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Abstract

In this paper, the generalized nonautonomous Hirota equation was investigated with the
help of symbolic computation. Using Darboux transformation method three soliton and
four soliton solutions were developed based on Lax pair construction. The corresponding
figures are plotted to show the properties of the constructed soliton solutions. By manipu-
lating autonomous and nonautonomous profile, various soliton systems are investigated.
These solitons systems have potential applications in the design of soliton compressor,
soliton amplification, and high-speed optical devices in ultra large data transmission sys-
tems. In future experiments, the findings of this study are expected to be demonstrated.

Keywords Nonautonomous Hirota equation - Darboux transformation - Lax pair - AKNS
method - Dispersion - Nonlinear parameters

1 Introduction

In modern nonlinear science, one of the essential models is the nonlinear Schrodinger equa-
tion. The nonlinear Schrodinger equation is closely related to a lot of nonlinear problems in
theoretical physics such as nonlinear quantum field theory, nonlinear optics, Bose—Einstein
Condensate, condensed matter, plasma physics etc. One of the finest solutions of the non-
linear Schrodinger equation is called solitons (Hasegawa and Kodama 1995; Agrawal 1995;
Serkin and Hasegawa 2000a, 2000b, 2002; Serkin et al. 2001). In an optical fiber, optical
solitons were generated by the equilibrium between dispersion or group velocity dispersion
(GVD) and nonlinear effects (Lamb 1980). Earlier the theoretical investigation of optical
soliton was studied by Hasegawa and Tappert (1973a, 1973b) and it was experimentally
justified by Mollenauer et al. (1980). The anomalous dispersion results the bright soliton
whereas normal dispersion gives the dark soliton solution for the nonlinear Schrodinger
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equation (Shabat and Zakharov 1972; Zakharov and Shabat 1973). Optical solitons are a
viable option for the next generation of ultra-fast optical communication systems.

In real problems, the optical fibers are inhomogeneous due to the variation in the dis-
tance between lattice points and some manufacturing problems. Due to some potential
applications, the study on propagation of optical solitons in inhomogeneous fibers are
essential and it can be governed by variable coefficient nonlinear Schrodinger equations
(Liu and Tian 2012). One natural, simple way to account for inhomogeneities in the fiber
is to incorporate variable coefficients. The parity-time symmetric potential and the effects
of harmonic on 3D nonlinear Schrodinger equation with variable coefficients have been
studied by Dai et al. (2014). The rogue wave is constructed to the (3 + 1) dimensional non-
linear Schrodinger equation with variable coefficients and the effects of external potentials
are investigated (Dai and Zhu 2014). In an optical fiber, inhomogeneous arises due to the
various factors as follows: (i) the distance between two atoms no longer constant through
the fiber. (ii) variation in the diameter and etc. These factors are mainly influence the dis-
persion, nonlinearity, loss and gain parameters in the inhomogeneous optical fibers. This
means that the parameters will be varying with the propagation distance. In the case of
femtosecond soliton propagation, standard nonlinear Schrodinger equation is inadequate.
Hence, higher order effects are also taken into account and it can be inhomogeneous higher
order nonlinear Schrodinger equation (Hao et al. 2004; Zhang et al. 2005; Tian and Zhou
2005; Meng et al. 2008). The investigation has been made to study the femtosecond solitons
in inhomogeneous optical fiber medium, which is described by the higher order nonlinear
Schrodinger equation with variable coefficients (Liu et al. 2010). Recently the application
of inhomogeneous nonlinear optical fibers with dispersion and nonlinearity for a number of
purposes, i.e., dispersion management and control of solitons (Xu et al. 2003), modulation
instability stimulation (Malomed 1993), compression of pulse (Tajima 1987), and ampli-
fication of soliton in long range communication (Peng et al. 1998), has been investigated
computationally. Guo et al. investigated the conservation laws for the generalized version
of nonlinear Schrodinger equation with Maxwell Bloch (Guo et al. 2012). Recently one of
the solitonic structure i.e., dromion structure is observed in attosecond sixth order inhomo-
geneous nonlinear Schrodinger equation (Prathap et al. 2018). Many effects are currently
investigating the propagation dynamics of optical solitons in inhomogeneous optical fiber
media. The problem of nonlinear wave propagation in inhomogeneous media has received
a lot of attention in recent years, and it has a lot of applications.

