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Abstract

In this paper, the extended simplest equation technique is considered to construct various
exact optical solutions to the time-fractional nonlinear Schrodinger equation with second-
order spatiotemporal and group velocity dispersion coefficients. The acquired novel optical
soliton solutions are illustrated by the hyperbolic functions, the rational functions, and the
trigonometric functions. The singular, dark, bright, mixed bright, dark-bright, and wave
soliton solutions of the proposed model are successfully constructed. Further, to clarify
the magnitude of the present nonlinear time-fractional Schrodinger model several solutions
of the new exact optical solutions are plotted via two-dimensional and three-dimensional
graphs using suitable values of physical parameters. The results acquired illustrate that the
utilized technique is simple and quite efficient for exploring exact soliton solutions for dif-
ferent differential equations of fractional and integer orders arising in optics and applied
mathematics. The novel optical solutions can assist researchers with an interest in plasma
physics to unravel the mystery of numerous nonlinear phenomena that arise in various
plasma models.
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1 Introduction

Various forms of differential equations of fractional and integer orders are appear in mod-
eling applied problems in optics, science, physics, ocean, etc. (Murad et al. 2023a, b, c;
Malo et al. 2021; Ismael et al. 2022a, b; Murad 2022). One of the most important and
well known type of applied differential equations is the Schrodinger-type equation which
has a significant ability to explain various nonlinear phenomena in different areas of sci-
ence particularly in optic and plasma physics (Ghanbari 2021; Awan et al. 2021; Akinyemi
2023; Houwe et al. 2023). The mechanism of the propagation of nonlinear modified enve-
lope localized waves (bright solitons, dark solitons, and rogue waves), as well as periodic
structures was demonstrated using a family of nonlinear Schrodinger’s equation (NLSE).
The analytical techniques aim is to utilized suitable transformations to transfer the non-
linear partial differential equations (NLPDEs) into ordinary differential equations (ODEs)
(Huang et al. 2020; Manafian et al. 2020; Akinyemi et al. 2021; Akinyemi 2021). In this
study, we purpose to analyze the following time-fractional nonlinear Schrodinger equation:

; au(x,t)+ 0%u(x, 1) + 0% u(x, 1) %u(x, 1)
ox T o g T T

+ |uCx, OPu(e, =0, 0<a <1,

ey
where u(x, f) is the macroscopic complex valued wave profile, u, represents the propor-
tional to the ratio of group speed, y, and 5 are the group velocity dispersion and the spa-
tial dispersion, respectively. Further, the time-fractional order derivative a represents the
conformable fractional derivative.

Various techniques have been employed to explore novel optical soliton solutions
to the present model. To construct several novel mixed bright, dark, and complex
soliton solutions, the extended direct algebraic technique is implemented to equation
(1) in Baskonus et al. (2021). The proposed type of Schrodinger equation with
group velocity distribution and second-order spatio-temporal dispersal parameters
is considered with local M-derivative in Ghanbari and Gomez-Aguilar (2019). The
modified sinh-Gordon equation expansion method and generalized exponential
rational function method are considered to explore novel categories of optical soliton
solutions to this model (Rezaei et al. 2022). Through a new extension of the Backlund
approach, certain innovative analytical traveling wave solutions to the proposed
model with conformable derivative are effectively produced in Rezazadeh et al.
(2021). The present model is proposed to describe the pulse phenomena beyond the
conventional slowly-varying envelope approximation, also the space-time structure of
the problem and its transformation properties discussed in Christian et al. (2012). The
auxiliary equation approach is used to construct a number of traveling solutions to
the present equation see Tariq and Seadawy (2018). Various cases of optical soliton
solutions such as dark, bright, and dark-bright solitary wave solutions are found using
the amplitude ansatz method (Seadawy 2017).The impact of the fractional order
derivative on the bright soliton and W-soliton solution of this model is discussed in
Yousif et al. (2018). The modulation instability of the present model is discussed and
the F-expansion method is applied to construct the solitary wave and soliton solutions
of the present problem (Nasreen et al. 2018). Several new traveling wave solutions are
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explored by employing the sine-Gordon expansion method to this model (Rezazadeh
et al. 2021). Very recently, The modified extended direct algebraic approach is
utilized to derive a class of optical solutions and other solitary wave solutions for
the variety of nonlinear Schrodinger equation in Ghayad et al. (2023). The extended
improved tanh expansion method is used to construct the optical bright, dark,
periodic, breathers type and hybrid type soliton solutions in Ahmad et al. (2023).
However, the impact of the conformable fractional order derivative on the existing
solutions have not been reported in the literature. Further, Zhao and Luo discussed the
geometrical interpretations and physical significance of the conformable fractional
derivative which thus indicate the potential implements in engineering and physics
(Zhao and Luo 2017).

