, t)| in Eq. (48)
wheny =0.5,a=-l,a=1,p=1,( = M

Figure 11. The 3d, contour, density, and 2d plots for the solution |W8 1, t)| in Eq. (53)
wheny =0.5,a=-1l,a=1,p=1, 5_x’+aﬂ

Figure 12. The 3d, contour, density, and 2d plots for the solution |W,, ; (x, 7)| in Eq. (63)
wheny =0.5,a=-1l,a=1,p=1, 5_x’+aﬂ

Figure 13. The 3d, contour, density, and 2d plots for the solution ‘W (x, t)| in Eq. (72)
wheny =0.5,s=1,a=2,a =3,y = 45—’“—“’7

Figure 14. The 3d, contour, density, and 2d plots for the solution ‘W (x, t)| in Eq. (73)
wheny =055 =lLa=2a=3n=4¢ =1,="2C

Figure 15. The 3d, contour, density, and 2d plots for the solution ‘W (x, t)| in Eq. (75)

wheny =05,s=lLa=2a=3,1=4¢ =1& =",
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