In general, if the system receives some kind of an external time-dependent or space-
dependent force then that system can be called as nonautonomous system. Due to the spe-
cial properties of nonautonomous solitons, it can be used in various applications such as
optical soliton telecommunication, soliton lasers, ultra soliton switches etc. The width,
amplitudes and pulse center can be changed by managing the system parameters such as
dispersion, nonlinearity and gain (Serkin et al. 2010). Subramanian et al. have been dis-
cussed the properties of optical solitons by choosing the variable coefficients for the inho-
mogeneous nonlinear Schrodinger equation Maxwell-Bloch system (Subramanian et al.
2017). The generalized nonautonomous nonlinear Schrodinger equations with variable
coefficients and external potential has been extensively studied by Belyaeva et al. (2011).
The time and space dependent coefficients of generalized nonautonomous cubic-quintic
nonlinear Schrodinger equation with external potentials are investigated by He and Li
(2011). The cubic quintic nonlinear Schrodinger equation with linear-lattice potential and
spatiotemporal modulation of nonlinearities was studied by You et al. (2014). Mani Rajan
et al. (2013) studied the generalized nonlinear Schrodinger Maxwell-Bloch equation with
some forms of external potentials. Under various circumstances, the Ref, (Serkin et al.
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2007) has been made to study the propagation of nonautonomous solitons with external
potentials. The propagation of nonautonomous solitons with cubic quintic effect has been
investigated in Porsezian et al. (2007). With the consideration of constant nonlinearity,
nonlinear Schrodinger equation with combined effects of inhomogeneous dispersion and
external harmonic potential have been reported (Raghuraman et al. 2021). There are only
fewer studies about the fascinating properties of the space and time dependent coefficients
for the nonautonomous systems.

This paper is organized in the following way: In Sect. 1, we have discussed the intro-
duction of the nonautonomous optical solitons and properties of nonautonomous systems.
The Sect. 2 is devoted to the Lax pair for the nonautonomous Hirota equation with vari-
able coefficients. In Sect. 3, three and four soliton solutions are generated by means of
Darboux transformation for the generalized nonautonomous nonlinear system based on the
constructed Lax pair. In Sect. 4, obtained four soliton solutions are graphically illustrated
with explanations. Finally, the paper is concluded with Sect. 5.

2 Nonautonomous Hirota equation with Lax pair

We consider the generalized nonautonomous Hirota equation, which describes the dynam-
ics of the ultra-short optical pulse propagating in the nonlinear inhomogeneous optical
fiber medium as,

9q . 09 . 9q P*q 2 : ’q 2
— —ia()— — t— —+2 —is()( — +6 =0
i (@) lﬁ(z)( ” +q> +y(z)<at2 +2lglg | -8 —= +6lqlq,

0z

(1
where ¢(z, 1) is a complex envelope of the field, a(z) and f(z) are the coefficients of non-
autonomous terms while y(z) and 6(z) are related to the coefficients of autonomous terms.
Autonomous and nonautonomous variables are defined in terms of arbitrary functions,
and suffixes denote partial differentiation. We can construct a new Lax pair of Eq. (1) By
Ablowitz-Kaup-Newell-Segur Scheme (AKNS) (Ablowitz et al. 1973). The linear eigen-
value problem for the Eq. (1) is written as

@, =U®Pand O, = VP 2)

where, ® = (®,, ®,)" and T is referred as transpose of the matrix.
U and V are represented as,

U=ifo;+i0, 3)

V=la(o38 + Q)+ ift(c;{ + Q)+ vV, +6V,, €]

where ¢ = e/ P42 and £ is a complex number.
Let us define

Vl = 2i03C2 =+ 2lQé: - iO'3Q2 + U3Q[, (5)

V, = —4ioy — 4i00% + 2(i0,0” - 6;,0,)¢ +iQ,, + 2i0” + 0,0 - 00, (6)
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10 0 ¢
a3=<0_1>andQ=<_qq0> %)

In the Lax pair (2), ¢ is non-isospectral parameter. The superscript * stands for a complex
conjugate. It is very easy to verify the compatibility condition and the compatibility condition
U, —V,+ UV - VU = 0 gives rise to the Eq. (1).

3 Darboux transformation

In the context of soliton theory, Darboux transformation method is one of the effective tools
to obtain the exact soliton solution for a nonlinear equation. By employing Darboux transfor-
mation method, one can construct n-number of soliton solutions based on the Lax pair (Mani
Rajan and Bhuvaneshwari 2018; Matveev and Salle 1991). The Lax pair based Darboux
transformation approach was recently developed and applied to the construction of soliton
solutions for higher order nonlinear Schrodinger equation (Xu et al. 2002). To attain the four
soliton solutions, 2X?2 linear eigenvalue problem associated with Eq. (1) is considered and
mathematical calculations are executed as given below.