In this paper, the extended simplest equation method is used to find several new
optical solutions to the proposed time-fractional nonlinear Schrodinger equation.
These results can help to interpret various nonlinear scientific theories, such as the
modulated envelope localized structures in fluid dynamics and plasma physics. Fur-
ther, the influence of different values of the temporal parameter and fractional order
derivative on the new optical solutions is illustrated via several illustrative graphs.
Recently, the extended simplest equation method (ESEM) has been suggested as an
efficient approach to solve a class of differential equations (Ahmed et al. 2021). The
advantage of the extended simplest equation method is that various forms of exact
traveling wave solutions can be constructed by using this method which can not be
acquired via other methods such as the Exp-function method, F-expansion method,
and tanh-function method. The ESEM is used to solve various fifth-order KdV equa-
tion forms in Bilige and Chaolu (2010). The solution of a coupled Schrodinger-Bouss-
inesq equation is analyzed using extended simplest equation method in Bilige et al.
(2013). This method is also applied to solve the higher-order nonlinear Schrodinger
model and modified Zakharov?Kuznetsov in Zayed et al. (2018, 2019). Various opti-
cal solutions for Biswas?Arshed equation are obtained using ESEM in Zayed and
Shohib (2019).

2 Conformable derivatives

Many phenomena in the real world are described by differential equations with frac-
tional orders. Thus, various fractional operators have been utilized recently to analyze
the magnitude of applied differential equations such as the Beta derivative, the Riemann
Liouville, and the Caputo Fabrizio. In applied sciences and engineering, these types of
operators have an essential role in solving applied differential equations. The conform-
able derivative is considered one of these operators which improves our understanding of
the model’s nature.

Definition 1 (Khalil et al. 2014) Let g : (0, 00) = R. The conformable derivative with
order « is defined as follows:
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o g(s 4657 — g(s)
Ly(8)(s) = lim 5

b}

foralls > 0and 7 € (0, 1].

Consider the functions g and & are differentiable conformable with order o,V s > 0, and
a,,a, € R. The following rules of the conformable derivative are hold:

i. L,(a;g + ayh) = a,L,(g) + a,L,(h).

ii. L,(s") = rs"“orallr € R.

iii. L,(gh) = hL,(8) + 8L, (h).

1 gy — hLy(9)=gLy ()
A

3 Application of the method

In this section, the extended simplest equation method is applied to the proposed non-
linear time-fractional Schrodinger equation, and various novel optical soliton solutions
to the model are constructed. First, we have utilized the following wave transformations:

wit*

00t . ot® 9 _
PE=XT o (x,0) = —Kkx + pat )

u(x,t) = u(g)e

where w, k are constants, and v represents the speed of the traveling wave. To transfer the
partial differential equations into ordinary differential equations, the above transformers are
used which probably considered the most widely employed transformers in literature. Here,
substituting transformations (2) into equation (1) with some simplifications, the following
real and imaginary parts are obtained:

1 —2usk
b= ————, 3)
Hy + 2wy
(a0* + p3)u" () + (k = pyw — pow? — pzk? Ju(o) + u* () = 0. 4)

Inserting Eq. (3) into Eq. (4), we obtain the following equation:
(A1 + 1A, )u" () + A Azu(Q) + Ay () = 0, (5)
where
Ay = (1 +2mw) s Ay = (1= 2kp3) Ay = k= ity — w2y — Kopts.

Balancing u” with u® yields N = 1. Here, Eq. (5) has the following formula solution (Bilige
et al. 2013; Zayed et al. 2018):

G’ 1
u(g) = by + b, [%] + b, [@] (6)
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where b, b, , b, are considered to be arbitrary constants and G(¢) represents the solution of
the following equation

G')+0G()=v, @)

where v, o are real number. Hence, The above equation has the following solutions:
1. The following hyperbolic solution for Eq. (7) is obtained, if 6 < 0:
G(¢) = C, cosh (g —0'> +C,sinh (g —0') + Y )
o}

Hence, we have

2
G ) > v/ 1\ 2v
<E> =(GC1—O'C2—; (5) +E—O'. (9)
2. The following trigonometric solution for Eq. (7) is obtained, if ¢ > 0:
G(g) = C, cos <g\/¢;>+Czsin (g\/5>+3. (10)
o
Hence, we have
¢\’ s, 2\ /1 2
<E> =<0C1+6C2—;><5> +Z-o (1)

3. The following solution is obtained if ¢ = 0:
()= 567 +Cic+ G, (12)

Hence, we have

7\ 2 2
<%> = (oG -20)(5) + 2. (13)

where C, and C, are real values. Now, the following three solutions are dissected:
i.Ifo <0.
Inserting Eq. (6) along with Eq. (8) and using Eq. (9) into Eq. (5), then the same orders of
é and é (%), (i=0,1,2,3,j=0,1,2) are taken in consideration. Here, we equalize their
coefficients to zero, we obtain the following:
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(é) kbol‘l + bol‘l - 3ab0b]ul - wbou? + dkwbg py iy + 4wbguly2 - 12wo’b0bf/41;42 - SWZbOMfu2+
dhew? boﬂz +4wzb0u2 — 12w Uboblﬂz 8w3b0u1/4§ —4w4b0;4; - kzboﬂlzu3 — AP who y iy iy

— 4k*wbouapz = 0,

(é) 6Vbob? 7 + kbyp? + 3b2by u? — 36b3b, 7 — whyd — Gbypy + 24wvbyb? gy + dkwby iy

+ 12wh3 by pay y — 12wEbTby iy — SW by py + 24w vbob? 2 + 4kw by 3 + 12w blby il

- 12w 6b%b2u2 — 8w’ hzﬂlﬂz —4w4b2;42 - kzhzyl s — oby it s + dkaby — 4P Wy iy

—4wob,y pypuyps — 4k2W2bzl4§l43 - 4W2°'b214§l43 - 4k20b2ﬂ2ﬂ§ =0

Gl
(6) : kbly% + Sbgblﬂf - O’b?ﬂ% - wbluf + dkwby py iy + 12wbgb1ﬂl/42 —4wcrb?/41;42 - 5w2b1;4f/42