Firstly, the Darboux transformation is introduced as

T[I]—ff—(f"‘+(§*—f§)q)lq)i and @ —<¢l> ®)
P oo, ! v
where the @, is a special solution for Lax pair at & = &.
Similarly, the transformation for the linear eigenvalue problem is written as

®,[1] =U,®[1] and U, = i{,05 + iQ, 9
where
0 q[1]=
0= <q[1] o )andg =gel e (10)
The Darboux transformation for Eq. (1) in the form of
Ql =Q+U3S—SO'3 (11)
with § = HAH™.,
where H is a nonsingular matrix and it is defined as
b —wy < SIY >
H = I Jand A = « -
( v, =4 0 ¢ (12)

One can get the Darboux transformation for the one soliton solution from Eq. (11) as
follows

v wid
21 1 > and q[171* = ¢q[0]* — 2(¢, — éf)e/ﬂdzzl—lz
i+ vl il +

13)

gl1] = g[0] = 2(&, — &l P

where &, = a, +ib,, here a, and b, arbitrary coefficients.
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The Darboux transformation for two soliton solution is given by

v,
ql2] = gl1] = 26 — &)e/ P22
|b|" + |w2
where &, = a, + ib, and we have
20 U218
ql21 = ¢[0] — 2¢/ P& l(@ ) ——+ &) —— (14)
S el el T el e

The N- soliton solution by Darboux transformation for the given system can be written as

- Wby
gIN1 = g[0] - Y lze/ Ple(gy — é}@)%} (15)
=1 |¢N| + |WN|
where
% BN—I *
by = (Ay — Ay_oy_1(Ay) — " (An1 = Ay Do (Ay) (16)
N-1
% BN—I *
wy = vy — A (Aygy) — A_(/IN = v (Ayg) (17
N-1

Ay = |¢N—1(}“N—1)|2 + |WN—1(/1N—I)|2

By_, = ¢N—1(’1N—1)¢;_1(AN) +Wn- uN—l)W;_1(/1N)

Equation (15) is the general form soliton solutions. Using this solutions, one can generate
any number of soliton solutions for the considered theoretical model. In the present work, as
an example, three and four soliton solutions are provided. For 6 = 0 in the expression (1),
many researchers have been examined nonautonomous solitons under second-order disper-
sion and Kerr nonlinearity using the Lax-pair and Darboux transformations (Yang et al. 2004,
2011; Kruglov et al. 2005).

3.1 Three soliton solution

By setting N = 3 we can write the three-soliton solution in the following form

g[3] = ~2iexp( / paa) (%) (18)

where
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J =iiexp( —2(0, +0,) —ip,)Sech(26,)*Sech(20,)(8Cos(2(p; — @,))b} + 8Cosh(2(6, + 6, ))b?
+2exp(2 / f(z)dz)(1 + Cosh(46))) ((al - a2)2 + (b + h2)2> — 8exp( / f(z)dz)Cosh(26,)b,
(Cosh(8; + 0, —ip, + i(pz)(ia1 —iay + by + hz) + Cosh(0, + 0, + i((pl - (pz))(—itll +ia, + by + bz)))

(exp(igp3) (1 + exp(483)) (2exp(2(6, +i(@; + @,)))(1 + exp(46,))b; + exp(26,)(1 + exp(46,))b,)
+ exp(20; + 2ig,) (1 + exp(48,)) (1 + exp(46,)) b;)

K =exp(i(@, +203))(1 + exp(46;)) 2exp(2 / ﬁ(z)dz)Cosh(ZGl)((al —a) + (b + bz)z)
+ 4b,((Cos2(@, — @,)) + Cosh(2(8, + 6,)))Sech(20,)b, — exp( / p(2)dz)(Cosh(8, + 0, — i, +ip,)
(ia; —ia, + b, + by) + Cosh(8; + 0, +i(9, — ¢,))(—ia; +ia, + b, +b,))))

and

0, = —exp(/ p(2)d2)tb; — ([ exp( [ f(z)dz)a(z)dz)b; — 4(/ exp(2 f f(2)d2)y(z)dz)a, b,
+ 12(/ exp(3 [ p(2)d2)8(z)dz)atb, — 4(/ exp(3 / f(2)dz)6(2)dz)b]

0, = — exp(f f(2)d2)th, — (f exp( J p(2)d2)a(z)d2)b, — 4(f exp(2 [ f(z)dz)y(z)dz)a,b,
+12(/ exp3 [ f(2)d2)8(x)dz)asb, — 4(/ exp(3 [ (2)d2)5(z)dz)by

0; = —exp(/ f(2)d2)tb; — (J exp( [ B(z)d2)a(z)d2)bs — 4(/ exp(2 / f(2)dz)y(2)dz)asb;
+ 12(f/ exp(3 f ﬂ(z)dz)é(z)dz)a§b3 —4(f exp(3 f ﬂ(z)dz)é(z)dz)bg

@) =exp( [ f()d)ta; + (f exp( [ fR)d)a(z)d)a; +2(/ exp2 [ f)d2)y(z)do)a}
— 4(/ exp(3 [ p)dD)5(2)d2)a’ — 2(/ exp(2 [ f(2)d2)y(2)d2)b? + 12(/ exp(3 [/ f(2)d2)é(z)dz)a, b3

@, =exp( [ p()d2)ta, + ([ exp( [/ f(z)dz)a(z)dz)a, + 2(/f exp(2 / ﬂ(z)dz)y(z)dz)a%
— 4(/ exp(3 [ p(2)d2)5(2)d2)al — 2(/ exp(2 J f(2)d2)y(2)dz)b3 + 12(/ exp(3 [/ f(2)d2)8(z)dz)a, b3

@3 =exp( [ p(z)dz)tay + ([ exp( [ f(z)dz)a(z)dz)a; + 2(/ exp(2 / ﬂ(z)dz)y(z)dz)a%
— 4(/ exp(3 [ px)d2)8(2)d2)a — 2(/ exp(2 J f(2)d2)y(2)d2)b3 + 12(/ exp(3 [ f(2)d2)8(z)dz)azb]

3.2 Four soliton solutions

For four soliton solution, one can choose N = 4 in Eq. (15), then the solution can be written as,
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2iet—0i=i(9:+0,) (ey% 4 20540, +i,) >b3

ql4] = | 2ie*/ PO s o FOE (g ipy) + v +el 1% (g, —ib,)

Diet=0s=i(o:+0y) (62(93+9,+i¢3) 1 s )b}
+el /7(:)111(04 +iby) |(—as + a4 — ibs+

e/ PO (a4 iby) - i

(22293—294“(@2—%-2%)(1 140 ) (22(934-94) + ez,(«;,ar%))b2 (_i(260,+z,¢, _ of PO 480340 tipytin, 4 0, 30+20,+2ig,

—ef ﬁ(z)dz+0,+i(qz1+w))b3 + /P d:+0‘+i(¢1+<p4)(l + 8401)(03 —a,+ ib4)))/<(1 + ¢ ) (2602 <62(172+03+iq7:) g )b, A

(2 302450 42i0y _ o[ P2) et 40,440y Higa tioy 4 000 +30342i0s _ of PQ) diti(0r+03) _ of PR dztdby+i(0rtes) _ of P dz+49;+1(w3+¢;)) by
ief PO &0 +i(o2403) (1 4 ¢4 ) (1 4 6% ) (ay — a3 — 1173))) - zb4) (=as + ay + iby— Qie"+2(@:493) (1 4 ¢4)p,

2iet>=0s=i(2+93) (82(”:+03+i¢z) + 2oy )bz
+ e/ﬁ“’”"(a3 +ibs)

—0,-0,~i(ps + B) dz "
e 17 (~ay +iby) ~ 1+ &%

2iets—0s=i(o3+0s) (ez(.q3 +04i05) 4 Qi )h3

o 1O% (g, 4 iby) — o +el PO (g 1 i) |+ elr0stilostar)

2igh=0s-i(02+0:) <e2(91+9z+1%) + s ) by

e/ﬂ(z’dz(—az -+—ib2)+é,’/ﬁ(")d"(a3 +ib3)— 5o

2iels=0=i(03+0s) (62(93”#"%) + i )b3

e/ﬂ(:)dz(_a3 +iby) - o) +L,/ﬁ(z)dz(a4 +iby) |1/

((1 I ) ((263()Z+znl+zmg _ ol PR de+a0,40, +igstipy | 0 00420y _ of /i(z)dz+173+l(w3+(p3)) by— jo] P de+0s+i(pr+5)

(1+€")(a,—a; - ib3))(<2e"2+2’“’2 _ o PR dHa0,40 xigyiny | 0,30,420342i0; _ of ﬂ(z)dz+9;+l(w3+w;))h2+

i(2B3,b, + Asbs — Asby) )

ief PO &0 +i(02403) (1 4 ¢4 ) (a, — ay + iby))) + ib4)b4<—a3 +a,+ -
3

Dieh—ts=i(o:+0y) (L,zu,,x EICRVRS) )bz

i(A3by — A3by + 2b,B
(_a3+a4_ (Ashs = Asb, 2 3)>)/ 64/5(2)11:72&(e/p(z)zlz(_a3_ib3)+ o