+ 4kw2b1y§ + 12w2b§b1y§ - 4W26b?}4§ - 8w3b1y1y§ - 4w4b1;4§ - kzblyfm - 4kzwbly1y2y3
— 4KPwW2b 3 py = 0,

(l>2 . _3\/219()bf/4l 12wv2b0bf/41/42

G +6VbT byt + 3bobi i + 30bgbt Crut — 30bybt Cop} + 3vby iy —

4
12w2v2b0b";/4§
o

+24wAvbib, 3 + 12w boba 3 + 12w abybl Co 3 — 12w abybT Ca 3 + 3vby it s — 12kvb,y iy

+ 24wvb b,y py + 12wbob3 iy iy + 12wobob Couy py — 12wobob? Copy py —

+ 12wvby py oy + 1207 vb2u2u3 + 12k2vb2/42;43 =0

!
é (% > 2\/b1/4l + 6byb, bzﬂl + Vb py + 8wvb? 11 Hy + 24wbob by py iy + 8w? Vb1M2 +24w?byb, bzﬂz

2 2 2 2 2
+ Vb py 3 — 4kvby iy py + Awvb py py py + AWTVDy s py + 4k Vb pp ps = 0,

(l)3 . _3V2bfb2”1
G) T

12wv2b2by iy 12wV b2 by
- % AWty + 12wo by Copty iy — 12063 by Copty py — Tl“

2v2b
+ b34a} +30b3,Chad = 30bib, Gt = =22 + 200, Ch iy = 205,C

2
+ 4w bzl‘z

22 by uiu 8kv2b
+ 12020526,C 4 = 12020530y C343 = =+ 20byCh ity = 20, Chut iy + ——2 2

8wvbyp otz 8wV by 3 i3
= 8kobyClpuy s + 8koby Gyt = ——————— + 8wobyCipuy ot = 8woby Copy pypy = —————

2 2 2 2 22 8K2V2by iy 3 2 2 2 2, 2
+ 8w ob, Clpy s — 8w by Cops s — - + 8k“ob, Cy y2u3 8k“ob,Cppyps = 0,

23,2 2

1 (G vabipy 2veb py

Y < G > . — +3b b2y1 +o‘b3C];4] —a'hfl‘C%uf i +20'b]C]2;42 - 26}7]C§M2
Awvrb3 s 4PV

- L 12wb Byt + dwobd Cay py — Aok Copy g — T + 12w2h b2 42 + dwPob C2yil

203b, W 8kv2b
- 4W20'b?C§;4§ - % + 25171ny%;43 - 20'b]C§;4]2M3 + # - SkO-b]C%MZ"@ + Sko'blcgyz;@

8WwvZby iy a3 8W2V2b1ﬂ§l‘3
S + 8wab]C]2y1u2y3 - 8wo‘b]C§ﬂ]uzy3 e — + SWZGb]C%‘M%M} - 8W26blC§[4§}43

8k2V2b, iy >
- 2 8K, Coupi? — 8K20b, Copy il = 0.

After solving the above system via Mathematica program, we acquired the following

results:
First
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-y — /4%/43 \J (v2+ 62(—(:% + C%))(Ml + 2wy2)2(/42 + Mfl‘.?)
by ==+ by =%

\/2(;41 + 2wllz)2 —dopuypz o2(p + 2Wﬂ2)4 =402 py s () + 2Wﬂ2)2

2 2
+2 1 dw(py ¥ —2
k:i—l 1+J—(Ml WMZ) ( W(”l WM2)M3 O-MS) s 0=O,W=W.

243 (11 + 2Wﬂ2)2 —20uy13
(14)
The following hyperbolic solutions are acquired from (2), (6), (8), and (14):
s (sinh (\/—_o-<x+ BZT’“))C] + cosh (\/—_o-<x+ Bi—rn>>>B3
) = ei(w%ikx) (f + cosh (\/—_6(x+ Bz’“ ))Cl + sinh <\/—_(r<x + %))Cz) 7

. V2B,

- 2(5 + cosh <\/—_0'<x+ %))Cl + sinh <\/—_a<x+ Bf%))cz)
(15)

) :
—(uy+2wip ) > F20 4y 03 \ otatou i and

where B, = B; =

2 > 73 2 ’
V —o(ui+2wp,) V 2(u1+2wpy) 4oy g
1 \/ _ (i +2wiy ) (= L+ (g +wps, Y s —=20412)

H+2wHy (;41+2w;42)2—20';42;43
Inserting C; # 0,C, =0, and v = 0 in (15), we obtain the following optical solutions:

uy(x, 1) = ei<w§ikx) <isech<\/—_0'<x + Biz" > > \/l;cl + tanh (\/—_a(x + Biﬂz ) )33).
(16)