A3

el —0s=i(0s+0s) (ez(()1+1)4+iq73) T >b3
el P (ag + iby) |(—a3 + ay

el PO (g, — i, )| of PO (g, + iby) - -
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Dietr=0s=i(¢2+;) (ezmzz 1 20,405 +ip;) >b2

. . 2| oo+ Dde .
—iby + 2,5493'*21(0’2‘*‘0’3)(1 +¢%) by et Outilost:) (o PO &2 (_g, —iby) + v
e

iets—ti=i(os+0:) (ezuh 4 0:+0,4i0,) )b

+e/ﬂ(z)dz(a3 —iby)) e/ﬂ(z)dz(_a3 —iby) + o +e/ﬂ(:)dz(a4 —ib,) |+

2jeba—ta=i(a+03) (eZiqzz + 62(93+9;+iw;)>b3

t0si(eatos) e/ﬁ(‘")d"(—a2 —iby) + e/ﬁ(”‘l‘"(zh —iby) + o
: . + €'

2iet—ta=i(2s+e,) (821‘% + 2(0:+0,+in,) )h3

JB@dz(_, JB@dz(, _
e (—ay —iby) + TRy +e (ay —ibg) |||/

((l + 8401)((26302”0#2@1 _ ol P x40, 04 tins | 0 0:+2gs _ of /l(z)dz+ll;+i(<pz+q1;))h2 el P dz+0;+i((p2+(p‘)(l + 8402)
(a, —ay - ibg))<2e92*2’“2 _ of PO dz4d0y40s+iortioy | 0, 30:+20542i05 _ of l?(z)tlz+9;+l(<p3+w;))b2 4 ie PO dz+0,+i(0r+03)

i 2 i Vdz
(1+¢%) (ay = as + ib3))) = iby) (—as + ay + ibs— <2ie49»‘+2’("’1+”’?) (1+¢")b, (e_9~‘_94_‘(¢3+“")( of P

2l~esz—s,—,(¢z+w,)(ez(s:+eg+iqzz) + iy )h2
+e/ﬁ(:)d:(a3+ib3)>(e/ﬂ(z)dz(_a3+ih3)_

(—ay +iby) - TS

2ieh=0i=i( s +0,) (22(934-944-[%) T i )bz
+e PO (g, 4 iby)) + O+0s4i(05+0:) (o] P dz (=a, +iby)+

1+ e

2ie02~03=i(02+03) (32(‘92+91+i¢:) + %3 )b}

Yel POE (—ay + iby)—

o PO (a4 iby) — o

2iels=0a=i(03+0s) (ez(”ﬁ”ﬁirp;) + e2ies )b;
N PO (g, +ib4))))/((1 + €105 (230204200 _ o P dz+a0,40stipytis |

1 + ¢2(05+05)

2604205 _ of ﬁ(:)d;+9;+:(w2+%))b2 _iel ﬂ(z)zlz+9;+i(q>3+(p1)(l + 6402)(% —ay— ib}))(zeeﬁzmz _el () dzH40,+0; +ipy +igpy 4

23024205 +2ip; _ e/ /I(:)dz+l}3+i((pz+q1;))b2 + ie/ /i(z)([z+173+1(q12+(p3)(1 + 24“2)(112 —ay+ ib3)) +iby)(—ay + a,+

i(2B3,by + A3by — Ash, i(A3by — A3by + 2b,B,
(2B310; A3 34 4))<_a3+a4_ (Asbs ;4 2 4)>+e4/ﬂ(z)dz+294(e/ﬁ(z)dz(_a3_ih3)
3 3
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2ie%-0:-i(03+03) (eziwx + 22(93+9,+[¢4)>b3
+E//'(z)d:(a4 _ ib4))(efﬂ(z)dz(_a3 +iby)—

1+ e%s

el 0-i(os+os) <62(9;+94+Ia)3) 4 oy )b1
+ol PO (aq + iby))(—a3 + ay — ibs+ 2629—"2”“"(“’2"""2“'4)(1 +¢*%)

1+ %

( 2005+0,) 4 eZi(w;+¢4)> by (—i(z 054205 _ o PR A5 0, +ips +igs |y 93034204420y _ pf P dz+0i+i(ps+0s) > byt
efﬂ(z)dz+04+x(¢,+<p4)(1 + 6493)(% —a,+ ib4))>/((1 + 40 )(2e93 <e2(92+93+[°’1) + ¢2ins )b, + o5 (263050 2igy _
of P@ deHd0,+40; +ipy +igs | 9 0,430,42i0y _ of P deti(02+03) _ o) Q@ det40y+i(02403) _ of P df+491+'(fﬂ:+<ﬂs))b2_
o] PO di03+i(0403) (1 4 402 ) (1 4 ¢ ) (a, — ay — ib3))) - ib4> (=ay+ay +iby+
(28291726'4“(@27@1—2%)(1 + 8492)(1 + 82(91+94+l(w;+(04)))bzi(263liq+2«%+2iwz _ e/ @) d+403+0,+igs+ipy 4 9 03+2ips _
o/ P dz+94+i(¢5+¢4))b3 +ef ﬂ(f)dz+94+i((aj+q:4)(] + e493)(a3 —a, - ibﬂ))/((l + s ) (2392 (eZi”’Z + e2(92+9~’”“’3)>b1 e

(26914-39;4-2,4;2 _ of PR A0, 4405 +ipy +ins | 0 30,+50;42i0; _ of PQ) deAi(@r403) _ of PQ) detA0r+i( 024 03) _ of zf(:)d:+491+i(wz+w,)) b+
ie/ ﬁ(‘")d”e”'(“’z*'“’—‘)(l +e* %) (1+¢" ) (ay — a3 + ib3))) + ib4><—a3 +ay +

i(A3by — Asby +2b,Bs)
Ut s )
3

1(2Barby +Ashy — Asby)
A3

(19)
where
0, = —exp( S f(2)d)th; — (f exp( [ f(2)dD)a(z)dz)b; — 4(f exp(2 J f(2)d2)y(2)dz)a, b,
+12(/ exp3 [ f(2)d2)6(z)d2)arh, — 4(/ exp3 [ p(2)d2)6(z)dz)by

0, = — exp( [ f(2)d2)th, — ([ exp( [ f(2)dz)a(z)d2)b, — 4(S exp(2 [ f(z)dz)y (z)dz)a, b,
+12(/ exp(3 [ f(2)d2)5(x)dz)asb, — 4(S exp(3 | B(2)d2)5(z)dz)b;

03 = —exp(/ f(2)d2)th; — (f exp( [ f(z)dz)a(z)dz)b; — 4(f exp(2 [ f(z)dz)y (2)d2)azb;
+12(/ exp(3 [ A(2)d2)8(2)d2)a3bs — 4(f exp(3 | (2)d2)é(2)dz)b3

0, = —exp(/ f(x)d2)th, — (/ exp( [ f(2)dz)a(z)d2)b, — 4(/ exp(2 / f(2)d2)y(2)d2)a,b,
+ 12(/ exp(3 / B(2)d2)8(z)dz)ab, — 4(/ exp(3 [ B(z)dz)5(2)dz)b]

@, =exp( [ f()d2)ta; + (f exp( [ f(2)d)a(z)d2)a, + 2(/ exp(2 [ f(2)d2)y (2)dz)a;
— 4(/ exp(3 [ f(2)d2)6()dz)a’ — 2(/ exp(2 [ B(z)d2)y(2)dz)b]
+12(/ exp(3 / p(2)d2)8(z)dz)a, b

@2 =exp( [ B)d2)ta, + ([ exp( [ p(2)dD)a(2)dz)a; + 2(f exp(2 | f(2)d2)y (2)d2)a;

— 4(/ exp(3 [ f(2)d2)8(2)dz)a; — 2(/ exp(2 [ B(z)d2)y(2)dz)b]
+12(/ exp(3 / p(2)d2)8(z)dz)a, b3
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@3 =exp( [ f(2)d2)taz + (f exp( [ f)dz)a(z)d2)as + 2(/ exp(2 [ f(2)d2)y (2)d2)a;
— 4(/ exp(3 [ f(2)d2)6(2)dz)a’ — 2(/ exp(2 [ B(z)d2)y(2)dz)b]
+12(/ exp(3 / B(2)d2)8(2)dz)azb3

@4 =exp( [ f)d2)ta, + (f exp( [ p()d2)a(z)dz)a, + 2(f exp(2 | A(2)d2)y(2)d2)a;
— 4(/ exp(3 [ f(2)d2)8(2)dz)a; — 2(/ exp(2 [ B(z)d2)y(2)dz)b]
+12(/ exp(3 [ f(2)d2)3(z)d2)a,by

and As,B5,B5, is trigonometric functions.

4 Result and discussion

From the derived exact four soliton solution, we can fully understand the dynamics of four
solitons in optical fiber system. To generate the applications and investigate the physical
properties of the obtained four soliton solution of Eq. (1) needs a particular choice of the
arbitrary functions and also the arbitrary coefficients are used to control the dynamics of
the solitons.