Inserting C; =0, C, # 0, and v = 0 in (15), we obtain the following singular solutions:

uz(x, 1) = ei(wgikx> <i coth (\/—_G<xi fota)>33 iCSCh(\/—_O'<x+ th">>&>,

B, =+

« /)2,
a7
o—ZCZ(,ul+2w;42)2(M2+M2u3)
where D, = . ! .
1 \/o‘(yl+2w;42)4—20'2;42;43(/41+2w;42)2
Second
- i) [ o ) k= = - 1 e
b()—ovbl—i ) ,bz—i ) O’+6( C]+C2),k—2M3,ﬂ1— W}«l2+4wy3+zw.
(18)
We obtain the following hyperbolic solutions from (2), (6), (8), and (18):
(sinh (x —O')C] + cosh (x\/—cr)Cz)\/m
+
(-2 \/5(5 + cosh (x\/—cr)Cl + sinh (m/—a)Cz)
uy(x,y,1) =e 23 (19)

V2402 (=CT +C3) /13

- \/%(i + cosh <X\/—_O')C] + sinh (X\/—_O'>C2>
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Inserting C; # 0,C, = 0, and v = 0 in (19), the following soliton solutions are obtained:

% x \[ _0-2M3C% ou
us(x, 1) = el(w7_ﬁ> +————sech(xy/—0 ) £iq/ —Stanh (xv/—=c¢ )| (20
’ \/5\/EC1 ( ) 2 ( ) 20

Inserting C; =0, C, # 0, and v = 0 in (19), we obtain the following singular solutions:

i<wﬂ_L) o \ ‘72”3(’%
ug(x,f)=e\ « /| + Tcoth (xv— )J_r —csch(xx/—o-) . 2D

V24/5C,

Third
2 2 —
A2 (k= 2R o)) FE o V2 ;
b, —i\/ = ,w—z—ﬂz—%\/ﬂl+2ﬂ2(2k+(—2k +0)us) £ Ey,
, _+\/(v2+02(—cf+c§))(—yf+2,42(—2k+(2k2+a)y3)iEl) o
2T 862, o

(22)

where E, = \/M? + 4/4%;42(2/( + (<22 + o) pus) +4(2k% + 0);4;(2 — dkpy + (22 + O')[l%)-
We obtain the following hyperbolic solutions from (2), (6), (8) and (22):

B i(sinh <\/—_0'<x1 %))Cl + cosh (\/—_0'<x; l“nEZ)>C2>E3
i(_kHM) N <§+cosh<\/—_0'(xi %)>C1+sinh<\/—_a<x$ IT’))Q)
e i

u;(x,t)=e \/(Vzwz(_q_w%))(a_”f+2ﬂz(_2k+(2k2+g)m))
802 u,
+
(; +cosh (x/—_a(x: %))Cl +sinh <\/—_0'<x1 %))CZ)
(23)
where E, = (1-2ku5) and E; = \/ —E1+uf+2y2gik—(2k2+a)y3)'

i+l (‘2;41 V2 1240, Qe+ (20040 )13 +E,

Inserting C; # 0, C, = 0, and v = 0 in (23), we obtain the following solutions:

C 2 — 2, (—2k + (2k% + -E «
m(—zmxfzu)) + |6 ]| al MZ( ( 6)”3) lsech<\/—a<x—%>>

oC, 8y,

24)
Inserting C; =0, C, # 0, and v = 0 in (23), we obtain the following singular solutions:

creon (477 (o 22)) £

+ o5 \/_”]2 (20 (04 o)u) + B csch( v ‘“(X‘ " >)

~ 0Gy 8,y a
(25)

(s CCP)
Iy

ug(x, 1) =e

ii. If 6 > 0.
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Putting Eq. (6) along with Eq. (10) and using Eq. (11) into Eq. (5), then the same orders of

G G
coefficient to zero, we obtain the following system:

Land L (%), (i=0,1,2,3,j=0,1,2) are taken in consideration. Here, we equalize their

110
<6) : kboyl bn”l 30'b0b1y1 - wbou']3 + dkwbg py piy +4wbgyl/42 - 12W6b0bf;4]/42 - SWZbOMfyz

4hew? b0M2 +4w2b0/42 - 12w? o’bobl/d2 - 8w3b0;4];4§ - 4w4b0/4; - kzbo;lf/@ R T
— 4P W boudpuz =0,

1
<5 ) 6vbob? ut + kbyu? + 3b(2)b2;4]2 - 3cbibyul — wbzuf — obyy + 24wvb by iy + 4kwby i iy

+ 12wh3 by py — 12wobTby sy — SW by sy + 24w vbob? 2 + 4kw* by p? + 12w bl by i3
— 12w obibyps — 8w by iy — dwbapuy — Kby s — Oy iy py + 4koby iy piy — 4KPWhypy iy i

—4wobypy puypz — 4k2W2b214§l43 - 4W2°'bzl4§l43 - 4k2°'b214214§ =0,

G!
( G ) kbl/dl + 3172171;41 - ablul - wblul + dkwb, py py + 12wh7 ob1 M Mo —4wab1u1/42 - 5w? bll‘]ﬂz

+4kw?by i3 + 12w B%b, pF — 4w ob pd — 8w3by g pd — 4w'by i3 — K2by 1l s — 4K Wby iy
—4kPwb iy =0,
< 1 )2 . 3v2b0bf;41 12wv2b0bf;41/42

G +6Vbbyu? + 3byb3ut + 30bybt Chut + 30bybi Copt + 3vbypuy —

[
12w2v2bob? 12
+ 24wvb2by iy iy + 12whob3 g iy + 12w by b3 Cpay py + 12webgb? Copy py — %

+24wAvblb, 2 + 12w bob3 i3 + 12w obyb C2 i3 + 12w oby b Co i3 + 3vby it i — 12kvb, iy
+ 12wvb, py iy iy + 1207 vb2y2y3 + 12k2vb2/42y3 =0,

1

Gf
G ( G ) 2Vb1”1 + 6byb, bzﬂl +vbiu, + 8wvbly1;42 + 24wbyb, by py iy + 8W? vbly2

+ 24w bbby i3 + vy iy — Akvby iy + Awvb, iy oy + AW Vb 3y + 4k2vh1;42;4§ =0,

(L) 3vbibasy
)
B 12wv2b%bzy1u2

2
b
+ B3+ 3067, CHut + 30b2b, ot = =22 4200,y + 200, Cot

12w? vzb% b, ;42

+ 4wb;y,y2 + 12wcbfb2C%yl;42 + 12w5b%b2C§yly2 - + 4w zbzuz

202 b, 1 8kv?b,
+ 1200030, C31 + 1202063, o = = =+ 20b, Clad s + 20b, Copad y + ——222

8wv2by py a3 8w2v2h, i3 iy
- SkUbZCfuz/@ - 8k6b2C§ﬂ2ﬂ3 - T’ + 8wo’b2Cf;41/42;43 + 8wo’b2C§y1/42y3 B

92V 2bypa il
[

+8whob, C2 2 s + 8w ob, Capd iz — +8k26b, C2 py i3 + 8k by Cpy 2 = 0,

/ v2b3u2 22
L (G ) L ————+3b bzul +O'b3C|[l| +o’b‘?C§u]2 _ 2k +26ble;42 +26b]C§}42
c

@\ G

_ —4WV b‘,mﬂz + l2wblb§;41;42 +4wabe%M1;lz +4wabTC§”1ﬂz - M +120%p b2”2
+4wreb  Clps + 4w?ob]Cop3 — MblTﬂlzm 20b, CHiit p3 + 205y Co 4 s + M

— 8kab, C iy iy — 8koby Cpy iz — w +8wab, Cluy piopty + 8wob, Copty iy iy

Wz‘/zblﬂ%ﬂz

o SV
Y +8w?ob Clﬂ2M3 +8web Copuspy — —————

2+ 8k%0b, Co py i3

+8k%ab, Capy i3 = 0.
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After solving the above system via Mathematica program, we acquired the following
results:

First
, —Hy = KM , (v = 02(C2+C2)) (i +2wi)” (s + )
1=+ oy =E, | )
\/2(/41 + 2WM2)2 — 4oy, —20(p; + 2W#2)4 + 20 o5 (g + 2WM2)2
k= 21_1 + |- (”1 hl 2wy2)2(—1 +4W(;ul - WMZ) _ 26#3) ,by=0,w=w.
Hs dps (py +2wiy)" = 8o o3
(26)

The following periodic solutions are obtained from (2), (6), (10) and (26):

Ve (Veleomig ) )6 weos (Volx i) )co)
i+%)) <§+cos<\/g(x—34%))cl+sin(\/;(x—345))cz>

. 1~
uyp(x, 1) = e\(u 7‘”( 23

Bg

Vo2
(i +cos(\/‘;(x_34%))cl +sin(\/;<x—34%)>cz)

+

(27
where B, = \/_ (;41+2wu2)2(—1+4w(;41+w;42);43—20';4§) B. = V _142_14%/43 and
N (”1+2W”2)4_2‘7”2ﬂ3(ﬂ1+2W”2)2 s \/2(;4]+2wu2)2—4o';42;43’
B = \/— (2=02(C+C)) (s +2wms) sy 443 13)
6 —5(141+2WM2)4+2‘72!42”3(I41+2W/42)2
Inserting C; # 0,C, = 0, and v = 0 in (27), we obtain the following solutions:
oC*(py + u2u «
) e (V{55
i(nyi*»x(i*»(111+2>\‘;12)B4 )) ! —2(141 + 2WI42) +4ouyuy
up () =el « "\ 23 > -
\/E, [ —Hy — py p3 tan <\/E(x—B4;))
F
2
\/2(/41 +2wpy)" — Aoy
(28)
Inserting C; =0, C, # 0, and v = 0 in (27), we obtain the following solutions:
£/ —0py — ot p cot (\/E(x - B4§)>
+
L +1 , (u1+2wpp)B, 2
ulz(x,t) :el(‘v;+x(m+%)) \/2(/,[1 +2WM2) —417/42M3 )
L | rGletin) (- 82)
_ -B,-
G =20 (p, + 2wu2)2 + 402,y o
(29)

Second
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Uy + 207 (g + 2wy
b0=0,b2=ib1\/——+a(C2+C2), py = — 1 - 2 w=w,
—,u1 +dobiu,
(;4 +2wu )Z(1+86}74+8W}72(ﬂ +wu )) (30)
(llf - 40'b?;42)<1 + \/ ! 2 Mf—4alb$,42 L (i +way
k=+

2<y2 + 26 (uy + 2wu2)2>
The following periodic solutions are achieved from (2), (6), (8) and (30):
(s (s ) (o))
L+ cos (\/E(x— 537))01 +sin (\/E(x— 537))02
biy/-Z +0(C2+C2)

B (i + cos <\/;<x— %B7>>C1 +sin<\/;<x- %B7>>C2)

o _ (i +2wpy ) (14806 8w (s +wisy) )
Where B7 = m(l + <1 + \/ ;t%—4o‘b%;42 .