4.1 Exponential profile

By considering the coefficients of nonautonomous terms are set to zero, the system (1)
ultimately indicates the autonomous nonlinear Schrodinger equation system. Then the
autonomous and nonautonomous terms have the following form (Mani Rajan et al. 2020;
Karthikeyaraj et al. 2019; Prathap et al. 2019),

(a) (b)
Fig.1 The evolution of the autonomous four soliton solution a when

a; =-196,b, =-291,a, =0.89,b, = 1.86,a; = —1.13,b; = 1.5,a, = —0.63,b, = —0.9. b Correspond-
ing contour plot
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‘ 1.0

15

(@) )

Fig.2 The evolution of  the nonautonomous four soliton solution a when
a, =15,b, =19,a,=19,b, =-2.1,a3, =09,b; = -1.5,a, =0.7,b, = 1.9. b Corresponding contour
plot

B(@) =0, a(z) =0, y(z) =z, 6(z2) = Exp( —2). (20)

By using the aforementioned function to the Eq. (19), the four-soliton solution will
be interacting at z = 0, and then the solitons regain their original shape after interaction.
The four soliton’s amplitude and width are invariant during the propagation in a nonlinear
fiber. The exponential profile for the autonomous solitons are represented in Fig. 1(a) and
(b) represents the contour plot. We hope the above results are useful for high-capacity long
distance optical fiber communications.

With the consideration of nonautonomous terms, the dynamics of four solitons are dif-
ferent from the autonomous case. For the nonautonomous soliton, the arbitrary parameters
having the following form,

B(z) = z, a(z) = Exp(—2), y(2) = z, 6(z) = Exp(—2) 1)

The propagation property of nonautonomous solitons is portrayed in Fig. 2(a) by fixing
the above parameters in Eq. (19). There is a slight difference in between autonomous and
nonautonomous plots. Nonautonomous solitons are comparable to autonomous solitons in
that they both have the same amplitude. After and before the interaction, the solitons are
compressed, becoming narrower and narrower as they propagate. We can easily verify the
compression behavior from the contour plots Fig. 2(b). The compression profile can be
used to achieve the ultrashort pulse.

4.2 Soliton fission

For the choice of Hyperbolic profile (22) in the obtained four soliton solutions, soliton
splitting behavior is observed. Few novel works have been carried out by several research-
ers using hyperbolic profile (Dai et al. 2012; Arun Prakash et al. 2016),

L

P =0, a0 =0, 7(0) =2 6) = (= —7-

(22)
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(a) (b)

Fig.3 The evolution of the autonomous four soliton solution a when
a; =0.2,b, =09,a, =-0.6,b, = —-1.1,a;, = —-0.2,b; = -0.8,a, = —0.5,b, = 1.1, C=24,L = 15. b Cor-
responding contour plot

0.2 0.4 0.6 0.8 1.0 12 14

(a) (b)

Fig.4 The evolution of  the nonautonomous four soliton solution a when
a,=12,b,=14,a,=1.1,b, =-1.6,a; =0.,,b; =1.0,a, =0.6,b, =-13C=24,L=15. b Corre-
sponding contour plot

where C is an arbitrary constant and L is a length of the medium. For the lower value of C,
the four solitons are closely packed together. Initially four solitons emerge from ¢ = 0, the
distance between the four solitons will be increases as they propagate in the medium. Dur-
ing the propagation, the amplitude and width of the solitons are invariant during the travel
in the medium and the four solitons are do not interact with each other which is shown in
the Fig. 3(a) and (b). This kind of analysis will be beneficial to achieve the high-capacity
transmission networks in soliton-based communication system. Similarly for higher value
of C, the separation between solitons is increasing rapidly. Hence, C is a key parameter to
control the soliton’s width in the optical communication system.
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Since the present work is mainly focused on the study of nonautonomous solitons,
the nonautonomous coefficients are included and having the following form,
L L
= 1, = = 1 5 = —
p@) a(z) C- il r(@) @ C-Ditl (23)
Initially the nonautonomous solitons are closely packed together, when z > 0 then
the distance between solitons is gradually increases as they propagate. When comparing
with the autonomous case, the spacing between solitons grows significantly and effec-
tively compressed as clearly depicted in Fig. 4(a) and b.