Inserting C; #0,C, =0, and v=0 in (31), we obtain the following singular
solutions:

PN G N ),

3D

by+\/c2C? «

VT (oo )

u14(x t) —e (w +x(B7_(;41+;wlA2) )) O'Cl [0 i (32)
— byy/otan (\/;(x - §B7))

Inserting C; =0, C, # 0, and v = 0 in (31), we obtain the following singular solutions:
b a
\/—l_ cot <\/¢;<x - 1—37))
a

a c
ups(x, 1) = ei(W%H(&_m)) ' (33)
b;y/c2Cs s
CcSC (\/;(x— ;B7)>

F —\/ECZ

Third
by = 0,8 = +p by —v2+a2(Cf+C§);41’k ‘/;4]+20M Ho M3 + _ﬂ’
2y/o\/i, +204/H, 20ty \/' 2u, 2
(34)
where Bg =

M|+2( ~ —2”*>ﬂ2

The following periodic solutions from (2), (6), (8) and (34):
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2):7*( sin(\/;<x—B8§>>Cl + cos <\/E(x—B8§>>C2)
) <‘; s <\/;<X_ng>>c' +Sin(‘/‘;<x_38§))C2)

il |
ul6(x’[):e(< Vou 2 ) @

Hy 2 2 2 2
e v+0'(C1+C2)

* e (Vee-n2)) +on (A2

(%+%\/uf+20uzm—1) . 3
where By = ~! and By = — 1/ 20 .
8 p +( iny V20 4 9= 2 2/4]/41 M] + HaH3
1\ T M

Inserting C; # 0,C, =0, and, v = 0 in (35), we obtain the following solutions:

(35)

62C?p, p
F —————sec <\/;(x—38;>)

Uy (x, 1) = el<< Vau 2/42 a 26C1 . (36)

tan \/E(X—ng)>

In case, we set C;, =0,C, #0, and v =0, in (35), we obtain the following singular
solutions:

H+

al t olx— 8ﬁ
N )i_x39> 2\/“_2 <\/_< ? a))

il { = —-L
wo(x, 1) =€ (<_\5m 2
15(3-1) o2Copy
i —_—
26Cy\/1y

(37

e (va(z-nZ))|

iii. Ifo = 0.
Putting Eq. (6) along with Eq. (12) and using Eq. (13) into equation (5), then the same
orders of Gi and é(%), (i=0,1,2,3,j=0,1,2) are taken in consideration. Here, we

equalize their coefficient to zero, the following algebraic equations are acquired:

@ Springer



Various exact optical soliton solutions for time fractional... Page 130f22 607

110
(6) : kbouf + bguf — wbo,ul3 + 4kwbyp, p, + 4wb3,ul;42 5u? boy] Hy + 4kw2b0;42 + 4wzbo;42
— 8w bou 3 — 4w*bops — K2boui s — 4k Whop pypty — 4w bops sy = 0,

(é) L 6vbob2 i + kb + 352by > — why i + 24wvbob? iy py + Akwhp oy + 12wb2by i

- 5w’ bzulyz + 24n? Vboblﬂ2 +4kw2b2/4§ + 12wzb(2)b2;42 - 8w’ bzﬂlﬂz - 4W4b2ﬂi - i b2/41/43
— 4P Wby pty oy — AW b2M2M3 =0,

GI
<E> D kbt + 363Dt — why g + Akwby iy + 12wB3D, py gy — 5w, i iy + 4wy i)

+ 12w hgby 5 — 8w by py s — Aw'by 3 — Kby i py — APWhy g oy — AW by s = 0,

(é) 6Vb2by a2 + 3byb4s? + 3bgbA CLu2 — 6Vbyb2 Copi? + 3vbypay + 24wVb2by i iy

+ 12wb0b2;41/42 + 12wbob2C2/41;42 - 24wvbob Copty iy + 24w Vb2b2ﬂ2 + 12W2b0b2ﬂ2
+ 12w2bObZC1 Hy — 24w vbob%CZﬂ2 + 3vb2/4] M3 — 12kvby pin s + 12wvby piy iy ps
+ 12w? vb2;42/43 + 12k2vb2/42/4§ =0,

Gl
G< G ) 2vb1/4l + 6byb, b2M1 + b, + 8wvb1/41y2 + 24whyb, by, py + 80 vbly2

+ 24w2b0b1b2,u§ + vbl,u]zy3 — 4kvb, pyps + 4wvb py o ps + 4w2vb1;4§/43 + 4k2vb1/42;4§ =0,

(é) B2 + 352b, C2 2 — 6vb2byCopl? + 2y Cpty — 4vbyCopty + Wbty iy + 12wh2b, C2ay oy
= 24wvbib, Copty iy + AWPB3 2 + 12wb0, C2 i3 — 24w Vbib,y Co il + 26, C2 iy — Avby Co i s
— 8kbyC s pty + 16kvby Copia s + 8wy Cl py py iy = 16wvby Copty py iy + 8w by Cad iy

— 16W*vb,Cypi3 3 + 8K*by Crpty s — 16K*vD, Copay i = 0,

G*\ G

= 8wvb] Copty piy + 12wPb b33 + 4w?b3 C2 il — 8w vb} Cypts + 2b, C2 4t iy — 4vb, Cypit iy
— 8kb, Cluapy + 16kvb, Coptopty + 8wh, C iy py s — 16wvb, Copty py sy + 8Wb, C 5 s
— 16W?vb, Cypi3 3 + 8kby Crpy i — 16k°vb, Copap i = 0.

'
L(Q) 3bbout + b3 Ciut — 2vb3Copd + 2b, Co iy — 4vb Copty + 12wh b3y + 4w Copay iy

After solving the above system via Mathematica program, we acquired the following
results:
First.
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—ty — Uiy \/Cz 2sz\/ Hy — 12 s

\/_\/ /41 + 2w,142 2\/ (/41 + 2w;42) (38)

14 \/1 — dw(py +wity) s

2u,

by =0,b, =+

k=+

The following soliton solutions can be achieved from (2), (12), (13) and (38):

\/2vC, - C?By,
+

- 2
(T (e 2ma) e 50 )
a 2 a

®
l[ weF 203
up(x,f)=e

(Cl + v(x+ %Bm))Bn

+
- 2
o 1 o
<C2 +C, (xi ’;Blo) + Ev(xi %310) >

39

where B = V1T twio)i g etk

10— (1 +2why) = \/§|M1+2W}42|'

Second
\ Ho + HiHs \/2sz c? \/ﬂz""# H3

by=0,b, =+ b, =

V20 + 8k (<1 + ki) \/2;41 8k~ 8
—H * \/M% — 4k (=1 + kps)
w= .
2u,

The following rational solutions are obtained from (2), (12), (13) and (40):

Fig.1 The 3D plot, 2D plot and contour plot of |u;(x, t)|2for =054, =w=0.1,
dy=0=-01,C,=5Cy=1l,andv=—2
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2
lu_(x)!
[elelela)

(elelele)
ONEO®

50 0 50
X
N N —
X 0.04
E'\ 0.0g \
50 0 50
X
+ 48 '
X 0.04
E" 0.06
-50 0 50
X
(b)

Fig.2 The 3D plot, 2D plot and contour plot
3y =-0.1,06=-0.12,C;, =1,C, =—1,andv = -2

lm(u7(x,t))

Fig.3 The 3D plot, 2D plot and
uy =—-08, 4, =08k=0.1,u; =-0.1,

iy =—08, 1, =08,k=01, 4y =-0.1,6=—0.12,C; =1,C, = —1,and v = =2

contour plot of Re(u;(x,7)) and Im(u,(x,7)) for

A\
A\ \\
|

Il

(a) a=1

(b) «=0.6

Fig.4 The 3D plot, 2D plot and contour plot of |uyo(x, t)|2 for u; =-0.5,p, =0.1,
w=02,u;=-01,06=01,C, =-1,C, =-3,andv = -2
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Re(um(x,t))

Fig.5 The 3D plot, 2D plot and contour plot of Re(u;y(x,#)) and Im(uy(x,7)) for
u; =—=05u,=01,w=02,43=-0.1,6 =0.1,C; =-1,C, = -3,andv = -2

t 0 -‘50
(a) (b)

Fig.6 The 3D plot, 2D plot and contour plot of [uy3(x, t)|2 for
uy =-04,4,=-01,w=0.1,b, =-0.6,6 =0.1,C;, =-1,C, = -3,andv = -2

2
lu, ()

(b)

Fig.7 The 3D plot, 2D plot and contour plot of |up(x, t)|2 and Re(up,(x,7)) for
uy=0=01,p4,=-01,w=0.1,43 =-0.1,w=02,C; =v=0,and C, = 1

@ Springer



Various exact optical soliton solutions for time fractional...

Page 17 0f22 607

Fig.8 The 3D plot, 2D plot and contour plot
w=0.1,C; =02,C,=04,andv =2

|m(u19(x,t))

(b) a=0.5

Fig.9 The 3D plot, 2D plot and contour plot of Re(u(x, 1)) and Im(u;o(x, 1)) for u; = 0.8, u, = 3 = 0.2,

i =08, 4y = py =02,w=0.1,C, =0.2,C, =04, and v = 2

Im(uzo(x,t))

Fig. 10 The 3D plot, 2D plot and contour plot of Im(u,,(x, 1)) for
C, =02,C,=04,k=09,andv =2

T t=-80
' ‘
-50 0 50 100
X
‘A’ t=10
-éo 0 5}) 100
X
T .A T t=80
-éO (; 5}) 100
X
(b)

u; =08, 4, =02, 43 =05, w=0.3,
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I, (12

Fig.11 The 2D plot of |u,(x,n|" and
C,=1C,=-1,k=0.1,andv = -2

25 T T

0.5

Fig.12 The 2D plot of |up(x,n|> and
C,=02,C, =04, andv =2

Re(u;(x,1)) for

Im(u,9(x, 1))

He(u7(x,t))

uy =—-08, 4, =08, 43 =-0.1,w=0.3,

Im(u‘ S?(x,t))

for

=08, 1, =02, 1y =02,w=0.1,

\/2vC, — C?B,;