4.3 Phase shifted Soliton

Consider the optical pulse compression problem in a dispersion decreasing optical
cable. For this sake we consider the arbitrary parameter as following (Porsezian et al.
2007),

PR =0, a() = 0. 7)) =, 6) = ~. 24)

For the choice of above parameter, the resultant soliton amplitude is not changing
during the propagation. The solitons are emerging from ¢ = 6, initially the four soli-
tons are merged together, after that the solitons are keeping their propagation in a linear
path. The Fig. 5(a) provides the soliton management regime under the above param-
eters. From the density plot Fig. 5(b), we may infer that the soliton width is constant
throughout the inhomogeneous fiber medium which indicates the dispersion less soliton
propagation under the management of inhomogeneous functions.

In order to demonstrate the influence of nonautonomous terms on the soliton dynam-
ics, the variable coefficients are considered as following,

(@ (b)
Fig.5 The evolution of the autonomous four soliton solution a when

a; =-09,b, =19,a, =-0.2,b, =0.7,a3 = —0.1,b; = —1.1,a, = 0.1,b, = 1.2. b Corresponding contour
plot
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15 -10  -05 00
(a) (b)

Fig.6 The evolution of  the nonautonomous four soliton solution a when
a,=17,b, =-12,a,=2.8,b, =09,a; = -5.7,b; =2.2,a, = =3.9,b, = 1.7. b Corresponding contour
plot

PR =1 a() = 1. 1) = 2. 6) = =. (25)

For the choice of functions as given in the expression (25), amplitude and width of
the solitons are varying significantly along the optical fiber medium. In an optical fiber
communication system, this effect can be applied to control the pulse in an effective
manner. It should be mention that all four solitons are getting parabolic trajectory as
clearly depicted in Fig. 6(a) and the contour plot is represented in Fig. 6(b). This kind
of soliton shaping in a dispersion fiber is reported recently (Liu et al. 2016). This result
will helpful to control the soliton direction in an inhomogeneous optical fiber medium.

(a) (b)
Fig.7 The evolution of the autonomous four soliton solution a when

a; =-0.6,b; =1.05,a, = -0.2,b, =-0.9,a; = -0.1,b; = -0.5,a, = -0.3,b, =0.6. b Corresponding
contour plot
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Fig.8 The evolution of  the nonautonomous four soliton solution a when
a; =-0.6,b, =-0.65,a, = -0.3,b, = -0.6,a; = —0.4,b; = -0.8,a, = —0.7,b, = —0.9. b Corresponding
contour plot

4.4 S-shaped soliton

Soliton control through variable coefficients is a new technology. By properly selecting the
profile for variable coefficients, one can get desirable shape for the soliton. As an example,
we attained S-Shaped autonomous solitons as follows (Xia et al. 2016; Karthikeyaraj et al.
2018),

B(z) =0, a(z) =0, y(z) = sech(z + 5), 6(z) = cosh(z + 5). (26)

The choice of above parameters which provides the S-shaped soliton results in soliton
attraction with compressed structure. Recently, for the higher order nonlinear Schrodinger
equation with variable coefficients, similar structure has been observed (Feng et al. 2015;
Yang et al. 2017). The S-shaped autonomous solitons are represented in Fig. 7(a) and with
respective contour plot is depicted in Fig. 7(b).

In the case of nonautonomous S-Shaped soliton, the following parameters was chosen,

f(z) = 0.1, a(z) = Cos(z + 5), y(z) = Sech(z + 5), 6(z) = Cosh(z + 5). 27)

When nonautonomous terms taken into account, width of the solitons is mainly affected
as shown in Fig. 8. Especially, on both sides of the tails in the S-shape, solitons getting
compression. The wave width is gradually decreases, as they propagate in the medium.
We can easily verify the compression behavior of S-shaped soliton from the contour plot.
The nonautonomous S-Shaped soliton is represented in the Fig. 8(a) with corresponding
contour plot is represented in Fig. 8(b). Using various analytical methods, transmission of
optical solitons has been investigated through obtained soliton solutions for many types of
nonlinear equations (Guo et al. 2020, Song et al. 2020; Shen et al. 2021, 2022; Shan et al.
2022).
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5 Conclusion

In this paper, we generate three and four soliton solutions for generalized nonautonomous
Hirota equation that can be used to describe the soliton propagation in an inhomogeneous
nonlinear optical fiber. By employing Darboux transformation method based on the Lax
pair, three and four soliton solutions are attained. The properties of obtained four soliton
solutions are investigated through some graphical illustrations. In order to understand the
soliton solutions related to physical problems, various dynamical behaviors of four solitons
are examined through properly selecting the variable coefficients. Through the tailoring
of arbitrary functions, different soliton properties have been explained in detail. Obtained
results are connected to some optical applications such as soliton management, optical
switching, route controlling devices etc.
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