1« (7,41 i\/uf—ztkyz(—ukyj))

i| —kx+
2am,

Uypx,t)=e

2
o 1 o
C2 + Cl (.x_ %BIZ> + EV(.X_ %BIZ>

i(Cl + v(x— an))B13

(1—2k;43)

A/ H =4y (= 1+kps)

where B, = and B3 =

Third
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by =0,by = /b (C} -

_H + be(yl + 2w;42)2

2vC,), 43 = 5
H

s

42
My <2Wﬂz\/1 + SWb%(ﬂl +wi) + <1 + \/1 + SWb%(/‘l +W”2)>> 2

k=-—

2<y2+2b§(,41 +2wp,)

)

The following rational solutions are obtained from (2), (7), (13) and (42):

2 2
b1 (CE - 2vG,)
+
_ = (1¥B,,) ) 1 ( _ 1 (15By,) )2
1y (X, 1) = ei(w%ixBls) C2 + Cl (x ap +2wuy) + 2V X a(p,+2wi,) (43)
o b (C +V(x— (1-B1) )) ’
I\71 a(py+2wiy)
- _e(1B,) 1o( o m(1FBy) )2
C2 + Cl (x G(Ml‘*‘zwﬂz)) + 2 V<x a(py+2wiy)
where Bl4=\/1+8wb%(;41+w;42)<2v;”2 +l>+1 and
1
A/ 148whT (py+wiy ) (2wpy py+ 3 ) +43
B5 = X

2<ﬂz+2b?(;41 +2w;42)2)

4 Results and discussion

The graphical representations and the behavior of the present optical solutions are
depicted in Figs. 1,2,3,4,5,6,7,8,9, 10, 11 and 12, as follows: In Figs. 1, 2, 3, 4, 5,
6,7, 8,9 and 10 graphs (a) and (b) the contour plots, the three-dimensional graphs, and
the two-dimensional graphs of the square of modulus, real, and imaginary soliton solu-
tions are illustrated, respectively. In Figs. 11 and 12 graphs (a) and (b) the two-dimen-
sions plots of the square of modulus, real, and imaginary optical solutions are depicted.
We have chosen the suitable values for the fractional order derivative a and the physical
parameters to show the effect of « and the parameter of time on the behavior of the opti-
cal soliton solutions. It is noticed that the square modulus solutions of u, (x, ) and u,(x, t)
are dark optical soliton solutions from Figs. la, b, and 2a. Here, the wave with a con-
stant amplitude is modulational stable, and localized pulses can only be seen as holes
against a background of a continuous wave. The imaginary and real parts of u,(x, f) are
mixed bright optical solutions from Fig. 3a, b, the square modulus, real, and imaginary
wave optical solutions of u,,(x, ) and the square modulus solutions of u;(x, ) are peri-
odic wave solutions from Figs. 4a, b, 5a, b, and 6a, respectively. the singular optical
soliton solutions depicted in Fig. 7a and b represent the square modulus solutions of
uy,(x, t), the square modulus solution of u,4(x, f) and the real soliton solution of u4(x, t)
are bright optical solution from Figs. 8a, b, and 9a. Here, the group-velocity dispersion
is anomalous, and due to the modulational instability, a constant amplitude continuous
wave is unstable. The imaginary parts of u;¢(x,?) and u,,(x,?) are dark-bright soliton
solutions from Figure a9 and al0O. Here, the two paired beams are mutually incoher-
ent and have the same polarization and wavelength. Furthermore, the two-dimensional
plot of the square modulus solutions of u,(x, ) and u,¢(x, 1), real u,(x, t), and imaginary
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u9(x, 1) for different values of order a are depicted in Figs. 11a, b, 12a, b to show the
effect of a on the obtained optical solutions. The impact of the parameter of time is
illustrated in Figs. 2b, 6b, and 10b. Compare with the results obtained in Baskonus et al.
(2021), Ghanbari and Gomez-Aguilar (2019), Rezaei et al. (2022), Rezazadeh et al.
(2021), Christian et al. (2012), Tariq and Seadawy (2018), Seadawy (2017), Yousif et al.
(2018), Nasreen et al. (2018), Rezazadeh et al. (2021), Ghayad et al. (2023), Ahmad
et al. (2023), Zhao and Luo (2017), we have successfully constructed various novel opti-
cal soliton solutions to the present time-fractional Schrodinger equation.

5 Conclusion

In this work, the extended simplest equation method is used to construct the exact optical
solutions to a variety of time-fractional Schrodinger equation in optical fibers and plasma
physics. The singular, wave, dark, bright, dark-bright, and mixed dark-bright optical soliton
solutions for the proposed model are successfully construed. The proposed time-frac-
tional Schrodinger equation is converted into a non-linear ordinary differential equation
via widely used wave transformations. Different types of graphs are depicted to show the
physical significance of the acquired optical solutions such as contour plots, three-dimen-
sional plots, and two-dimensional plots using suitable physical parameters. Here, we have
found a new category of optical soliton solutions that can be helpful for mathematicians
and physicists who are interested in applied mathematics and plasma physics. Furthermore,
the effect of the fractional order derivative and parameter of time is also given via illus-
trative graphs. In the future, one can use the extended simplest equation technique as an
effective technique for generating different solitary wave solutions to fractional differential
equations.
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